2023-07-25 15:07:21 +07:00

924 lines
31 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED && defined(TUP_USBIP_EHCI)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "osal/osal.h"
#include "host/hcd.h"
#include "ehci_api.h"
#include "ehci.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// Debug level of EHCI
#define EHCI_DBG 2
// Framelist size as small as possible to save SRAM
#ifdef TUP_USBIP_CHIPIDEA_HS
// NXP Transdimension: 8 elements
#define FRAMELIST_SIZE_BIT_VALUE 7u
#define FRAMELIST_SIZE_USBCMD_VALUE (((FRAMELIST_SIZE_BIT_VALUE & 3) << EHCI_USBCMD_FRAMELIST_SIZE_SHIFT) | \
((FRAMELIST_SIZE_BIT_VALUE >> 2) << EHCI_USBCMD_CHIPIDEA_FRAMELIST_SIZE_MSB_SHIFT))
#else
// STD EHCI: 256 elements
#define FRAMELIST_SIZE_BIT_VALUE 2u
#define FRAMELIST_SIZE_USBCMD_VALUE ((FRAMELIST_SIZE_BIT_VALUE & 3) << EHCI_USBCMD_POS_FRAMELIST_SIZE)
#endif
#define FRAMELIST_SIZE (1024 >> FRAMELIST_SIZE_BIT_VALUE)
// Total queue head pool. TODO should be user configurable and more optimize memory usage in the future
#define QHD_MAX (CFG_TUH_DEVICE_MAX*CFG_TUH_ENDPOINT_MAX + CFG_TUH_HUB)
#define QTD_MAX QHD_MAX
typedef struct
{
ehci_link_t period_framelist[FRAMELIST_SIZE];
// TODO only implement 1 ms & 2 ms & 4 ms, 8 ms (framelist)
// [0] : 1ms, [1] : 2ms, [2] : 4ms, [3] : 8 ms
// TODO better implementation without dummy head to save SRAM
ehci_qhd_t period_head_arr[4];
// Note control qhd of dev0 is used as head of async list
struct {
ehci_qhd_t qhd;
ehci_qtd_t qtd;
}control[CFG_TUH_DEVICE_MAX+CFG_TUH_HUB+1];
ehci_qhd_t qhd_pool[QHD_MAX];
ehci_qtd_t qtd_pool[QTD_MAX] TU_ATTR_ALIGNED(32);
ehci_registers_t* regs; // operational register
ehci_cap_registers_t* cap_regs; // capability register
volatile uint32_t uframe_number;
}ehci_data_t;
// Periodic frame list must be 4K alignment
CFG_TUH_MEM_SECTION TU_ATTR_ALIGNED(4096) static ehci_data_t ehci_data;
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= (EHCI_DBG + 1)
static inline void print_portsc(ehci_registers_t* regs) {
TU_LOG_HEX(EHCI_DBG, regs->portsc);
TU_LOG(EHCI_DBG, " Connect Status : %u\r\n", regs->portsc_bm.current_connect_status);
TU_LOG(EHCI_DBG, " Connect Change : %u\r\n", regs->portsc_bm.connect_status_change);
TU_LOG(EHCI_DBG, " Enabled : %u\r\n", regs->portsc_bm.port_enabled);
TU_LOG(EHCI_DBG, " Enabled Change : %u\r\n", regs->portsc_bm.port_enable_change);
TU_LOG(EHCI_DBG, " OverCurr Change: %u\r\n", regs->portsc_bm.over_current_change);
TU_LOG(EHCI_DBG, " Force Resume : %u\r\n", regs->portsc_bm.force_port_resume);
TU_LOG(EHCI_DBG, " Suspend : %u\r\n", regs->portsc_bm.suspend);
TU_LOG(EHCI_DBG, " Reset : %u\r\n", regs->portsc_bm.port_reset);
TU_LOG(EHCI_DBG, " Power : %u\r\n", regs->portsc_bm.port_power);
}
static inline void print_intr(uint32_t intr) {
TU_LOG_HEX(EHCI_DBG, intr);
TU_LOG(EHCI_DBG, " USB Interrupt : %u\r\n", (intr & EHCI_INT_MASK_USB) ? 1 : 0);
TU_LOG(EHCI_DBG, " USB Error : %u\r\n", (intr & EHCI_INT_MASK_ERROR) ? 1 : 0);
TU_LOG(EHCI_DBG, " Port Change Detect : %u\r\n", (intr & EHCI_INT_MASK_PORT_CHANGE) ? 1 : 0);
TU_LOG(EHCI_DBG, " Frame List Rollover: %u\r\n", (intr & EHCI_INT_MASK_FRAMELIST_ROLLOVER) ? 1 : 0);
TU_LOG(EHCI_DBG, " Host System Error : %u\r\n", (intr & EHCI_INT_MASK_PCI_HOST_SYSTEM_ERROR) ? 1 : 0);
TU_LOG(EHCI_DBG, " Async Advance : %u\r\n", (intr & EHCI_INT_MASK_ASYNC_ADVANCE) ? 1 : 0);
// TU_LOG(EHCI_DBG, " Interrupt on Async: %u\r\n", (intr & EHCI_INT_MASK_NXP_ASYNC));
// TU_LOG(EHCI_DBG, " Periodic Schedule : %u\r\n", (intr & EHCI_INT_MASK_NXP_PERIODIC));
}
#else
#define print_portsc(_reg)
#endif
//--------------------------------------------------------------------+
// PROTOTYPE
//--------------------------------------------------------------------+
// weak dcache for non-cacheable MCU
TU_ATTR_WEAK bool hcd_dcache_clean(void const* addr, uint32_t data_size) { (void) addr; (void) data_size; return true; }
TU_ATTR_WEAK bool hcd_dcache_invalidate(void const* addr, uint32_t data_size) { (void) addr; (void) data_size; return true; }
TU_ATTR_WEAK bool hcd_dcache_clean_invalidate(void const* addr, uint32_t data_size) { (void) addr; (void) data_size; return true; }
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_control(uint8_t dev_addr);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_next (ehci_qhd_t const * p_qhd);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_find_free (void);
static ehci_qhd_t* qhd_get_from_addr (uint8_t dev_addr, uint8_t ep_addr);
static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc);
static void qhd_attach_qtd(ehci_qhd_t *qhd, ehci_qtd_t *qtd);
static void qhd_remove_qtd(ehci_qhd_t *qhd);
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t* qtd_control(uint8_t dev_addr);
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t* qtd_find_free (void);
static void qtd_init (ehci_qtd_t* qtd, void const* buffer, uint16_t total_bytes);
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_get_period_head(uint8_t rhport, uint32_t interval_ms);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* list_get_async_head(uint8_t rhport);
TU_ATTR_ALWAYS_INLINE static inline void list_insert (ehci_link_t *current, ehci_link_t *new, uint8_t new_type);
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_next (ehci_link_t const *p_link);
static void list_remove_qhd_by_daddr(ehci_link_t* list_head, uint8_t dev_addr);
static void ehci_disable_schedule(ehci_registers_t* regs, bool is_period) {
// maybe have a timeout for status
if (is_period) {
regs->command_bm.periodic_enable = 0;
while(regs->status_bm.periodic_status) {}
} else {
regs->command_bm.async_enable = 0;
while(regs->status_bm.async_status) {} // should have a timeout
}
}
static void ehci_enable_schedule(ehci_registers_t* regs, bool is_period) {
// maybe have a timeout for status
if (is_period) {
regs->command_bm.periodic_enable = 1;
while ( 0 == regs->status_bm.periodic_status ) {}
} else {
regs->command_bm.async_enable = 1;
while( 0 == regs->status_bm.async_status ) {}
}
}
//--------------------------------------------------------------------+
// HCD API
//--------------------------------------------------------------------+
uint32_t hcd_frame_number(uint8_t rhport)
{
(void) rhport;
return (ehci_data.uframe_number + ehci_data.regs->frame_index) >> 3;
}
void hcd_port_reset(uint8_t rhport)
{
(void) rhport;
ehci_registers_t* regs = ehci_data.regs;
// mask out Write-1-to-Clear bits
uint32_t portsc = regs->portsc & ~EHCI_PORTSC_MASK_W1C;
// EHCI Table 2-16 PortSC
// when software writes Port Reset bit to a one, it must also write a zero to the Port Enable bit.
portsc &= ~(EHCI_PORTSC_MASK_PORT_EANBLED);
portsc |= EHCI_PORTSC_MASK_PORT_RESET;
regs->portsc = portsc;
}
void hcd_port_reset_end(uint8_t rhport)
{
(void) rhport;
#if 0 // TODO check if this is necessary
ehci_registers_t* regs = ehci_data.regs;
// mask out all change bits since they are Write 1 to clear
uint32_t portsc = regs->portsc & ~EHCI_PORTSC_MASK_CHANGE_ALL;
portsc &= ~(EHCI_PORTSC_MASK_PORT_RESET);
regs->portsc = portsc;
#endif
}
bool hcd_port_connect_status(uint8_t rhport)
{
(void) rhport;
return ehci_data.regs->portsc_bm.current_connect_status;
}
tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
(void) rhport;
return (tusb_speed_t) ehci_data.regs->portsc_bm.nxp_port_speed; // NXP specific port speed
}
// Close all opened endpoint belong to this device
void hcd_device_close(uint8_t rhport, uint8_t daddr)
{
// skip dev0
if (daddr == 0) {
return;
}
// Remove from async list
list_remove_qhd_by_daddr((ehci_link_t *) list_get_async_head(rhport), daddr);
// Remove from all interval period list
for(uint8_t i = 0; i < TU_ARRAY_SIZE(ehci_data.period_head_arr); i++) {
list_remove_qhd_by_daddr((ehci_link_t *) &ehci_data.period_head_arr[i], daddr);
}
// Async doorbell (EHCI 4.8.2 for operational details)
ehci_data.regs->command_bm.async_adv_doorbell = 1;
}
static void init_periodic_list(uint8_t rhport) {
(void) rhport;
// Build the polling interval tree with 1 ms, 2 ms, 4 ms and 8 ms (framesize) only
for ( uint32_t i = 0; i < TU_ARRAY_SIZE(ehci_data.period_head_arr); i++ ) {
ehci_data.period_head_arr[i].int_smask = 1; // queue head in period list must have smask non-zero
ehci_data.period_head_arr[i].qtd_overlay.halted = 1; // dummy node, always inactive
}
// TODO EHCI_FRAMELIST_SIZE with other size than 8
// all links --> period_head_arr[0] (1ms)
// 0, 2, 4, 6 etc --> period_head_arr[1] (2ms)
// 1, 5 --> period_head_arr[2] (4ms)
// 3 --> period_head_arr[3] (8ms)
ehci_link_t * const framelist = ehci_data.period_framelist;
ehci_link_t * const head_1ms = (ehci_link_t *) &ehci_data.period_head_arr[0];
ehci_link_t * const head_2ms = (ehci_link_t *) &ehci_data.period_head_arr[1];
ehci_link_t * const head_4ms = (ehci_link_t *) &ehci_data.period_head_arr[2];
ehci_link_t * const head_8ms = (ehci_link_t *) &ehci_data.period_head_arr[3];
for (uint32_t i = 0; i < FRAMELIST_SIZE; i++) {
framelist[i].address = (uint32_t) head_1ms;
framelist[i].type = EHCI_QTYPE_QHD;
}
for (uint32_t i = 0; i < FRAMELIST_SIZE; i += 2) {
list_insert(framelist + i, head_2ms, EHCI_QTYPE_QHD);
}
for (uint32_t i = 1; i < FRAMELIST_SIZE; i += 4) {
list_insert(framelist + i, head_4ms, EHCI_QTYPE_QHD);
}
list_insert(framelist + 3, head_8ms, EHCI_QTYPE_QHD);
head_1ms->terminate = 1;
}
bool ehci_init(uint8_t rhport, uint32_t capability_reg, uint32_t operatial_reg)
{
tu_memclr(&ehci_data, sizeof(ehci_data_t));
ehci_data.regs = (ehci_registers_t*) operatial_reg;
ehci_data.cap_regs = (ehci_cap_registers_t*) capability_reg;
ehci_registers_t* regs = ehci_data.regs;
// EHCI 4.1 Host Controller Initialization
//------------- CTRLDSSEGMENT Register (skip) -------------//
//------------- USB INT Register -------------//
// disable all the interrupt
regs->inten = 0;
// clear all status except port change since device maybe connected before this driver is initialized
regs->status = (EHCI_INT_MASK_ALL & ~EHCI_INT_MASK_PORT_CHANGE);
// Enable interrupts
regs->inten = EHCI_INT_MASK_USB | EHCI_INT_MASK_ERROR | EHCI_INT_MASK_PORT_CHANGE |
EHCI_INT_MASK_ASYNC_ADVANCE | EHCI_INT_MASK_FRAMELIST_ROLLOVER;
//------------- Asynchronous List -------------//
ehci_qhd_t * const async_head = list_get_async_head(rhport);
tu_memclr(async_head, sizeof(ehci_qhd_t));
async_head->next.address = (uint32_t) async_head; // circular list, next is itself
async_head->next.type = EHCI_QTYPE_QHD;
async_head->head_list_flag = 1;
async_head->qtd_overlay.halted = 1; // inactive most of time
async_head->qtd_overlay.next.terminate = 1; // TODO removed if verified
regs->async_list_addr = (uint32_t) async_head;
//------------- Periodic List -------------//
init_periodic_list(rhport);
regs->periodic_list_base = (uint32_t) ehci_data.period_framelist;
hcd_dcache_clean(&ehci_data, sizeof(ehci_data_t));
//------------- TT Control (NXP only) -------------//
regs->nxp_tt_control = 0;
//------------- USB CMD Register -------------//
regs->command |= EHCI_USBCMD_RUN_STOP | EHCI_USBCMD_PERIOD_SCHEDULE_ENABLE | EHCI_USBCMD_ASYNC_SCHEDULE_ENABLE |
FRAMELIST_SIZE_USBCMD_VALUE;
//------------- ConfigFlag Register (skip) -------------//
// enable port power bit in portsc. The function of this bit depends on the value of the Port
// Power Control (PPC) field in the HCSPARAMS register.
if (ehci_data.cap_regs->hcsparams_bm.port_power_control) {
// mask out all change bits since they are Write 1 to clear
uint32_t portsc = (regs->portsc & ~EHCI_PORTSC_MASK_W1C);
portsc |= EHCI_PORTSC_MASK_PORT_POWER;
regs->portsc = portsc;
}
return true;
}
#if 0
static void ehci_stop(uint8_t rhport)
{
(void) rhport;
ehci_registers_t* regs = ehci_data.regs;
regs->command_bm.run_stop = 0;
// USB Spec: controller has to stop within 16 uframe = 2 frames
while( regs->status_bm.hc_halted == 0 ) {}
}
#endif
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
// TODO not support ISO yet
TU_ASSERT (ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
//------------- Prepare Queue Head -------------//
ehci_qhd_t *p_qhd = (ep_desc->bEndpointAddress == 0) ? qhd_control(dev_addr) : qhd_find_free();
TU_ASSERT(p_qhd);
qhd_init(p_qhd, dev_addr, ep_desc);
// control of dev0 is always present as async head
if ( dev_addr == 0 ) return true;
// Insert to list
ehci_link_t * list_head = NULL;
switch (ep_desc->bmAttributes.xfer)
{
case TUSB_XFER_CONTROL:
case TUSB_XFER_BULK:
list_head = (ehci_link_t*) list_get_async_head(rhport);
break;
case TUSB_XFER_INTERRUPT:
list_head = list_get_period_head(rhport, p_qhd->interval_ms);
break;
case TUSB_XFER_ISOCHRONOUS:
// TODO iso is not supported
break;
default: break;
}
TU_ASSERT(list_head);
list_insert(list_head, (ehci_link_t*) p_qhd, EHCI_QTYPE_QHD);
hcd_dcache_clean(p_qhd, sizeof(ehci_qhd_t));
hcd_dcache_clean(list_head, sizeof(ehci_qhd_t));
return true;
}
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
(void) rhport;
ehci_qhd_t* qhd = &ehci_data.control[dev_addr].qhd;
ehci_qtd_t* td = &ehci_data.control[dev_addr].qtd;
qtd_init(td, setup_packet, 8);
td->pid = EHCI_PID_SETUP;
hcd_dcache_clean(setup_packet, 8);
// attach TD to QHD -> start transferring
qhd_attach_qtd(qhd, td);
return true;
}
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
ehci_qhd_t* qhd = qhd_get_from_addr(dev_addr, ep_addr);
ehci_qtd_t* qtd;
if (epnum == 0) {
qtd = qtd_control(dev_addr);
qtd_init(qtd, buffer, buflen);
// first data toggle is always 1 (data & setup stage)
qtd->data_toggle = 1;
qtd->pid = dir ? EHCI_PID_IN : EHCI_PID_OUT;
} else {
qtd = qtd_find_free();
TU_ASSERT(qtd);
qtd_init(qtd, buffer, buflen);
qtd->pid = qhd->pid;
}
// IN transfer: invalidate buffer, OUT transfer: clean buffer
if (dir) {
hcd_dcache_invalidate(buffer, buflen);
}else {
hcd_dcache_clean(buffer, buflen);
}
// attach TD to QHD -> start transferring
qhd_attach_qtd(qhd, qtd);
return true;
}
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
// TODO ISO not supported yet
ehci_qhd_t* qhd = qhd_get_from_addr(dev_addr, ep_addr);
ehci_qtd_t * volatile qtd = qhd->attached_qtd;
TU_VERIFY(qtd != NULL); // no queued transfer
hcd_dcache_invalidate(qtd, sizeof(ehci_qtd_t));
TU_VERIFY(qtd->active); // transfer is already complete
// HC is still processing, disable HC list schedule before making changes
bool const is_period = (qhd->interval_ms > 0);
ehci_disable_schedule(ehci_data.regs, is_period);
// check active bit again just in case HC has just processed the TD
bool const still_active = qtd->active;
if (still_active) {
// remove TD from QH overlay
qhd->qtd_overlay.next.terminate = 1;
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
// remove TD from QH software list
qhd_remove_qtd(qhd);
}
ehci_enable_schedule(ehci_data.regs, is_period);
return still_active; // true if removed an active transfer
}
bool hcd_edpt_clear_stall(uint8_t daddr, uint8_t ep_addr)
{
ehci_qhd_t *qhd = qhd_get_from_addr(daddr, ep_addr);
qhd->qtd_overlay.halted = 0;
hcd_dcache_clean_invalidate(qhd, sizeof(ehci_qhd_t));
// TODO reset data toggle ?
return true;
}
//--------------------------------------------------------------------+
// EHCI Interrupt Handler
//--------------------------------------------------------------------+
// async_advance is handshake between usb stack & ehci controller.
// This isr mean it is safe to modify previously removed queue head from async list.
// In tinyusb, queue head is only removed when device is unplugged.
TU_ATTR_ALWAYS_INLINE static inline
void async_advance_isr(uint8_t rhport)
{
(void) rhport;
ehci_qhd_t *qhd_pool = ehci_data.qhd_pool;
for (uint32_t i = 0; i < QHD_MAX; i++) {
if (qhd_pool[i].removing) {
qhd_pool[i].removing = 0;
qhd_pool[i].used = 0;
}
}
}
TU_ATTR_ALWAYS_INLINE static inline
void port_connect_status_change_isr(uint8_t rhport) {
// NOTE There is an sequence plug->unplug->…..-> plug if device is powering with pre-plugged device
if ( ehci_data.regs->portsc_bm.current_connect_status ) {
hcd_port_reset(rhport);
hcd_event_device_attach(rhport, true);
} else // device unplugged
{
hcd_event_device_remove(rhport, true);
}
}
// Check queue head for potential transfer complete (successful or error)
TU_ATTR_ALWAYS_INLINE static inline
void qhd_xfer_complete_isr(ehci_qhd_t * qhd) {
hcd_dcache_invalidate(qhd, sizeof(ehci_qhd_t)); // HC may have updated the overlay
volatile ehci_qtd_t *qtd_overlay = &qhd->qtd_overlay;
// process non-active (completed) QHD with attached (scheduled) TD
if ( !qtd_overlay->active && qhd->attached_qtd != NULL ) {
xfer_result_t xfer_result;
if ( qtd_overlay->halted ) {
if (qtd_overlay->xact_err || qtd_overlay->err_count == 0 || qtd_overlay->buffer_err || qtd_overlay->babble_err) {
// Error count = 0 often occurs when device disconnected, or other bus-related error
xfer_result = XFER_RESULT_FAILED;
TU_LOG3(" QHD xfer err count: %d\n", qtd_overlay->err_count);
// TU_BREAKPOINT(); // TODO skip unplugged device
}else {
// no error bits are set, endpoint is halted due to STALL
xfer_result = XFER_RESULT_STALLED;
}
} else {
xfer_result = XFER_RESULT_SUCCESS;
}
ehci_qtd_t * volatile qtd = qhd->attached_qtd;
hcd_dcache_invalidate(qtd, sizeof(ehci_qtd_t)); // HC may have written back TD
uint8_t const dir = (qtd->pid == EHCI_PID_IN) ? 1 : 0;
uint32_t const xferred_bytes = qtd->expected_bytes - qtd->total_bytes;
// invalidate dcache if IN transfer with data
if (dir == 1 && qhd->attached_buffer != 0 && xferred_bytes > 0) {
hcd_dcache_invalidate((void*) qhd->attached_buffer, xferred_bytes);
}
// remove and free TD before invoking callback
qhd_remove_qtd(qhd);
// notify usbh
uint8_t const ep_addr = tu_edpt_addr(qhd->ep_number, dir);
hcd_event_xfer_complete(qhd->dev_addr, ep_addr, xferred_bytes, xfer_result, true);
}
}
TU_ATTR_ALWAYS_INLINE static inline
void proccess_async_xfer_isr(ehci_qhd_t * const list_head)
{
ehci_qhd_t *qhd = list_head;
do {
qhd_xfer_complete_isr(qhd);
qhd = qhd_next(qhd);
} while ( qhd != list_head ); // async list traversal, stop if loop around
}
TU_ATTR_ALWAYS_INLINE static inline
void process_period_xfer_isr(uint8_t rhport, uint32_t interval_ms)
{
uint32_t const period_1ms_addr = (uint32_t) list_get_period_head(rhport, 1u);
ehci_link_t next_link = *list_get_period_head(rhport, interval_ms);
while (!next_link.terminate) {
if (interval_ms > 1 && period_1ms_addr == tu_align32(next_link.address)) {
// 1ms period list is end of list for all larger interval
break;
}
uintptr_t const entry_addr = tu_align32(next_link.address);
switch (next_link.type) {
case EHCI_QTYPE_QHD: {
ehci_qhd_t *qhd = (ehci_qhd_t *) entry_addr;
qhd_xfer_complete_isr(qhd);
}
break;
// TODO support hs/fs ISO
case EHCI_QTYPE_ITD:
case EHCI_QTYPE_SITD:
case EHCI_QTYPE_FSTN:
default:
break;
}
next_link = *list_next(&next_link);
}
}
//------------- Host Controller Driver's Interrupt Handler -------------//
void hcd_int_handler(uint8_t rhport)
{
ehci_registers_t* regs = ehci_data.regs;
uint32_t const int_status = regs->status;
if (int_status & EHCI_INT_MASK_HC_HALTED) {
// something seriously wrong, maybe forget to flush/invalidate cache
TU_BREAKPOINT();
TU_LOG1(" HC halted\n");
return;
}
if (int_status & EHCI_INT_MASK_FRAMELIST_ROLLOVER) {
ehci_data.uframe_number += (FRAMELIST_SIZE << 3);
regs->status = EHCI_INT_MASK_FRAMELIST_ROLLOVER; // Acknowledge
}
if (int_status & EHCI_INT_MASK_PORT_CHANGE) {
// Including: Force port resume, over-current change, enable/disable change and connect status change.
uint32_t const port_status = regs->portsc & EHCI_PORTSC_MASK_W1C;
print_portsc(regs);
if (regs->portsc_bm.connect_status_change) {
port_connect_status_change_isr(rhport);
}
regs->portsc |= port_status; // Acknowledge change bits in portsc
regs->status = EHCI_INT_MASK_PORT_CHANGE; // Acknowledge
}
// A USB transfer is completed (OK or error)
uint32_t const usb_int = int_status & (EHCI_INT_MASK_USB | EHCI_INT_MASK_ERROR);
if (usb_int) {
proccess_async_xfer_isr(list_get_async_head(rhport));
for ( uint32_t i = 1; i <= FRAMELIST_SIZE; i *= 2 ) {
process_period_xfer_isr(rhport, i);
}
regs->status = usb_int; // Acknowledge
}
//------------- There is some removed async previously -------------//
// need to place after EHCI_INT_MASK_NXP_ASYNC
if (int_status & EHCI_INT_MASK_ASYNC_ADVANCE) {
async_advance_isr(rhport);
regs->status = EHCI_INT_MASK_ASYNC_ADVANCE; // Acknowledge
}
}
//--------------------------------------------------------------------+
// List Managing Helper
//--------------------------------------------------------------------+
// Get head of periodic list
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_get_period_head(uint8_t rhport, uint32_t interval_ms) {
(void) rhport;
return (ehci_link_t*) &ehci_data.period_head_arr[ tu_log2( tu_min32(FRAMELIST_SIZE, interval_ms) ) ];
}
// Get head of async list
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* list_get_async_head(uint8_t rhport) {
(void) rhport;
return qhd_control(0); // control qhd of dev0 is used as async head
}
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_next(ehci_link_t const *p_link) {
return (ehci_link_t*) tu_align32(p_link->address);
}
TU_ATTR_ALWAYS_INLINE static inline void list_insert(ehci_link_t *current, ehci_link_t *new, uint8_t new_type)
{
new->address = current->address;
current->address = ((uint32_t) new) | (new_type << 1);
}
// Remove all queue head belong to this device address
static void list_remove_qhd_by_daddr(ehci_link_t* list_head, uint8_t dev_addr) {
ehci_link_t* prev = list_head;
while (prev && !prev->terminate) {
ehci_qhd_t* qhd = (ehci_qhd_t*) (uintptr_t) list_next(prev);
// done if loop back to head
if ( (uintptr_t) qhd == (uintptr_t) list_head) {
break;
}
if ( qhd->dev_addr == dev_addr ) {
// TODO deactivate all TD, wait for QHD to inactive before removal
prev->address = qhd->next.address;
// EHCI 4.8.2 link the removed qhd's next to async head (which always reachable by Host Controller)
qhd->next.address = ((uint32_t) list_head) | (EHCI_QTYPE_QHD << 1);
if ( qhd->int_smask )
{
// period list queue element is guarantee to be free in the next frame (1 ms)
qhd->used = 0;
}else
{
// async list use async advance handshake
// mark as removing, will completely re-usable when async advance isr occurs
qhd->removing = 1;
}
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
hcd_dcache_clean(prev, sizeof(ehci_qhd_t));
}else {
prev = list_next(prev);
}
}
}
//--------------------------------------------------------------------+
// Queue Header helper
//--------------------------------------------------------------------+
// Get queue head for control transfer (always available)
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_control(uint8_t dev_addr) {
return &ehci_data.control[dev_addr].qhd;
}
// Find a free queue head
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t *qhd_find_free(void) {
for ( uint32_t i = 0; i < QHD_MAX; i++ ) {
if ( !ehci_data.qhd_pool[i].used ) return &ehci_data.qhd_pool[i];
}
return NULL;
}
// Next queue head link
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t *qhd_next(ehci_qhd_t const *p_qhd) {
return (ehci_qhd_t *) tu_align32(p_qhd->next.address);
}
// Get queue head from device + endpoint address
static ehci_qhd_t *qhd_get_from_addr(uint8_t dev_addr, uint8_t ep_addr) {
if ( 0 == tu_edpt_number(ep_addr) ) {
return qhd_control(dev_addr);
}
ehci_qhd_t *qhd_pool = ehci_data.qhd_pool;
for ( uint32_t i = 0; i < QHD_MAX; i++ ) {
if ( (qhd_pool[i].dev_addr == dev_addr) &&
ep_addr == tu_edpt_addr(qhd_pool[i].ep_number, qhd_pool[i].pid) ) {
return &qhd_pool[i];
}
}
return NULL;
}
// Init queue head with endpoint descriptor
static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
// address 0 is used as async head, which always on the list --> cannot be cleared (ehci halted otherwise)
if (dev_addr != 0) {
tu_memclr(p_qhd, sizeof(ehci_qhd_t));
}
hcd_devtree_info_t devtree_info;
hcd_devtree_get_info(dev_addr, &devtree_info);
uint8_t const xfer_type = ep_desc->bmAttributes.xfer;
uint8_t const interval = ep_desc->bInterval;
p_qhd->dev_addr = dev_addr;
p_qhd->fl_inactive_next_xact = 0;
p_qhd->ep_number = tu_edpt_number(ep_desc->bEndpointAddress);
p_qhd->ep_speed = devtree_info.speed;
p_qhd->data_toggle_control= (xfer_type == TUSB_XFER_CONTROL) ? 1 : 0;
p_qhd->head_list_flag = (dev_addr == 0) ? 1 : 0; // addr0's endpoint is the static asyn list head
p_qhd->max_packet_size = tu_edpt_packet_size(ep_desc);
p_qhd->fl_ctrl_ep_flag = ((xfer_type == TUSB_XFER_CONTROL) && (p_qhd->ep_speed != TUSB_SPEED_HIGH)) ? 1 : 0;
p_qhd->nak_reload = 0;
// Bulk/Control -> smask = cmask = 0
// TODO Isochronous
if (TUSB_XFER_INTERRUPT == xfer_type)
{
if (TUSB_SPEED_HIGH == p_qhd->ep_speed)
{
TU_ASSERT( interval <= 16, );
if ( interval < 4) // sub millisecond interval
{
p_qhd->interval_ms = 0;
p_qhd->int_smask = (interval == 1) ? TU_BIN8(11111111) :
(interval == 2) ? TU_BIN8(10101010) : TU_BIN8(01000100);
}else
{
p_qhd->interval_ms = (uint8_t) tu_min16( 1 << (interval-4), 255 );
p_qhd->int_smask = TU_BIT(interval % 8);
}
}else
{
TU_ASSERT( 0 != interval, );
// Full/Low: 4.12.2.1 (EHCI) case 1 schedule start split at 1 us & complete split at 2,3,4 uframes
p_qhd->int_smask = 0x01;
p_qhd->fl_int_cmask = TU_BIN8(11100);
p_qhd->interval_ms = interval;
}
}else
{
p_qhd->int_smask = p_qhd->fl_int_cmask = 0;
}
p_qhd->fl_hub_addr = devtree_info.hub_addr;
p_qhd->fl_hub_port = devtree_info.hub_port;
p_qhd->mult = 1; // TODO not use high bandwidth/park mode yet
//------------- HCD Management Data -------------//
p_qhd->used = 1;
p_qhd->removing = 0;
p_qhd->attached_qtd = NULL;
p_qhd->pid = tu_edpt_dir(ep_desc->bEndpointAddress) ? EHCI_PID_IN : EHCI_PID_OUT; // PID for TD under this endpoint
//------------- active, but no TD list -------------//
p_qhd->qtd_overlay.halted = 0;
p_qhd->qtd_overlay.next.terminate = 1;
p_qhd->qtd_overlay.alternate.terminate = 1;
if (TUSB_XFER_BULK == xfer_type && p_qhd->ep_speed == TUSB_SPEED_HIGH && p_qhd->pid == EHCI_PID_OUT)
{
p_qhd->qtd_overlay.ping_err = 1; // do PING for Highspeed Bulk OUT, EHCI section 4.11
}
}
// Attach a TD to queue head
static void qhd_attach_qtd(ehci_qhd_t *qhd, ehci_qtd_t *qtd) {
qhd->attached_qtd = qtd;
qhd->attached_buffer = qtd->buffer[0];
// clean and invalidate cache before physically write
hcd_dcache_clean_invalidate(qtd, sizeof(ehci_qtd_t));
qhd->qtd_overlay.next.address = (uint32_t) qtd;
hcd_dcache_clean_invalidate(qhd, sizeof(ehci_qhd_t));
}
// Remove an attached TD from queue head
static void qhd_remove_qtd(ehci_qhd_t *qhd) {
ehci_qtd_t * volatile qtd = qhd->attached_qtd;
qhd->attached_qtd = NULL;
qhd->attached_buffer = 0;
qtd->used = 0; // free QTD
}
//--------------------------------------------------------------------+
// Queue TD helper
//--------------------------------------------------------------------+
// Get TD for control transfer (always available)
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t* qtd_control(uint8_t dev_addr) {
return &ehci_data.control[dev_addr].qtd;
}
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t *qtd_find_free(void) {
for (uint32_t i = 0; i < QTD_MAX; i++) {
if (!ehci_data.qtd_pool[i].used) return &ehci_data.qtd_pool[i];
}
return NULL;
}
static void qtd_init(ehci_qtd_t* qtd, void const* buffer, uint16_t total_bytes) {
tu_memclr(qtd, sizeof(ehci_qtd_t));
qtd->used = 1;
qtd->next.terminate = 1; // init to null
qtd->alternate.terminate = 1; // not used, always set to terminated
qtd->active = 1;
qtd->err_count = 3; // TODO 3 consecutive errors tolerance
qtd->data_toggle = 0;
qtd->int_on_complete = 1;
qtd->total_bytes = total_bytes;
qtd->expected_bytes = total_bytes;
qtd->buffer[0] = (uint32_t) buffer;
for(uint8_t i=1; i<5; i++) {
qtd->buffer[i] |= tu_align4k(qtd->buffer[i - 1] ) + 4096;
}
}
#endif