This commit is contained in:
hathach 2018-12-03 20:33:17 +07:00
parent 68a0e866c5
commit f614586964
No known key found for this signature in database
GPG Key ID: 2FA891220FBFD581
6 changed files with 0 additions and 1522 deletions

View File

@ -1,480 +0,0 @@
/******************************************************************
***** *****
***** Name: cs8900.c *****
***** Ver.: 1.0 *****
***** Date: 07/05/2001 *****
***** Auth: Andreas Dannenberg *****
***** HTWK Leipzig *****
***** university of applied sciences *****
***** Germany *****
***** Func: ethernet packet-driver for use with LAN- *****
***** controller CS8900 from Crystal/Cirrus Logic *****
***** *****
***** NXP: Module modified for use with NXP *****
***** lpc43xx EMAC Ethernet controller *****
***** *****
******************************************************************/
#include "../board.h"
#if BOARD == BOARD_EA4357
#include "emac.h"
//#include "tcpip.h"
#include "LPC43xx.h"
#include "lpc43xx_scu.h"
#include "lpc43xx_rgu.h"
#define TIMEOUT 100000
static unsigned short *rptr;
static unsigned short *tptr;
static unsigned int TxDescIndex = 0;
static unsigned int RxDescIndex = 0;
// Keil: function added to write PHY
static void write_PHY (unsigned int PhyReg, unsigned short Value) {
unsigned int tout;
/* Write a data 'Value' to PHY register 'PhyReg'. */
while(LPC_ETHERNET->MAC_MII_ADDR & GMII_BUSY); // Check GMII busy bit
LPC_ETHERNET->MAC_MII_ADDR = (DP83848C_DEF_ADR<<11) | (PhyReg<<6) | GMII_WRITE;
LPC_ETHERNET->MAC_MII_DATA = Value;
LPC_ETHERNET->MAC_MII_ADDR |= GMII_BUSY; // Start PHY Write Cycle
/* Wait utill operation completed */
for (tout = 0; tout < MII_WR_TOUT; tout++) {
if ((LPC_ETHERNET->MAC_MII_ADDR & GMII_BUSY) == 0) {
break;
}
}
if (tout == MII_WR_TOUT) // Trap the timeout
while(1);
}
// Keil: function added to read PHY
static unsigned short read_PHY (unsigned int PhyReg) {
unsigned int tout, val;
/* Read a PHY register 'PhyReg'. */
while(LPC_ETHERNET->MAC_MII_ADDR & GMII_BUSY); // Check GMII busy bit
LPC_ETHERNET->MAC_MII_ADDR = (DP83848C_DEF_ADR<<11) | (PhyReg<<6) | GMII_READ;
LPC_ETHERNET->MAC_MII_ADDR |= GMII_BUSY; // Start PHY Read Cycle
/* Wait until operation completed */
for (tout = 0; tout < MII_RD_TOUT; tout++) {
if ((LPC_ETHERNET->MAC_MII_ADDR & GMII_BUSY) == 0) {
break;
}
}
if (tout == MII_RD_TOUT) // Trap the timeout
while(1);
val = LPC_ETHERNET->MAC_MII_DATA;
return (val);
}
// Keil: function added to initialize Rx Descriptors
void rx_descr_init (void)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
RX_DESC_STAT(i) = OWN_BIT;
RX_DESC_CTRL(i) = ETH_FRAG_SIZE;
RX_BUFADDR(i) = RX_BUF(i);
if (i == (NUM_RX_DESC-1)) // Last Descriptor?
RX_DESC_CTRL(i) |= RX_END_RING;
}
/* Set Starting address of RX Descriptor list */
LPC_ETHERNET->DMA_REC_DES_ADDR = RX_DESC_BASE;
}
// Keil: function added to initialize Tx Descriptors
void tx_descr_init (void)
{
unsigned int i;
for (i = 0; i < NUM_TX_DESC; i++) { // Take it out!!!!
TX_DESC_STAT(i) = 0;
TX_DESC_CTRL(i) = 0;
TX_BUFADDR(i) = 0;
}
for (i = 0; i < NUM_TX_DESC; i++) {
TX_DESC_STAT(i) = TX_LAST_SEGM | TX_FIRST_SEGM;
TX_DESC_CTRL(i) = 0;
TX_BUFADDR(i) = TX_BUF(i);
if (i == (NUM_TX_DESC-1)) // Last Descriptor?
TX_DESC_STAT(i) |= TX_END_RING;
}
/* Set Starting address of RX Descriptor list */
LPC_ETHERNET->DMA_TRANS_DES_ADDR = TX_DESC_BASE;
}
// configure port-pins for use with LAN-controller,
// reset it and send the configuration-sequence
void Init_EMAC(void)
{
int id1, id2, tout, regv;
unsigned phy_in_use = 0;
/* Ethernet pins configuration */
#if MII
scu_pinmux(0xC ,1 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_MDC: PC_1 -> FUNC3
scu_pinmux(0x1 ,17 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_MDIO: P1_17 -> FUNC3
scu_pinmux(0x1 ,18 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TXD0: P1_18 -> FUNC3
scu_pinmux(0x1 ,20 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TXD1: P1_20 -> FUNC3
scu_pinmux(0x1 ,19 , (MD_PLN | MD_EZI | MD_ZI), FUNC0); // ENET_REF: P1_19 -> FUNC0 (default)
// scu_pinmux(0xC ,4 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TX_EN: PC_4 -> FUNC3
scu_pinmux(0x0 ,1 , (MD_PLN | MD_EZI | MD_ZI), FUNC6); // ENET_TX_EN: P0_1 -> FUNC6
scu_pinmux(0x1 ,15 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXD0: P1_15 -> FUNC3
scu_pinmux(0x0 ,0 , (MD_PLN | MD_EZI | MD_ZI), FUNC2); // ENET_RXD1: P0_0 -> FUNC2
// scu_pinmux(0x1 ,16 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_CRS: P1_16 -> FUNC3
scu_pinmux(0x9 ,0 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_CRS: P9_0 -> FUNC5
// scu_pinmux(0xC ,9 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RX_ER: PC_9 -> FUNC3
scu_pinmux(0x9 ,1 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_RX_ER: P9_1 -> FUNC5
// scu_pinmux(0xC ,8 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXDV: PC_8 -> FUNC3
scu_pinmux(0x1 ,16 , (MD_PLN | MD_EZI | MD_ZI), FUNC7); // ENET_RXDV: P1_16 -> FUNC7
#else
scu_pinmux(0xC ,1 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_MDC: PC_1 -> FUNC3
scu_pinmux(0x1 ,17 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_MDIO: P1_17 -> FUNC3
scu_pinmux(0x1 ,18 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TXD0: P1_18 -> FUNC3
scu_pinmux(0x1 ,20 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TXD1: P1_20 -> FUNC3
scu_pinmux(0x1 ,19 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC0); // ENET_REF: P1_19 -> FUNC0 (default)
// scu_pinmux(0xC ,4 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TX_EN: PC_4 -> FUNC3
scu_pinmux(0x0 ,1 , (MD_PLN | MD_EZI | MD_ZI), FUNC6); // ENET_TX_EN: P0_1 -> FUNC6
scu_pinmux(0x1 ,15 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXD0: P1_15 -> FUNC3
scu_pinmux(0x0 ,0 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC2); // ENET_RXD1: P0_0 -> FUNC2
// scu_pinmux(0x1 ,16 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_CRS: P1_16 -> FUNC3
// scu_pinmux(0x9 ,0 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_CRS: P9_0 -> FUNC5
// scu_pinmux(0xC ,9 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RX_ER: PC_9 -> FUNC3
// scu_pinmux(0x9 ,1 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_RX_ER: P9_1 -> FUNC5
// scu_pinmux(0xC ,8 , (MD_EHS | MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXDV: PC_8 -> FUNC3
scu_pinmux(0x1 ,16 , (MD_PLN | MD_EZI | MD_ZI), FUNC7); // ENET_RXDV: P1_16 -> FUNC7
#endif
#if MII /* Select MII interface */ // check MUXING for new Eagle...
// scu_pinmux(0xC ,6 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXD2: PC_6 -> FUNC3
scu_pinmux(0x9 ,3 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_RXD2: P9_3 -> FUNC5
// scu_pinmux(0xC ,7 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXD3: PC_7 -> FUNC3
scu_pinmux(0x9 ,2 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_RXD3: P9_2 -> FUNC5
scu_pinmux(0xC ,0 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_RXLK: PC_0 -> FUNC3
// scu_pinmux(0xC ,2 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TXD2: PC_2 -> FUNC3
scu_pinmux(0x9 ,4 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_TXD2: P9_4 -> FUNC5
// scu_pinmux(0xC ,3 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TXD3: PC_3 -> FUNC3
scu_pinmux(0x9 ,5 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_TXD3: P9_5 -> FUNC5
// scu_pinmux(0xC ,5 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TX_ER: PC_5 -> FUNC3
scu_pinmux(0xC ,5 , (MD_PLN | MD_EZI | MD_ZI), FUNC3); // ENET_TX_ER: PC_5 -> FUNC3
// scu_pinmux(0x0 ,1 , (MD_PLN | MD_EZI | MD_ZI), FUNC2); // ENET_COL: P0_1 -> FUNC2
scu_pinmux(0x9 ,6 , (MD_PLN | MD_EZI | MD_ZI), FUNC5); // ENET_COL: P9_6 -> FUNC5
#else /* Select RMII interface */
LPC_CREG->CREG6 |= RMII_SELECT;
#endif
RGU_SoftReset(RGU_SIG_ETHERNET);
while(1){ // Confirm the reset happened
if (LPC_RGU->RESET_ACTIVE_STATUS0 & (1<<ETHERNET_RST))
break;
}
LPC_ETHERNET->DMA_BUS_MODE |= DMA_SOFT_RESET; // Reset all GMAC Subsystem internal registers and logic
while(LPC_ETHERNET->DMA_BUS_MODE & DMA_SOFT_RESET); // Wait for software reset completion
/* Put the DP83848C in reset mode */
write_PHY (PHY_REG_BMCR, PHY_BMCR_RESET);
/* Wait for hardware reset to end. */
for (tout = 0; tout < TIMEOUT; tout++) {
regv = read_PHY (PHY_REG_BMCR);
if (!(regv & PHY_BMCR_RESET)) {
/* Reset complete */
break;
}
}
/* Check if this is a DP83848C PHY. */
id1 = read_PHY (PHY_REG_IDR1);
id2 = read_PHY (PHY_REG_IDR2);
if (((id1 << 16) | (id2 & 0xFFF0)) == DP83848C_ID) {
phy_in_use = DP83848C_ID;
}
else if (((id1 << 16) | (id2 & 0xFFF0)) == LAN8720_ID) {
phy_in_use = LAN8720_ID;
}
if (phy_in_use != 0) {
/* Configure the PHY device */
#if !MII
write_PHY (PHY_REG_RBR, 0x20);
#endif
/* Use autonegotiation about the link speed. */
write_PHY (PHY_REG_BMCR, PHY_AUTO_NEG);
/* Wait to complete Auto_Negotiation. */
for (tout = 0; tout < TIMEOUT; tout++) {
regv = read_PHY (PHY_REG_BMSR);
if (regv & PHY_AUTO_NEG_DONE) {
/* Autonegotiation Complete. */
break;
}
}
}
/* Check the link status. */
for (tout = 0; tout < TIMEOUT; tout++) {
regv = read_PHY (PHY_REG_STS);
if (regv & LINK_VALID_STS) {
/* Link is on. */
break;
}
}
// Configure the EMAC with the established parameters
switch (phy_in_use) {
case DP83848C_ID:
/* Configure Full/Half Duplex mode. */
if (regv & FULL_DUP_STS) {
/* Full duplex is enabled. */
LPC_ETHERNET->MAC_CONFIG |= MAC_DUPMODE;
}
/* Configure 100MBit/10MBit mode. */
if (~(regv & SPEED_10M_STS)) {
/* 100MBit mode. */
LPC_ETHERNET->MAC_CONFIG |= MAC_100MPS;
}
// value = ReadFromPHY (PHY_REG_STS); /* PHY Extended Status Register */
// // Now configure for full/half duplex mode
// if (value & 0x0004) {
// // We are in full duplex is enabled mode
// LPC_ETHERNET->MAC2 |= MAC2_FULL_DUP;
// LPC_ETHERNET->Command |= CR_FULL_DUP;
// LPC_ETHERNET->IPGT = IPGT_FULL_DUP;
// }
// else {
// // Otherwise we are in half duplex mode
// LPC_ETHERNET->IPGT = IPGT_HALF_DUP;
// }
// // Now configure 100MBit or 10MBit mode
// if (value & 0x0002) {
// // 10MBit mode
// LPC_ETHERNET->SUPP = 0;
// }
// else {
// // 100MBit mode
// LPC_ETHERNET->SUPP = SUPP_SPEED;
// }
break;
case LAN8720_ID:
regv = read_PHY (PHY_REG_SCSR); /* PHY Extended Status Register */
// Now configure for full/half duplex mode
if (regv & (1<<4)) { /* bit 4: 1 = Full Duplex, 0 = Half Duplex */
// We are in full duplex is enabled mode
LPC_ETHERNET->MAC_CONFIG |= MAC_DUPMODE;
}
// Now configure 100MBit or 10MBit mode
if (regv & (1<<3)) { /* bit 3: 1 = 100Mbps, 0 = 10Mbps */
// 100MBit mode
LPC_ETHERNET->MAC_CONFIG |= MAC_100MPS;
}
break;
}
/* Set the Ethernet MAC Address registers */
LPC_ETHERNET->MAC_ADDR0_HIGH = (MYMAC_6 << 8) | MYMAC_5;
LPC_ETHERNET->MAC_ADDR0_LOW = (MYMAC_4 << 24) | (MYMAC_3 << 16) | (MYMAC_2 << 8) | MYMAC_1;
/* Initialize Descriptor Lists */
rx_descr_init();
tx_descr_init();
/* Configure Filter */
LPC_ETHERNET->MAC_FRAME_FILTER = MAC_PROMISCUOUS | MAC_RECEIVEALL;
/* Enable Receiver and Transmitter */
LPC_ETHERNET->MAC_CONFIG |= (MAC_TX_ENABLE | MAC_RX_ENABLE);
/* Enable interrupts */
//LPC_ETHERNET->DMA_INT_EN = DMA_INT_NOR_SUM | DMA_INT_RECEIVE | DMA_INT_TRANSMIT;
/* Start Transmission & Receive processes */
LPC_ETHERNET->DMA_OP_MODE |= (DMA_SS_TRANSMIT | DMA_SS_RECEIVE );
}
// reads a word in little-endian byte order from RX_BUFFER
unsigned short ReadFrame_EMAC(void)
{
return (*rptr++);
}
// easyWEB internal function
// help function to swap the byte order of a WORD
unsigned short SwapBytes(unsigned short Data)
{
return (Data >> 8) | (Data << 8);
}
// reads a word in big-endian byte order from RX_FRAME_PORT
// (useful to avoid permanent byte-swapping while reading
// TCP/IP-data)
unsigned short ReadFrameBE_EMAC(void)
{
unsigned short ReturnValue;
ReturnValue = SwapBytes (*rptr++);
return (ReturnValue);
}
// copies bytes from frame port to MCU-memory
// NOTES: * an odd number of byte may only be transfered
// if the frame is read to the end!
// * MCU-memory MUST start at word-boundary
void CopyFromFrame_EMAC(void *Dest, unsigned short Size)
{
unsigned short * piDest; // Keil: Pointer added to correct expression
piDest = Dest; // Keil: Line added
while (Size > 1) {
*piDest++ = ReadFrame_EMAC();
Size -= 2;
}
if (Size) { // check for leftover byte...
*(unsigned char *)piDest = (char)ReadFrame_EMAC();// the LAN-Controller will return 0
} // for the highbyte
}
// does a dummy read on frame-I/O-port
// NOTE: only an even number of bytes is read!
void DummyReadFrame_EMAC(unsigned short Size) // discards an EVEN number of bytes
{ // from RX-fifo
while (Size > 1) {
ReadFrame_EMAC();
Size -= 2;
}
}
// Reads the length of the received ethernet frame and checks if the
// destination address is a broadcast message or not
// returns the frame length
unsigned short StartReadFrame(void) {
unsigned short RxLen;
if ((RX_DESC_STAT(RxDescIndex) & OWN_BIT) == 0) {
RxLen = (RX_DESC_STAT(RxDescIndex) >> 16) & 0x03FFF;
rptr = (unsigned short *)RX_BUFADDR(RxDescIndex);
return(RxLen);
}
return 0;
}
void EndReadFrame(void) {
RX_DESC_STAT(RxDescIndex) = OWN_BIT;
RxDescIndex++;
if (RxDescIndex == NUM_RX_DESC)
RxDescIndex = 0;
}
unsigned int CheckFrameReceived(void) { // Packet received ?
if ((RX_DESC_STAT(RxDescIndex) & OWN_BIT) == 0)
return(1);
else
return(0);
}
// requests space in EMAC memory for storing an outgoing frame
void RequestSend(unsigned short FrameSize)
{
tptr = (unsigned short *)TX_BUFADDR(TxDescIndex);
TX_DESC_CTRL(TxDescIndex) = FrameSize;
}
// check if ethernet controller is ready to accept the
// frame we want to send
unsigned int Rdy4Tx(void)
{
return (1); // the ethernet controller transmits much faster
} // than the CPU can load its buffers
// writes a word in little-endian byte order to TX_BUFFER
void WriteFrame_EMAC(unsigned short Data)
{
*tptr++ = Data;
}
// copies bytes from MCU-memory to frame port
// NOTES: * an odd number of byte may only be transfered
// if the frame is written to the end!
// * MCU-memory MUST start at word-boundary
void CopyToFrame_EMAC(void *Source, unsigned int Size)
{
unsigned short * piSource;
// unsigned int idx;
piSource = Source;
Size = (Size + 1) & 0xFFFE; // round Size up to next even number
while (Size > 0) {
WriteFrame_EMAC(*piSource++);
Size -= 2;
}
TX_DESC_STAT(TxDescIndex) |= OWN_BIT;
LPC_ETHERNET->DMA_TRANS_POLL_DEMAND = 1; // Wake Up the DMA if it's in Suspended Mode
TxDescIndex++;
if (TxDescIndex == NUM_TX_DESC)
TxDescIndex = 0;
}
#endif

View File

@ -1,157 +0,0 @@
#ifndef __EMAC_H
#define __EMAC_H
/* Configuration */
/* Interface Selection */
#define MII 0 // =0 RMII - =1 MII
/* MAC Configuration */
#define MYMAC_1 0x1EU /* our ethernet (MAC) address */
#define MYMAC_2 0x30U /* (MUST be unique in LAN!) */
#define MYMAC_3 0x6cU
#define MYMAC_4 0xa2U
#define MYMAC_5 0x45U
#define MYMAC_6 0x5eU
#define ETH_FRAG_SIZE 1536
#define NUM_RX_DESC 3
#define NUM_TX_DESC 3
/* End of Configuration */
/* EMAC Descriptors and Buffers located in 16K SRAM */
/* Rx Descriptors */
#define RX_DESC_BASE 0x20008000
#define RX_STAT_BASE RX_DESC_BASE
#define RX_CTRL_BASE (RX_STAT_BASE + 4)
#define RX_BUFADDR_BASE (RX_CTRL_BASE + 4)
#define RX_NEXTDESC_BASE (RX_BUFADDR_BASE + 4)
#define RX_BUF_BASE (RX_DESC_BASE + NUM_RX_DESC*16)
#define RX_DESC_STAT(i) (*(unsigned int *)(RX_STAT_BASE + 16*i))
#define RX_DESC_CTRL(i) (*(unsigned int *)(RX_CTRL_BASE + 16*i))
#define RX_BUFADDR(i) (*(unsigned int *)(RX_BUFADDR_BASE + 16*i))
#define RX_NEXTDESC(i) (*(unsigned int *)(RX_NEXTDESC_BASE + 16*i))
#define RX_BUF(i) (RX_BUF_BASE + ETH_FRAG_SIZE*i)
/* Tx Descriptors */
#define TX_DESC_BASE RX_BUF_BASE + (ETH_FRAG_SIZE * NUM_RX_DESC)
#define TX_STAT_BASE TX_DESC_BASE
#define TX_CTRL_BASE (TX_STAT_BASE + 4)
#define TX_BUFADDR_BASE (TX_CTRL_BASE + 4)
#define TX_NEXTDESC_BASE (TX_BUFADDR_BASE + 4)
#define TX_BUF_BASE (TX_DESC_BASE + NUM_TX_DESC*16)
#define TX_DESC_STAT(i) (*(unsigned int *)(TX_STAT_BASE + 16*i))
#define TX_DESC_CTRL(i) (*(unsigned int *)(TX_CTRL_BASE + 16*i))
#define TX_BUFADDR(i) (*(unsigned int *)(TX_BUFADDR_BASE + 16*i))
#define TX_NEXTDESC(i) (*(unsigned int *)(TX_NEXTDESC_BASE + 16*i))
#define TX_BUF(i) (TX_BUF_BASE + ETH_FRAG_SIZE*i)
/* Descriptors Fields bits */
#define OWN_BIT (1U<<31) /* Own bit in RDES0 & TDES0 */
#define RX_END_RING (1<<15) /* Receive End of Ring bit in RDES1 */
#define RX_NXTDESC_FLAG (1<<14) /* Second Address Chained bit in RDES1 */
#define TX_LAST_SEGM (1<<29) /* Last Segment bit in TDES0 */
#define TX_FIRST_SEGM (1<<28) /* First Segment bit in TDES0 */
#define TX_END_RING (1<<21) /* Transmit End of Ring bit in TDES0 */
#define TX_NXTDESC_FLAG (1<<20) /* Second Address Chained bit in TDES0 */
/* EMAC Control and Status bits */
#define MAC_RX_ENABLE (1<<2) /* Receiver Enable in MAC_CONFIG reg */
#define MAC_TX_ENABLE (1<<3) /* Transmitter Enable in MAC_CONFIG reg */
#define MAC_PADCRC_STRIP (1<<7) /* Automatic Pad-CRC Stripping in MAC_CONFIG reg */
#define MAC_DUPMODE (1<<11) /* Duplex Mode in MAC_CONFIG reg */
#define MAC_100MPS (1<<14) /* Speed is 100Mbps in MAC_CONFIG reg */
#define MAC_PROMISCUOUS (1U<<0) /* Promiscuous Mode bit in MAC_FRAME_FILTER reg */
#define MAC_DIS_BROAD (1U<<5) /* Disable Broadcast Frames bit in MAC_FRAME_FILTER reg */
#define MAC_RECEIVEALL (1U<<31) /* Receive All bit in MAC_FRAME_FILTER reg */
#define DMA_SOFT_RESET 0x01 /* Software Reset bit in DMA_BUS_MODE reg */
#define DMA_SS_RECEIVE (1<<1) /* Start/Stop Receive bit in DMA_OP_MODE reg */
#define DMA_SS_TRANSMIT (1<<13) /* Start/Stop Transmission bit in DMA_OP_MODE reg */
#define DMA_INT_TRANSMIT (1<<0) /* Transmit Interrupt Enable bit in DMA_INT_EN reg */
#define DMA_INT_OVERFLOW (1<<4) /* Overflow Interrupt Enable bit in DMA_INT_EN reg */
#define DMA_INT_UNDERFLW (1<<5) /* Underflow Interrupt Enable bit in DMA_INT_EN reg */
#define DMA_INT_RECEIVE (1<<6) /* Receive Interrupt Enable bit in DMA_INT_EN reg */
#define DMA_INT_ABN_SUM (1<<15) /* Abnormal Interrupt Summary Enable bit in DMA_INT_EN reg */
#define DMA_INT_NOR_SUM (1<<16) /* Normal Interrupt Summary Enable bit in DMA_INT_EN reg */
/* MII Management Command Register */
#define GMII_READ (0<<1) /* GMII Read PHY */
#define GMII_WRITE (1<<1) /* GMII Write PHY */
#define GMII_BUSY 0x00000001 /* GMII is Busy / Start Read/Write */
#define MII_WR_TOUT 0x00050000 /* MII Write timeout count */
#define MII_RD_TOUT 0x00050000 /* MII Read timeout count */
/* MII Management Address Register */
#define MADR_PHY_ADR 0x00001F00 /* PHY Address Mask */
/* DP83848C PHY Registers */
#define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
#define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
#define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
#define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
#define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
#define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
#define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
#define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX */
/* PHY Extended Registers */
#define PHY_REG_STS 0x10 /* Status Register */
#define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
#define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
#define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
#define PHY_REG_RECR 0x15 /* Receive Error Counter */
#define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
#define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
#define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
#define PHY_REG_PHYCR 0x19 /* PHY Control Register */
#define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
#define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
#define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
/* PHY Control and Status bits */
#define PHY_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
#define PHY_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
#define PHY_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
#define PHY_HALFD_10M 0x0000 /* Half Duplex 10MBit */
#define PHY_AUTO_NEG 0x1000 /* Select Auto Negotiation */
#define PHY_AUTO_NEG_DONE 0x0020 /* AutoNegotiation Complete in BMSR PHY reg */
#define PHY_BMCR_RESET 0x8000 /* Reset bit at BMCR PHY reg */
#define LINK_VALID_STS 0x0001 /* Link Valid Status at REG_STS PHY reg */
#define FULL_DUP_STS 0x0004 /* Full Duplex Status at REG_STS PHY reg */
#define SPEED_10M_STS 0x0002 /* 10Mbps Status at REG_STS PHY reg */
#define DP83848C_DEF_ADR 0x01 /* Default PHY device address */
#define DP83848C_ID 0x20005C90 /* PHY Identifier (without Rev. info */
#define LAN8720_ID 0x0007C0F0 /* PHY Identifier */
#define PHY_REG_SCSR 0x1F /* PHY Special Control/Status Register */
/* Misc */
#define ETHERNET_RST 22 /* Reset Output for EMAC at RGU */
#define RMII_SELECT 0x04 /* Select RMII in EMACCFG */
/* Prototypes */
void Init_EMAC(void);
unsigned short ReadFrameBE_EMAC(void);
void CopyToFrame_EMAC(void *Source, unsigned int Size);
void CopyFromFrame_EMAC(void *Dest, unsigned short Size);
void DummyReadFrame_EMAC(unsigned short Size);
unsigned short StartReadFrame(void);
void EndReadFrame(void);
unsigned int CheckFrameReceived(void);
void RequestSend(unsigned short FrameSize);
unsigned int Rdy4Tx(void);
#endif

View File

@ -1,546 +0,0 @@
/*****************************************************************************
*
* Copyright(C) 2011, Embedded Artists AB
* All rights reserved.
*
******************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* Embedded Artists AB assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. Embedded Artists AB
* reserves the right to make changes in the software without
* notification. Embedded Artists AB also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
*****************************************************************************/
/******************************************************************************
* Includes
*****************************************************************************/
#include "../board.h"
#if BOARD == BOARD_EA4357
#include "lpc_types.h"
#include "lpc43xx_scu.h"
#include "lpc43xx_timer.h"
#include "nand.h"
/******************************************************************************
* Defines and typedefs
*****************************************************************************/
#define K9F1G_CLE ((volatile uint8_t *)0x1D100000)
#define K9F1G_ALE ((volatile uint8_t *)0x1D080000)
#define K9F1G_DATA ((volatile uint8_t *)0x1D000000)
#define K9FXX_WAIT()
#define K9FXX_READ_1 0x00
#define K9FXX_READ_2 0x30
#define K9FXX_SET_ADDR_A 0x00
#define K9FXX_SET_ADDR_B 0x01
#define K9FXX_SET_ADDR_C 0x50
#define K9FXX_READ_ID 0x90
#define K9FXX_RESET 0xff
#define K9FXX_BLOCK_PROGRAM_1 0x80
#define K9FXX_BLOCK_PROGRAM_2 0x10
#define K9FXX_BLOCK_ERASE_1 0x60
#define K9FXX_BLOCK_ERASE_2 0xd0
#define K9FXX_READ_STATUS 0x70
#define K9FXX_BUSY (1 << 6)
#define K9FXX_OK (1 << 0)
#define ID_MARKER_CODE (0xEC)
#define ID_SAMSUNG (0xF1)
#define ID_PAGE_SZ_1KB (0x00)
#define ID_PAGE_SZ_2KB (0x01)
#define ID_PAGE_SZ_4KB (0x02)
#define ID_PAGE_SZ_8KB (0x03)
#define ID_BLOCK_SZ_64KB (0x00)
#define ID_BLOCK_SZ_128KB (0x01)
#define ID_BLOCK_SZ_256KB (0x02)
#define ID_BLOCK_SZ_512KB (0x03)
#define ID_PAGE_SZ_1KB (0x00)
#define ID_PAGE_SZ_2KB (0x01)
#define ID_PAGE_SZ_4KB (0x02)
#define ID_PAGE_SZ_8KB (0x03)
#define ID_REDUND_SZ_8 (0x00)
#define ID_REDUND_SZ_16 (0x01)
/* This macro could be changed to check the ready pin */
#define WAIT_READY() (TIM_Waitus(25))
/******************************************************************************
* External global variables
*****************************************************************************/
/******************************************************************************
* Local variables
*****************************************************************************/
static uint32_t pageSize = 0;
static uint32_t blockSize = 0;
static uint32_t reduntSize = 0;
/******************************************************************************
* Local Functions
*****************************************************************************/
static void pinConfig(void)
{
/* Set up EMC pin */
scu_pinmux( 2 , 9 , MD_PLN_FAST , 3 );//A0
scu_pinmux( 2 , 10 , MD_PLN_FAST , 3 );//A1
scu_pinmux( 2 , 11 , MD_PLN_FAST , 3 );//A2
scu_pinmux( 2 , 12 , MD_PLN_FAST , 3 );//A3
scu_pinmux( 2 , 13 , MD_PLN_FAST , 3 );//A4
scu_pinmux( 1 , 0 , MD_PLN_FAST , 2 );//A5
scu_pinmux( 1 , 1 , MD_PLN_FAST , 2 );//A6
scu_pinmux( 1 , 2 , MD_PLN_FAST , 2 );//A7
scu_pinmux( 2 , 8 , MD_PLN_FAST , 3 );//A8
scu_pinmux( 2 , 7 , MD_PLN_FAST , 3 );//A9
scu_pinmux( 2 , 6 , MD_PLN_FAST , 2 );//A10
scu_pinmux( 2 , 2 , MD_PLN_FAST , 2 );//A11
scu_pinmux( 2 , 1 , MD_PLN_FAST , 2 );//A12
scu_pinmux( 2 , 0 , MD_PLN_FAST , 2 );//A13
scu_pinmux( 6 , 8 , MD_PLN_FAST , 1 );//A14
scu_pinmux( 6 , 7 , MD_PLN_FAST , 1 );//A15
scu_pinmux( 13 , 16 , MD_PLN_FAST , 2 );//A16
scu_pinmux( 13 , 15 , MD_PLN_FAST , 2 );//A17
scu_pinmux( 14 , 0 , MD_PLN_FAST , 3 );//A18
scu_pinmux( 14 , 1 , MD_PLN_FAST , 3 );//A19
scu_pinmux( 14 , 2 , MD_PLN_FAST , 3 );//A20
scu_pinmux( 14 , 3 , MD_PLN_FAST , 3 );//A21
scu_pinmux( 14 , 4 , MD_PLN_FAST , 3 );//A22
scu_pinmux( 10 , 4 , MD_PLN_FAST , 3 );//A23
scu_pinmux( 1 , 7 , MD_PLN_FAST , 3 );//D0
scu_pinmux( 1 , 8 , MD_PLN_FAST , 3 );//D1
scu_pinmux( 1 , 9 , MD_PLN_FAST , 3 );//D2
scu_pinmux( 1 , 10 , MD_PLN_FAST , 3 );//D3
scu_pinmux( 1 , 11 , MD_PLN_FAST , 3 );//D4
scu_pinmux( 1 , 12 , MD_PLN_FAST , 3 );//D5
scu_pinmux( 1 , 13 , MD_PLN_FAST , 3 );//D6
scu_pinmux( 1 , 14 , MD_PLN_FAST , 3 );//D7
scu_pinmux( 5 , 4 , MD_PLN_FAST , 2 );//D8
scu_pinmux( 5 , 5 , MD_PLN_FAST , 2 );//D9
scu_pinmux( 5 , 6 , MD_PLN_FAST , 2 );//D10
scu_pinmux( 5 , 7 , MD_PLN_FAST , 2 );//D11
scu_pinmux( 5 , 0 , MD_PLN_FAST , 2 );//D12
scu_pinmux( 5 , 1 , MD_PLN_FAST , 2 );//D13
scu_pinmux( 5 , 2 , MD_PLN_FAST , 2 );//D14
scu_pinmux( 5 , 3 , MD_PLN_FAST , 2 );//D15
scu_pinmux( 13 , 2 , MD_PLN_FAST , 2 );//D16
scu_pinmux( 13 , 3 , MD_PLN_FAST , 2 );//D17
scu_pinmux( 13 , 4 , MD_PLN_FAST , 2 );//D18
scu_pinmux( 13 , 5 , MD_PLN_FAST , 2 );//D19
scu_pinmux( 13 , 6 , MD_PLN_FAST , 2 );//D20
scu_pinmux( 13 , 7 , MD_PLN_FAST , 2 );//D21
scu_pinmux( 13 , 8 , MD_PLN_FAST , 2 );//D22
scu_pinmux( 13 , 9 , MD_PLN_FAST , 2 );//D23
scu_pinmux( 14 , 5 , MD_PLN_FAST , 3 );//D24
scu_pinmux( 14 , 6 , MD_PLN_FAST , 3 );//D25
scu_pinmux( 14 , 7 , MD_PLN_FAST , 3 );//D26
scu_pinmux( 14 , 8 , MD_PLN_FAST , 3 );//D27
scu_pinmux( 14 , 9 , MD_PLN_FAST , 3 );//D28
scu_pinmux( 14 , 10 , MD_PLN_FAST , 3 );//D29
scu_pinmux( 14 , 11 , MD_PLN_FAST , 3 );//D30
scu_pinmux( 14 , 12 , MD_PLN_FAST , 3 );//D31
scu_pinmux( 1 , 3 , MD_PLN_FAST , 3 );//OE
scu_pinmux( 1 , 6 , MD_PLN_FAST , 3 );//WE
scu_pinmux( 1 , 4 , MD_PLN_FAST , 3 );//BLS0
scu_pinmux( 6 , 6 , MD_PLN_FAST , 1 );//BLS1
scu_pinmux( 13 , 13 , MD_PLN_FAST , 2 );//BLS2
scu_pinmux( 13 , 10 , MD_PLN_FAST , 2 );//BLS3
scu_pinmux( 1 , 5 , MD_PLN_FAST , 3 );//CS0
scu_pinmux( 6 , 3 , MD_PLN_FAST , 3 );//CS1
scu_pinmux( 13 , 12 , MD_PLN_FAST , 2 );//CS2
scu_pinmux( 13 , 11 , MD_PLN_FAST , 2 );//CS3
}
static uint32_t nandReadId(void)
{
uint8_t a, b, c, d;
volatile uint8_t *pCLE;
volatile uint8_t *pALE;
volatile uint8_t *pData;
pCLE = K9F1G_CLE;
pALE = K9F1G_ALE;
pData = K9F1G_DATA;
*pCLE = K9FXX_READ_ID;
*pALE = 0;
a = *pData;
b = *pData;
c = *pData;
d = *pData;
return (a << 24) | (b << 16) | (c << 8) | d;
}
static uint8_t nandStatus(void)
{
uint8_t status = 0;
volatile uint8_t *pCLE;
volatile uint8_t *pALE;
volatile uint8_t *pData;
pCLE = K9F1G_CLE;
pALE = K9F1G_ALE;
pData = K9F1G_DATA;
*pCLE = K9FXX_READ_STATUS;
*pALE = 0;
status = *pData;
/* remove bits not used */
return (status & 0xC1);
}
static void nandWaitReady(void)
{
while( !(nandStatus() & (1<<6)) );
}
/******************************************************************************
* Public Functions
*****************************************************************************/
/******************************************************************************
*
* Description:
* Initialize the NAND Flash
*
* Returns:
* TRUE if initialization successful; otherwise FALSE
*
*****************************************************************************/
uint32_t nand_init (void)
{
uint32_t nandId = 0;
TIM_TIMERCFG_Type timerCfg;
// LPC_SC->PCONP |= 0x00000800;
LPC_EMC->CONTROL = 0x00000001;
LPC_EMC->CONFIG = 0x00000000;
pinConfig();
TIM_ConfigStructInit(TIM_TIMER_MODE, &timerCfg);
TIM_Init(LPC_TIMER0, TIM_TIMER_MODE, &timerCfg);
LPC_EMC->STATICCONFIG1 = 0x00000080;
LPC_EMC->STATICWAITWEN1 = 0x00000002;
LPC_EMC->STATICWAITOEN1 = 0x00000002;
LPC_EMC->STATICWAITRD1 = 0x00000008;
LPC_EMC->STATICWAITPAG1 = 0x0000001f;
LPC_EMC->STATICWAITWR1 = 0x00000008;
LPC_EMC->STATICWAITTURN1 = 0x0000000f;
nandId = nandReadId();
if ((nandId & 0xffff0000) !=
(((uint32_t)(ID_MARKER_CODE) << 24) | ID_SAMSUNG << 16)) {
/* unknown NAND chip */
return FALSE;
}
pageSize = 1024 * (1 << (nandId & 0x03));
blockSize = 64*1024 * (1 << ((nandId>>4) & 0x03));
reduntSize = 8 * (1 << ((nandId >> 1) & 0x1));
return TRUE;
}
/******************************************************************************
*
* Description:
* Get the page size of the NAND flash
*
* Returns:
* page size in bytes
*
*****************************************************************************/
uint32_t nand_getPageSize(void)
{
return pageSize;
}
/******************************************************************************
*
* Description:
* Get the block size of the NAND flash
*
* Returns:
* block size in bytes
*
*****************************************************************************/
uint32_t nand_getBlockSize(void)
{
return blockSize;
}
/******************************************************************************
*
* Description:
* Get the redundant (spare) size per page
*
* Returns:
* redundant/spare size in bytes
*
*****************************************************************************/
uint32_t nand_getRedundantSize(void)
{
return reduntSize * (pageSize/512);
}
/******************************************************************************
*
* Description:
* Check if a block is valid
*
* Returns:
* TRUE if the block is valid; otherwise FALSE
*
*****************************************************************************/
uint32_t nand_isBlockValid(uint32_t block)
{
uint32_t addr = 0;
uint32_t page = 0;
volatile uint8_t *pCLE;
volatile uint8_t *pALE;
volatile uint8_t *pData;
pCLE = K9F1G_CLE;
pALE = K9F1G_ALE;
pData = K9F1G_DATA;
if (block >= NAND_NUM_BLOCKS) {
return FALSE;
}
addr = block * (blockSize/pageSize);
/*
* Check page 0 and page 1 in each block. If the first byte
* in the spare area (of either page 0 or page 1) is != 0xFF
* the block is invalid.
*/
nandWaitReady();
for (page = 0; page < 2; page++) {
addr += page;
*pCLE = K9FXX_READ_1;
*pALE = (uint8_t) (pageSize & 0x00FF);
*pALE = (uint8_t)((pageSize & 0xFF00) >> 8);
*pALE = (uint8_t)((addr & 0x00FF));
*pALE = (uint8_t)((addr & 0xFF00) >> 8);
*pCLE = K9FXX_READ_2;
WAIT_READY();
if (*pData != 0xFF) {
return FALSE;
}
}
return TRUE;
}
/******************************************************************************
*
* Description:
* Read a page from the NAND memory
*
* Params:
* block - block number to read from
* page - page with<EFBFBD>n block to read from
* pageBuf - data is copied to this buffer. The size must be at least
* pageSize.
*
* Returns:
* TRUE if read successful; otherwise FALSE
*
*****************************************************************************/
uint32_t nand_readPage(uint32_t block, uint32_t page, uint8_t* pageBuf)
{
uint32_t i = 0;
uint32_t addr = 0;
volatile uint8_t *pCLE;
volatile uint8_t *pALE;
volatile uint8_t *pData;
pCLE = K9F1G_CLE;
pALE = K9F1G_ALE;
pData = K9F1G_DATA;
if (block >= NAND_NUM_BLOCKS) {
return FALSE;
}
if (page >= blockSize/pageSize) {
return FALSE;
}
addr = block * (blockSize/pageSize) + page;
/*
* Always reading from start of a page address.
* This means that the column address is always 0.
*/
*pCLE = K9FXX_READ_1;
*pALE = 0;
*pALE = 0;
*pALE = (uint8_t)((addr & 0x00FF));
*pALE = (uint8_t)((addr & 0xFF00) >> 8);
*pCLE = K9FXX_READ_2;
WAIT_READY();
for (i = 0; i < pageSize; i++) {
*pageBuf++ = *pData;
}
return TRUE;
}
/******************************************************************************
*
* Description:
* Write a page of data to the NAND memory
*
* Params:
* block - block number to write to
* page - page within block to write to
* pageBuf - data is copied from this buffer. The size must be at least
* pageSize.
*
* Returns:
* TRUE if write successful; otherwise FALSE
*
*****************************************************************************/
uint32_t nand_writePage(uint32_t block, uint32_t page, uint8_t* pageBuf)
{
uint32_t i = 0;
uint32_t addr = 0;
volatile uint8_t *pCLE;
volatile uint8_t *pALE;
volatile uint8_t *pData;
pCLE = K9F1G_CLE;
pALE = K9F1G_ALE;
pData = K9F1G_DATA;
if (block >= NAND_NUM_BLOCKS) {
return FALSE;
}
if (page >= blockSize/pageSize) {
return FALSE;
}
addr = block * (blockSize/pageSize) + page;
/*
* Always writing to start of a page address.
* This means that the column address is always 0.
*/
*pCLE = K9FXX_BLOCK_PROGRAM_1;
*pALE = 0;
*pALE = 0;
*pALE = (uint8_t)((addr & 0x00FF));
*pALE = (uint8_t)((addr & 0xFF00) >> 8);
for (i = 0; i < pageSize; i++) {
*pData = *pageBuf++;
}
*pCLE = K9FXX_BLOCK_PROGRAM_2;
TIM_Waitus(700);
nandWaitReady();
return ((nandStatus() & 0x01) != 0x01);
}
/******************************************************************************
*
* Description:
* Erase a block
*
* Params:
* block - block number to erase
*
* Returns:
* TRUE if eras successful; otherwise FALSE
*
*****************************************************************************/
uint32_t nand_eraseBlock(uint32_t block)
{
uint32_t addr = 0;
volatile uint8_t *pCLE;
volatile uint8_t *pALE;
pCLE = K9F1G_CLE;
pALE = K9F1G_ALE;
if (block >= NAND_NUM_BLOCKS) {
return FALSE;
}
addr = block * (blockSize/pageSize);
*pCLE = K9FXX_BLOCK_ERASE_1;
*pALE = (uint8_t)(addr & 0x00FF);
*pALE = (uint8_t)((addr & 0xFF00) >> 8);
*pCLE = K9FXX_BLOCK_ERASE_2;
TIM_Waitus(700);
nandWaitReady();
return ((nandStatus() & 0x01) != 0x01);
}
#endif

View File

@ -1,36 +0,0 @@
/*****************************************************************************
*
* Copyright(C) 2011, Embedded Artists AB
* All rights reserved.
*
******************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* Embedded Artists AB assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. Embedded Artists AB
* reserves the right to make changes in the software without
* notification. Embedded Artists AB also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
*****************************************************************************/
#ifndef __NAND_H
#define __NAND_H
#define NAND_NUM_BLOCKS (1024)
extern uint32_t nand_init (void);
extern uint32_t nand_getPageSize(void);
extern uint32_t nand_getBlockSize(void);
extern uint32_t nand_getRedundantSize(void);
extern uint32_t nand_isBlockValid(uint32_t blockNum);
uint32_t nand_readPage(uint32_t block, uint32_t page, uint8_t* pageBuf);
uint32_t nand_writePage(uint32_t block, uint32_t page, uint8_t* pageBuf);
uint32_t nand_eraseBlock(uint32_t block);
#endif /* end __NAND_H */
/****************************************************************************
** End Of File
*****************************************************************************/

View File

@ -1,272 +0,0 @@
/*****************************************************************************
*
* Copyright(C) 2011, Embedded Artists AB
* All rights reserved.
*
******************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* Embedded Artists AB assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. Embedded Artists AB
* reserves the right to make changes in the software without
* notification. Embedded Artists AB also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
*****************************************************************************/
/******************************************************************************
* Includes
*****************************************************************************/
#include "../board.h"
#if BOARD == BOARD_EA4357
#include "LPC43xx.h"
#include "lpc_types.h"
#include "lpc43xx_scu.h"
#include "lpc43xx_timer.h"
#include "lpc43xx_cgu.h"
#include "sdram.h"
#include <string.h>
/******************************************************************************
* Defines and typedefs
*****************************************************************************/
/* SDRAM refresh time to 16 clock num */
#define EMC_SDRAM_REFRESH(freq,time) \
(((uint64_t)((uint64_t)time * freq)/16000000000ull)+1)
/******************************************************************************
* External global variables
*****************************************************************************/
/******************************************************************************
* Local variables
*****************************************************************************/
/******************************************************************************
* Local Functions
*****************************************************************************/
/*-------------------------PRIVATE FUNCTIONS------------------------------*/
/*********************************************************************
* @brief Calculate EMC Clock from nano second
* @param[in] freq - frequency of EMC Clk
* @param[in] time - nano second
* @return None
**********************************************************************/
uint32_t NS2CLK(uint32_t freq, uint32_t time){
return (((uint64_t)time*freq/1000000000));
}
static void pinConfig(void)
{
/* Set up EMC pin */
scu_pinmux( 2 , 9 , MD_PLN_FAST , 3 );//A0
scu_pinmux( 2 , 10 , MD_PLN_FAST , 3 );//A1
scu_pinmux( 2 , 11 , MD_PLN_FAST , 3 );//A2
scu_pinmux( 2 , 12 , MD_PLN_FAST , 3 );//A3
scu_pinmux( 2 , 13 , MD_PLN_FAST , 3 );//A4
scu_pinmux( 1 , 0 , MD_PLN_FAST , 2 );//A5
scu_pinmux( 1 , 1 , MD_PLN_FAST , 2 );//A6
scu_pinmux( 1 , 2 , MD_PLN_FAST , 2 );//A7
scu_pinmux( 2 , 8 , MD_PLN_FAST , 3 );//A8
scu_pinmux( 2 , 7 , MD_PLN_FAST , 3 );//A9
scu_pinmux( 2 , 6 , MD_PLN_FAST , 2 );//A10
scu_pinmux( 2 , 2 , MD_PLN_FAST , 2 );//A11
scu_pinmux( 2 , 1 , MD_PLN_FAST , 2 );//A12
scu_pinmux( 2 , 0 , MD_PLN_FAST , 2 );//A13
scu_pinmux( 6 , 8 , MD_PLN_FAST , 1 );//A14
scu_pinmux( 6 , 7 , MD_PLN_FAST , 1 );//A15
scu_pinmux( 13 , 16 , MD_PLN_FAST , 2 );//A16
scu_pinmux( 13 , 15 , MD_PLN_FAST , 2 );//A17
scu_pinmux( 14 , 0 , MD_PLN_FAST , 3 );//A18
scu_pinmux( 14 , 1 , MD_PLN_FAST , 3 );//A19
scu_pinmux( 14 , 2 , MD_PLN_FAST , 3 );//A20
scu_pinmux( 14 , 3 , MD_PLN_FAST , 3 );//A21
scu_pinmux( 14 , 4 , MD_PLN_FAST , 3 );//A22
scu_pinmux( 10 , 4 , MD_PLN_FAST , 3 );//A23
scu_pinmux( 1 , 7 , MD_PLN_FAST , 3 );//D0
scu_pinmux( 1 , 8 , MD_PLN_FAST , 3 );//D1
scu_pinmux( 1 , 9 , MD_PLN_FAST , 3 );//D2
scu_pinmux( 1 , 10 , MD_PLN_FAST , 3 );//D3
scu_pinmux( 1 , 11 , MD_PLN_FAST , 3 );//D4
scu_pinmux( 1 , 12 , MD_PLN_FAST , 3 );//D5
scu_pinmux( 1 , 13 , MD_PLN_FAST , 3 );//D6
scu_pinmux( 1 , 14 , MD_PLN_FAST , 3 );//D7
scu_pinmux( 5 , 4 , MD_PLN_FAST , 2 );//D8
scu_pinmux( 5 , 5 , MD_PLN_FAST , 2 );//D9
scu_pinmux( 5 , 6 , MD_PLN_FAST , 2 );//D10
scu_pinmux( 5 , 7 , MD_PLN_FAST , 2 );//D11
scu_pinmux( 5 , 0 , MD_PLN_FAST , 2 );//D12
scu_pinmux( 5 , 1 , MD_PLN_FAST , 2 );//D13
scu_pinmux( 5 , 2 , MD_PLN_FAST , 2 );//D14
scu_pinmux( 5 , 3 , MD_PLN_FAST , 2 );//D15
scu_pinmux( 13 , 2 , MD_PLN_FAST , 2 );//D16
scu_pinmux( 13 , 3 , MD_PLN_FAST , 2 );//D17
scu_pinmux( 13 , 4 , MD_PLN_FAST , 2 );//D18
scu_pinmux( 13 , 5 , MD_PLN_FAST , 2 );//D19
scu_pinmux( 13 , 6 , MD_PLN_FAST , 2 );//D20
scu_pinmux( 13 , 7 , MD_PLN_FAST , 2 );//D21
scu_pinmux( 13 , 8 , MD_PLN_FAST , 2 );//D22
scu_pinmux( 13 , 9 , MD_PLN_FAST , 2 );//D23
scu_pinmux( 14 , 5 , MD_PLN_FAST , 3 );//D24
scu_pinmux( 14 , 6 , MD_PLN_FAST , 3 );//D25
scu_pinmux( 14 , 7 , MD_PLN_FAST , 3 );//D26
scu_pinmux( 14 , 8 , MD_PLN_FAST , 3 );//D27
scu_pinmux( 14 , 9 , MD_PLN_FAST , 3 );//D28
scu_pinmux( 14 , 10 , MD_PLN_FAST , 3 );//D29
scu_pinmux( 14 , 11 , MD_PLN_FAST , 3 );//D30
scu_pinmux( 14 , 12 , MD_PLN_FAST , 3 );//D31
scu_pinmux( 1 , 3 , MD_PLN_FAST , 3 );//OE
scu_pinmux( 1 , 6 , MD_PLN_FAST , 3 );//WE
scu_pinmux( 1 , 4 , MD_PLN_FAST , 3 );//BLS0
scu_pinmux( 6 , 6 , MD_PLN_FAST , 1 );//BLS1
scu_pinmux( 13 , 13 , MD_PLN_FAST , 2 );//BLS2
scu_pinmux( 13 , 10 , MD_PLN_FAST , 2 );//BLS3
scu_pinmux( 1 , 5 , MD_PLN_FAST , 3 );//CS0
scu_pinmux( 6 , 3 , MD_PLN_FAST , 3 );//CS1
scu_pinmux( 13 , 12 , MD_PLN_FAST , 2 );//CS2
scu_pinmux( 13 , 11 , MD_PLN_FAST , 2 );//CS3
scu_pinmux( 6 , 4 , MD_PLN_FAST , 3 );//CAS
scu_pinmux( 6 , 5 , MD_PLN_FAST , 3 );//RAS
scu_pinmux( 6 , 9 , MD_PLN_FAST , 3 );//DYCS0
scu_pinmux( 6 , 1 , MD_PLN_FAST , 1 );//DYCS1
scu_pinmux( 13 , 14 , MD_PLN_FAST , 2 );//DYCS2
scu_pinmux( 15 , 14 , MD_PLN_FAST , 3 );//DYCS3
scu_pinmux( 6 , 11 , MD_PLN_FAST , 3 );//CKEOUT0
scu_pinmux( 6 , 2 , MD_PLN_FAST , 1 );//CKEOUT1
scu_pinmux( 13 , 1 , MD_PLN_FAST , 2 );//CKEOUT2
scu_pinmux( 14 , 15 , MD_PLN_FAST , 3 );//CKEOUT3
scu_pinmux( 6 , 12 , MD_PLN_FAST , 3 );//DQMOUT0
scu_pinmux( 6 , 10 , MD_PLN_FAST , 3 );//DQMOUT1
scu_pinmux( 13 , 0 , MD_PLN_FAST , 2 );//DQMOUT2
scu_pinmux( 14 , 13 , MD_PLN_FAST , 3 );//DQMOUT3
}
/******************************************************************************
* Public Functions
*****************************************************************************/
/******************************************************************************
*
* Description:
* Initialize the SDRAM
*
*****************************************************************************/
uint32_t sdram_init (void)
{
uint32_t pclk, temp;
uint64_t tmpclk;
pinConfig(); //Full 32-bit Data bus, 24-bit Address
/* Select EMC clock-out */
LPC_SCU->SFSCLK_0 = MD_PLN_FAST;
LPC_SCU->SFSCLK_1 = MD_PLN_FAST;
LPC_SCU->SFSCLK_2 = MD_PLN_FAST;
LPC_SCU->SFSCLK_3 = MD_PLN_FAST;
LPC_EMC->CONTROL = 0x00000001;
LPC_EMC->CONFIG = 0x00000000;
LPC_EMC->DYNAMICCONFIG0 = 1<<14 | 0<<12 | 2<<9 | 1<<7; /* 256Mb, 8Mx32, 4 banks, row=12, column=9 */
pclk = CGU_GetPCLKFrequency(CGU_PERIPHERAL_M4CORE);
LPC_EMC->DYNAMICRASCAS0 = 0x00000202; /* 2 RAS, 2 CAS latency */
LPC_EMC->DYNAMICREADCONFIG = 0x00000001; /* Command delayed strategy, using EMCCLKDELAY */
LPC_EMC->DYNAMICRP = NS2CLK(pclk, 20);
LPC_EMC->DYNAMICRAS = NS2CLK(pclk, 42);
LPC_EMC->DYNAMICSREX = NS2CLK(pclk, 63);
LPC_EMC->DYNAMICAPR = 0x00000005;
LPC_EMC->DYNAMICDAL = 0x00000005;
LPC_EMC->DYNAMICWR = 2;
LPC_EMC->DYNAMICRC = NS2CLK(pclk, 63);
LPC_EMC->DYNAMICRFC = NS2CLK(pclk, 63);
LPC_EMC->DYNAMICXSR = NS2CLK(pclk, 63);
LPC_EMC->DYNAMICRRD = NS2CLK(pclk, 14);
LPC_EMC->DYNAMICMRD = 0x00000002;
TIM_Waitus(100); /* wait 100ms */
LPC_EMC->DYNAMICCONTROL = 0x00000183; /* Issue NOP command */
TIM_Waitus(200); /* wait 200ms */
LPC_EMC->DYNAMICCONTROL = 0x00000103; /* Issue PALL command */
LPC_EMC->DYNAMICREFRESH = EMC_SDRAM_REFRESH(pclk,70); /* ( n * 16 ) -> 32 clock cycles */
//for(i = 0; i < 0x80; i++); /* wait 128 AHB clock cycles */
TIM_Waitus(200); /* wait 200ms */
tmpclk = (uint64_t)15625*(uint64_t)pclk/1000000000/16;
LPC_EMC->DYNAMICREFRESH = tmpclk; /* ( n * 16 ) -> 736 clock cycles -> 15.330uS at 48MHz <= 15.625uS ( 64ms / 4096 row ) */
LPC_EMC->DYNAMICCONTROL = 0x00000083; /* Issue MODE command */
//Timing for 48/60/72MHZ Bus
temp = *((volatile uint32_t *)(SDRAM_BASE | (2<<4| 2)<<(9+2+2))); /* 4 burst, 2 CAS latency */
temp = temp;
LPC_EMC->DYNAMICCONTROL = 0x00000000; /* Issue NORMAL command */
//[re]enable buffers
LPC_EMC->DYNAMICCONFIG0 |= 1<<19;
return TRUE;
}
uint32_t sdram_test( void )
{
volatile uint32_t *wr_ptr;
volatile uint16_t *short_wr_ptr;
uint32_t data;
uint32_t i, j;
wr_ptr = (uint32_t *)SDRAM_BASE;
short_wr_ptr = (uint16_t *)wr_ptr;
/* 16 bit write */
for (i = 0; i < SDRAM_SIZE/0x40000; i++)
{
for (j = 0; j < 0x100; j++)
{
*short_wr_ptr++ = (i + j) & 0xFFFF;
*short_wr_ptr++ = ((i + j) + 1) & 0xFFFF;
}
}
/* Verifying */
wr_ptr = (uint32_t *)SDRAM_BASE;
for (i = 0; i < SDRAM_SIZE/0x40000; i++)
{
for (j = 0; j < 0x100; j++)
{
data = *wr_ptr;
if (data != (((((i + j) + 1) & 0xFFFF) << 16) | ((i + j) & 0xFFFF)))
{
return 0x0;
}
wr_ptr++;
}
}
return 0x1;
}
#endif

View File

@ -1,31 +0,0 @@
/*****************************************************************************
*
* Copyright(C) 2011, Embedded Artists AB
* All rights reserved.
*
******************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* Embedded Artists AB assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. Embedded Artists AB
* reserves the right to make changes in the software without
* notification. Embedded Artists AB also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
*****************************************************************************/
#ifndef __SDRAM_H
#define __SDRAM_H
#define SDRAM_SIZE 0x2000000 /* 256Mbit = 32MB */
#define SDRAM_BASE 0x28000000 /*CS0*/
extern uint32_t sdram_init(void);
extern uint32_t sdram_test(void);
#endif /* end __SDRAM_H */
/****************************************************************************
** End Of File
*****************************************************************************/