|
|
|
@ -67,19 +67,7 @@
|
|
|
|
|
// Debug level for DWC2
|
|
|
|
|
#define DWC2_DEBUG 2
|
|
|
|
|
|
|
|
|
|
#ifndef dcache_clean
|
|
|
|
|
#define dcache_clean(_addr, _size)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef dcache_invalidate
|
|
|
|
|
#define dcache_invalidate(_addr, _size)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef dcache_clean_invalidate
|
|
|
|
|
#define dcache_clean_invalidate(_addr, _size)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
|
|
|
|
|
static CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
uint8_t* buffer;
|
|
|
|
@ -93,99 +81,230 @@ static xfer_ctl_t xfer_status[DWC2_EP_MAX][2];
|
|
|
|
|
#define XFER_CTL_BASE(_ep, _dir) (&xfer_status[_ep][_dir])
|
|
|
|
|
|
|
|
|
|
// EP0 transfers are limited to 1 packet - larger sizes has to be split
|
|
|
|
|
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
|
|
|
|
|
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
|
|
|
|
|
static uint16_t _dfifo_top; // top free location in FIFO RAM
|
|
|
|
|
|
|
|
|
|
// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from dwc2->grxfsiz
|
|
|
|
|
static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs)
|
|
|
|
|
// Number of IN endpoints active
|
|
|
|
|
static uint8_t _allocated_ep_in_count;
|
|
|
|
|
|
|
|
|
|
// SOF enabling flag - required for SOF to not get disabled in ISR when SOF was enabled by
|
|
|
|
|
static bool _sof_en;
|
|
|
|
|
|
|
|
|
|
// Calculate the RX FIFO size according to minimum recommendations from reference manual
|
|
|
|
|
// RxFIFO = (5 * number of control endpoints + 8) +
|
|
|
|
|
// ((largest USB packet used / 4) + 1 for status information) +
|
|
|
|
|
// (2 * number of OUT endpoints) + 1 for Global NAK
|
|
|
|
|
// with number of control endpoints = 1 we have
|
|
|
|
|
// RxFIFO = 15 + (largest USB packet used / 4) + 2 * number of OUT endpoints
|
|
|
|
|
// we double the largest USB packet size to be able to hold up to 2 packets
|
|
|
|
|
static inline uint16_t calc_grxfsiz(uint16_t max_ep_size, uint8_t ep_count) {
|
|
|
|
|
return 15 + 2 * (max_ep_size / 4) + 2 * ep_count;
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
// DMA
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool dma_enabled(const dwc2_regs_t* dwc2) {
|
|
|
|
|
#if !CFG_TUD_DWC2_DMA
|
|
|
|
|
(void) dwc2;
|
|
|
|
|
return false;
|
|
|
|
|
#else
|
|
|
|
|
// Internal DMA only
|
|
|
|
|
return (dwc2->ghwcfg2_bm.arch == GHWCFG2_ARCH_INTERNAL_DMA);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void fifo_flush_tx(dwc2_regs_t* dwc2, uint8_t epnum) {
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline uint16_t dma_cal_epfifo_base(uint8_t rhport) {
|
|
|
|
|
// Scatter/Gather DMA mode is not yet supported. Buffer DMA only need 1 words per endpoint direction
|
|
|
|
|
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
|
|
|
|
|
return dwc2_controller->ep_fifo_size/4 - 2*dwc2_controller->ep_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void dma_setup_prepare(uint8_t rhport) {
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
|
|
|
|
|
if (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a) {
|
|
|
|
|
if(dwc2->epout[0].doepctl & DOEPCTL_EPENA) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Receive only 1 packet
|
|
|
|
|
dwc2->epout[0].doeptsiz = (1 << DOEPTSIZ_STUPCNT_Pos) | (1 << DOEPTSIZ_PKTCNT_Pos) | (8 << DOEPTSIZ_XFRSIZ_Pos);
|
|
|
|
|
dwc2->epout[0].doepdma = (uintptr_t)_setup_packet;
|
|
|
|
|
dwc2->epout[0].doepctl |= DOEPCTL_EPENA | DOEPCTL_USBAEP;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------+
|
|
|
|
|
// Data FIFO
|
|
|
|
|
//--------------------------------------------------------------------+
|
|
|
|
|
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void dfifo_flush_tx(dwc2_regs_t* dwc2, uint8_t epnum) {
|
|
|
|
|
// flush TX fifo and wait for it cleared
|
|
|
|
|
dwc2->grstctl = GRSTCTL_TXFFLSH | (epnum << GRSTCTL_TXFNUM_Pos);
|
|
|
|
|
while (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) {}
|
|
|
|
|
}
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void fifo_flush_rx(dwc2_regs_t* dwc2) {
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void dfifo_flush_rx(dwc2_regs_t* dwc2) {
|
|
|
|
|
// flush RX fifo and wait for it cleared
|
|
|
|
|
dwc2->grstctl = GRSTCTL_RXFFLSH;
|
|
|
|
|
while (dwc2->grstctl & GRSTCTL_RXFFLSH_Msk) {}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static bool fifo_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t packet_size) {
|
|
|
|
|
/* USB Data FIFO Layout
|
|
|
|
|
|
|
|
|
|
The FIFO is split up into
|
|
|
|
|
- EPInfo: for storing DMA metadata, only required when use DMA. Maximum size is called
|
|
|
|
|
EP_LOC_CNT = ep_fifo_size - ghwcfg3.dfifo_depth. For value less than EP_LOC_CNT, gdfifocfg must be configured before
|
|
|
|
|
gahbcfg.dmaen is set
|
|
|
|
|
- Buffer mode: 1 word per endpoint direction
|
|
|
|
|
- Scatter/Gather DMA: 4 words per endpoint direction
|
|
|
|
|
- TX FIFO: one fifo for each IN endpoint. Size is dynamic depending on packet size, starting from top with EP0 IN.
|
|
|
|
|
- Shared RX FIFO: a shared fifo for all OUT endpoints. Typically, can hold up to 2 packets of the largest EP size.
|
|
|
|
|
|
|
|
|
|
We allocated TX FIFO from top to bottom (using top pointer), this to allow the RX FIFO to grow dynamically which is
|
|
|
|
|
possible since the free space is located between the RX and TX FIFOs.
|
|
|
|
|
|
|
|
|
|
---------------- ep_fifo_size
|
|
|
|
|
| EPInfo |
|
|
|
|
|
| for DMA |
|
|
|
|
|
|-------------|-- gdfifocfg.EPINFOBASE (max is ghwcfg3.dfifo_depth)
|
|
|
|
|
| IN FIFO 0 |
|
|
|
|
|
| control |
|
|
|
|
|
|-------------|
|
|
|
|
|
| IN FIFO 1 |
|
|
|
|
|
|-------------|
|
|
|
|
|
| . . . . |
|
|
|
|
|
|-------------|
|
|
|
|
|
| IN FIFO n |
|
|
|
|
|
|-------------|
|
|
|
|
|
| FREE |
|
|
|
|
|
|-------------|-- GRXFSIZ (expandable)
|
|
|
|
|
| OUT FIFO |
|
|
|
|
|
| ( Shared ) |
|
|
|
|
|
--------------- 0
|
|
|
|
|
|
|
|
|
|
According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
|
|
|
|
|
- Each EP IN needs at least max packet size
|
|
|
|
|
- All EP OUT shared a unique OUT FIFO which uses (for Slave or Buffer DMA, Scatt/Gather DMA use different formula):
|
|
|
|
|
- 13 for setup packets + control words (up to 3 setup packets).
|
|
|
|
|
- 1 for global NAK (not required/used here).
|
|
|
|
|
- Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1"
|
|
|
|
|
- 2 for each used OUT endpoint
|
|
|
|
|
|
|
|
|
|
Therefore GRXFSIZ = 13 + 1 + 2 x (Largest-EPsize/4 + 1) + 2 x EPOUTnum
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline uint16_t calc_grxfsiz(uint16_t largest_ep_size, uint8_t ep_count) {
|
|
|
|
|
return 13 + 1 + 2 * ((largest_ep_size / 4) + 1) + 2 * ep_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static bool dfifo_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t packet_size) {
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
|
|
|
|
|
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
|
|
|
|
|
uint8_t const ep_count = dwc2_controller->ep_count;
|
|
|
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
|
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
|
|
|
|
|
|
TU_ASSERT(epnum < ep_count);
|
|
|
|
|
|
|
|
|
|
uint16_t fifo_size = tu_div_ceil(packet_size, 4);
|
|
|
|
|
|
|
|
|
|
// "USB Data FIFOs" section in reference manual
|
|
|
|
|
// Peripheral FIFO architecture
|
|
|
|
|
//
|
|
|
|
|
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
|
|
|
|
// | IN FIFO 0 |
|
|
|
|
|
// --------------- (320 or 1024) - 16
|
|
|
|
|
// | IN FIFO 1 |
|
|
|
|
|
// --------------- (320 or 1024) - 16 - x
|
|
|
|
|
// | . . . . |
|
|
|
|
|
// --------------- (320 or 1024) - 16 - x - y - ... - z
|
|
|
|
|
// | IN FIFO MAX |
|
|
|
|
|
// ---------------
|
|
|
|
|
// | FREE |
|
|
|
|
|
// --------------- GRXFSIZ
|
|
|
|
|
// | OUT FIFO |
|
|
|
|
|
// | ( Shared ) |
|
|
|
|
|
// --------------- 0
|
|
|
|
|
//
|
|
|
|
|
// In FIFO is allocated by following rules:
|
|
|
|
|
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
|
|
|
|
|
if (dir == TUSB_DIR_OUT) {
|
|
|
|
|
// Calculate required size of RX FIFO
|
|
|
|
|
uint16_t const sz = calc_grxfsiz(4 * fifo_size, ep_count);
|
|
|
|
|
uint16_t const new_sz = calc_grxfsiz(4 * fifo_size, ep_count);
|
|
|
|
|
|
|
|
|
|
// If size_rx needs to be extended check if possible and if so enlarge it
|
|
|
|
|
if (dwc2->grxfsiz < sz) {
|
|
|
|
|
TU_ASSERT(sz + _allocated_fifo_words_tx <= _dwc2_controller[rhport].ep_fifo_size / 4);
|
|
|
|
|
|
|
|
|
|
// Enlarge RX FIFO
|
|
|
|
|
dwc2->grxfsiz = sz;
|
|
|
|
|
// If size_rx needs to be extended check if there is enough free space
|
|
|
|
|
if (dwc2->grxfsiz < new_sz) {
|
|
|
|
|
TU_ASSERT(new_sz <= _dfifo_top);
|
|
|
|
|
dwc2->grxfsiz = new_sz; // Enlarge RX FIFO
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
// Note if The TXFELVL is configured as half empty. In order
|
|
|
|
|
// to be able to write a packet at that point, the fifo must be twice the max_size.
|
|
|
|
|
// Check IN endpoints concurrently active limit
|
|
|
|
|
if(_dwc2_controller->ep_in_count) {
|
|
|
|
|
TU_ASSERT(_allocated_ep_in_count < _dwc2_controller->ep_in_count);
|
|
|
|
|
_allocated_ep_in_count++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If The TXFELVL is configured as half empty, the fifo must be twice the max_size.
|
|
|
|
|
if ((dwc2->gahbcfg & GAHBCFG_TXFELVL) == 0) {
|
|
|
|
|
fifo_size *= 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check if free space is available
|
|
|
|
|
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= _dwc2_controller[rhport].ep_fifo_size / 4);
|
|
|
|
|
_allocated_fifo_words_tx += fifo_size;
|
|
|
|
|
TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %" PRIu32, fifo_size * 4,
|
|
|
|
|
_dwc2_controller[rhport].ep_fifo_size - _allocated_fifo_words_tx * 4);
|
|
|
|
|
TU_ASSERT(_dfifo_top >= fifo_size + dwc2->grxfsiz);
|
|
|
|
|
_dfifo_top -= fifo_size;
|
|
|
|
|
TU_LOG(DWC2_DEBUG, " TX FIFO %u: allocated %u words at offset %u\r\n", epnum, fifo_size, _dfifo_top);
|
|
|
|
|
|
|
|
|
|
// DIEPTXF starts at FIFO #1.
|
|
|
|
|
// Both TXFD and TXSA are in unit of 32-bit words.
|
|
|
|
|
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) |
|
|
|
|
|
(_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
|
|
|
|
|
if (epnum == 0) {
|
|
|
|
|
dwc2->dieptxf0 = (fifo_size << DIEPTXF0_TX0FD_Pos) | _dfifo_top;
|
|
|
|
|
} else {
|
|
|
|
|
// DIEPTXF starts at FIFO #1.
|
|
|
|
|
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | _dfifo_top;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void dfifo_init(uint8_t rhport) {
|
|
|
|
|
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
dwc2->grxfsiz = calc_grxfsiz(CFG_TUD_ENDPOINT0_SIZE, dwc2_controller->ep_count);
|
|
|
|
|
|
|
|
|
|
if(dma_enabled(dwc2)) {
|
|
|
|
|
// DMA use last DFIFO to store metadata
|
|
|
|
|
_dfifo_top = dma_cal_epfifo_base(rhport);
|
|
|
|
|
}else {
|
|
|
|
|
_dfifo_top = dwc2_controller->ep_fifo_size / 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Allocate FIFO for EP0 IN
|
|
|
|
|
dfifo_alloc(rhport, 0x80, CFG_TUD_ENDPOINT0_SIZE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Read a single data packet from receive FIFO
|
|
|
|
|
static void dfifo_read_packet(uint8_t rhport, uint8_t* dst, uint16_t len) {
|
|
|
|
|
(void) rhport;
|
|
|
|
|
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
volatile const uint32_t* rx_fifo = dwc2->fifo[0];
|
|
|
|
|
|
|
|
|
|
// Reading full available 32 bit words from fifo
|
|
|
|
|
uint16_t full_words = len >> 2;
|
|
|
|
|
while (full_words--) {
|
|
|
|
|
tu_unaligned_write32(dst, *rx_fifo);
|
|
|
|
|
dst += 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Read the remaining 1-3 bytes from fifo
|
|
|
|
|
uint8_t const bytes_rem = len & 0x03;
|
|
|
|
|
if (bytes_rem != 0) {
|
|
|
|
|
uint32_t const tmp = *rx_fifo;
|
|
|
|
|
dst[0] = tu_u32_byte0(tmp);
|
|
|
|
|
if (bytes_rem > 1) dst[1] = tu_u32_byte1(tmp);
|
|
|
|
|
if (bytes_rem > 2) dst[2] = tu_u32_byte2(tmp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Write a single data packet to EPIN FIFO
|
|
|
|
|
static void dfifo_write_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const* src, uint16_t len) {
|
|
|
|
|
(void) rhport;
|
|
|
|
|
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
volatile uint32_t* tx_fifo = dwc2->fifo[fifo_num];
|
|
|
|
|
|
|
|
|
|
// Pushing full available 32 bit words to fifo
|
|
|
|
|
uint16_t full_words = len >> 2;
|
|
|
|
|
while (full_words--) {
|
|
|
|
|
*tx_fifo = tu_unaligned_read32(src);
|
|
|
|
|
src += 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Write the remaining 1-3 bytes into fifo
|
|
|
|
|
uint8_t const bytes_rem = len & 0x03;
|
|
|
|
|
if (bytes_rem) {
|
|
|
|
|
uint32_t tmp_word = src[0];
|
|
|
|
|
if (bytes_rem > 1) tmp_word |= (src[1] << 8);
|
|
|
|
|
if (bytes_rem > 2) tmp_word |= (src[2] << 16);
|
|
|
|
|
|
|
|
|
|
*tx_fifo = tmp_word;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
// Endpoint
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
static void edpt_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
|
|
|
|
@ -206,7 +325,7 @@ static void edpt_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoin
|
|
|
|
|
dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
|
|
|
|
|
} else {
|
|
|
|
|
dwc2->epin[epnum].diepctl = dxepctl | (epnum << DIEPCTL_TXFNUM_Pos);
|
|
|
|
|
dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
|
|
|
|
|
dwc2->daintmsk |= TU_BIT(DAINTMSK_IEPM_Pos + epnum);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -236,7 +355,7 @@ static void edpt_disable(uint8_t rhport, uint8_t ep_addr, bool stall) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Flush the FIFO, and wait until we have confirmed it cleared.
|
|
|
|
|
fifo_flush_tx(dwc2, epnum);
|
|
|
|
|
dfifo_flush_tx(dwc2, epnum);
|
|
|
|
|
} else {
|
|
|
|
|
dwc2_epout_t* epout = dwc2->epout;
|
|
|
|
|
|
|
|
|
@ -272,6 +391,8 @@ static void bus_reset(uint8_t rhport) {
|
|
|
|
|
|
|
|
|
|
_sof_en = false;
|
|
|
|
|
|
|
|
|
|
_allocated_ep_in_count = 1;
|
|
|
|
|
|
|
|
|
|
// clear device address
|
|
|
|
|
dwc2->dcfg &= ~DCFG_DAD_Msk;
|
|
|
|
|
|
|
|
|
@ -287,79 +408,28 @@ static void bus_reset(uint8_t rhport) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fifo_flush_tx(dwc2, 0x10); // all tx fifo
|
|
|
|
|
fifo_flush_rx(dwc2);
|
|
|
|
|
dfifo_flush_tx(dwc2, 0x10); // all tx fifo
|
|
|
|
|
dfifo_flush_rx(dwc2);
|
|
|
|
|
|
|
|
|
|
// 3. Set up interrupt mask
|
|
|
|
|
dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos);
|
|
|
|
|
dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
|
|
|
|
|
dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
|
|
|
|
|
|
|
|
|
|
// "USB Data FIFOs" section in reference manual
|
|
|
|
|
// Peripheral FIFO architecture
|
|
|
|
|
//
|
|
|
|
|
// The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
|
|
|
|
|
// We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
|
|
|
|
|
// between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
|
|
|
|
|
// configuration done below.
|
|
|
|
|
//
|
|
|
|
|
// Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
|
|
|
|
|
// All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
|
|
|
|
|
// configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
|
|
|
|
|
// opened when the host sends an additional command: setInterface. At this point in time
|
|
|
|
|
// the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
|
|
|
|
|
// an additional memory
|
|
|
|
|
//
|
|
|
|
|
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
|
|
|
|
// | IN FIFO 0 |
|
|
|
|
|
// --------------- (320 or 1024) - 16
|
|
|
|
|
// | IN FIFO 1 |
|
|
|
|
|
// --------------- (320 or 1024) - 16 - x
|
|
|
|
|
// | . . . . |
|
|
|
|
|
// --------------- (320 or 1024) - 16 - x - y - ... - z
|
|
|
|
|
// | IN FIFO MAX |
|
|
|
|
|
// ---------------
|
|
|
|
|
// | FREE |
|
|
|
|
|
// --------------- GRXFSIZ
|
|
|
|
|
// | OUT FIFO |
|
|
|
|
|
// | ( Shared ) |
|
|
|
|
|
// --------------- 0
|
|
|
|
|
//
|
|
|
|
|
// According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
|
|
|
|
|
// - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
|
|
|
|
|
//
|
|
|
|
|
// - All EP OUT shared a unique OUT FIFO which uses
|
|
|
|
|
// - 13 for setup packets + control words (up to 3 setup packets).
|
|
|
|
|
// - 1 for global NAK (not required/used here).
|
|
|
|
|
// - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1"
|
|
|
|
|
// - 2 for each used OUT endpoint
|
|
|
|
|
//
|
|
|
|
|
// Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
|
|
|
|
|
// - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x ep_count = 47 + 2 x ep_count
|
|
|
|
|
// - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x ep_count = 271 + 2 x ep_count
|
|
|
|
|
//
|
|
|
|
|
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
|
|
|
|
|
// of the overall picture yet. We will use the worst scenario: largest possible + ep_count
|
|
|
|
|
//
|
|
|
|
|
// For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
|
|
|
|
|
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
|
|
|
|
|
// overwrite this.
|
|
|
|
|
|
|
|
|
|
// EP0 out max is 64
|
|
|
|
|
dwc2->grxfsiz = calc_grxfsiz(64, ep_count);
|
|
|
|
|
|
|
|
|
|
// Setup the control endpoint 0
|
|
|
|
|
_allocated_fifo_words_tx = 16;
|
|
|
|
|
|
|
|
|
|
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
|
|
|
|
|
dwc2->dieptxf0 = (16 << DIEPTXF0_TX0FD_Pos) | (_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
|
|
|
|
|
dfifo_init(rhport);
|
|
|
|
|
|
|
|
|
|
// Fixed control EP0 size to 64 bytes
|
|
|
|
|
dwc2->epin[0].diepctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
|
|
|
|
|
dwc2->epout[0].doepctl &= ~(0x03 << DOEPCTL_MPSIZ_Pos);
|
|
|
|
|
|
|
|
|
|
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
|
|
|
|
|
xfer_status[0][TUSB_DIR_IN].max_size = 64;
|
|
|
|
|
|
|
|
|
|
dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
|
|
|
|
|
if(dma_enabled(dwc2)) {
|
|
|
|
|
dma_setup_prepare(rhport);
|
|
|
|
|
} else {
|
|
|
|
|
dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
|
|
|
|
|
}
|
|
|
|
@ -369,11 +439,11 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
|
|
|
|
|
(void) rhport;
|
|
|
|
|
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
xfer_ctl_t* const xfer = XFER_CTL_BASE(epnum, dir);
|
|
|
|
|
|
|
|
|
|
// EP0 is limited to one packet each xfer
|
|
|
|
|
// We use multiple transaction of xfer->max_size length to get a whole transfer done
|
|
|
|
|
if (epnum == 0) {
|
|
|
|
|
xfer_ctl_t* const xfer = XFER_CTL_BASE(epnum, dir);
|
|
|
|
|
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
|
|
|
|
|
ep0_pending[dir] -= total_bytes;
|
|
|
|
|
}
|
|
|
|
@ -386,17 +456,31 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
|
|
|
|
|
epin[epnum].dieptsiz = (num_packets << DIEPTSIZ_PKTCNT_Pos) |
|
|
|
|
|
((total_bytes << DIEPTSIZ_XFRSIZ_Pos) & DIEPTSIZ_XFRSIZ_Msk);
|
|
|
|
|
|
|
|
|
|
epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
|
|
|
|
|
if(dma_enabled(dwc2)) {
|
|
|
|
|
epin[epnum].diepdma = (uintptr_t)xfer->buffer;
|
|
|
|
|
|
|
|
|
|
// For ISO endpoint set correct odd/even bit for next frame.
|
|
|
|
|
if ((epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
|
|
|
|
|
// Take odd/even bit from frame counter.
|
|
|
|
|
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
|
|
|
|
|
epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
|
|
|
|
|
}
|
|
|
|
|
// Enable fifo empty interrupt only if there are something to put in the fifo.
|
|
|
|
|
if (total_bytes != 0) {
|
|
|
|
|
dwc2->diepempmsk |= (1 << epnum);
|
|
|
|
|
// For ISO endpoint set correct odd/even bit for next frame.
|
|
|
|
|
if ((epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
|
|
|
|
|
// Take odd/even bit from frame counter.
|
|
|
|
|
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
|
|
|
|
|
epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
|
|
epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
|
|
|
|
|
|
|
|
|
|
// For ISO endpoint set correct odd/even bit for next frame.
|
|
|
|
|
if ((epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
|
|
|
|
|
// Take odd/even bit from frame counter.
|
|
|
|
|
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
|
|
|
|
|
epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
|
|
|
|
|
}
|
|
|
|
|
// Enable fifo empty interrupt only if there are something to put in the fifo.
|
|
|
|
|
if (total_bytes != 0) {
|
|
|
|
|
dwc2->diepempmsk |= (1 << epnum);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
dwc2_epout_t* epout = dwc2->epout;
|
|
|
|
@ -406,13 +490,18 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
|
|
|
|
|
epout[epnum].doeptsiz |= (num_packets << DOEPTSIZ_PKTCNT_Pos) |
|
|
|
|
|
((total_bytes << DOEPTSIZ_XFRSIZ_Pos) & DOEPTSIZ_XFRSIZ_Msk);
|
|
|
|
|
|
|
|
|
|
epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
|
|
|
|
|
if ((epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 &&
|
|
|
|
|
XFER_CTL_BASE(epnum, dir)->interval == 1) {
|
|
|
|
|
// Take odd/even bit from frame counter.
|
|
|
|
|
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
|
|
|
|
|
epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(dma_enabled(dwc2)) {
|
|
|
|
|
epout[epnum].doepdma = (uintptr_t)xfer->buffer;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -539,7 +628,9 @@ static void phy_hs_init(dwc2_regs_t* dwc2) {
|
|
|
|
|
|
|
|
|
|
// XCVRDLY: transceiver delay between xcvr_sel and txvalid during device chirp is required
|
|
|
|
|
// when using with some PHYs such as USB334x (USB3341, USB3343, USB3346, USB3347)
|
|
|
|
|
if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) dcfg |= DCFG_XCVRDLY;
|
|
|
|
|
if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) {
|
|
|
|
|
dcfg |= DCFG_XCVRDLY;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dwc2->dcfg = dcfg;
|
|
|
|
|
}
|
|
|
|
@ -565,12 +656,9 @@ void dcd_init(uint8_t rhport) {
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
|
|
|
|
|
// Check Synopsys ID register, failed if controller clock/power is not enabled
|
|
|
|
|
if (!check_dwc2(dwc2)) return;
|
|
|
|
|
TU_ASSERT(check_dwc2(dwc2), );
|
|
|
|
|
dcd_disconnect(rhport);
|
|
|
|
|
|
|
|
|
|
// max number of endpoints & total_fifo_size are:
|
|
|
|
|
// hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size
|
|
|
|
|
|
|
|
|
|
if (phy_hs_supported(dwc2)) {
|
|
|
|
|
phy_hs_init(dwc2); // Highspeed
|
|
|
|
|
} else {
|
|
|
|
@ -600,8 +688,8 @@ void dcd_init(uint8_t rhport) {
|
|
|
|
|
// (non zero-length packet), send STALL back and discard.
|
|
|
|
|
dwc2->dcfg |= DCFG_NZLSOHSK;
|
|
|
|
|
|
|
|
|
|
fifo_flush_tx(dwc2, 0x10); // all tx fifo
|
|
|
|
|
fifo_flush_rx(dwc2);
|
|
|
|
|
dfifo_flush_tx(dwc2, 0x10); // all tx fifo
|
|
|
|
|
dfifo_flush_rx(dwc2);
|
|
|
|
|
|
|
|
|
|
// Clear all interrupts
|
|
|
|
|
uint32_t int_mask = dwc2->gintsts;
|
|
|
|
@ -610,12 +698,21 @@ void dcd_init(uint8_t rhport) {
|
|
|
|
|
dwc2->gotgint |= int_mask;
|
|
|
|
|
|
|
|
|
|
// Required as part of core initialization.
|
|
|
|
|
dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_RXFLVLM |
|
|
|
|
|
GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;
|
|
|
|
|
dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;
|
|
|
|
|
|
|
|
|
|
// Configure TX FIFO empty level for interrupt. Default is complete empty
|
|
|
|
|
dwc2->gahbcfg |= GAHBCFG_TXFELVL;
|
|
|
|
|
|
|
|
|
|
if (dma_enabled(dwc2)) {
|
|
|
|
|
const uint16_t epinfo_base = dma_cal_epfifo_base(rhport);
|
|
|
|
|
dwc2->gdfifocfg = (epinfo_base << GDFIFOCFG_EPINFOBASE_SHIFT) | epinfo_base;
|
|
|
|
|
|
|
|
|
|
// DMA seems to be only settable after a core reset
|
|
|
|
|
dwc2->gahbcfg |= GAHBCFG_DMAEN | GAHBCFG_HBSTLEN_2;
|
|
|
|
|
}else {
|
|
|
|
|
dwc2->gintmsk |= GINTMSK_RXFLVLM;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Enable global interrupt
|
|
|
|
|
dwc2->gahbcfg |= GAHBCFG_GINT;
|
|
|
|
|
|
|
|
|
@ -718,7 +815,7 @@ void dcd_sof_enable(uint8_t rhport, bool en) {
|
|
|
|
|
*------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
|
|
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
|
|
|
|
|
TU_ASSERT(fifo_alloc(rhport, desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt)));
|
|
|
|
|
TU_ASSERT(dfifo_alloc(rhport, desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt)));
|
|
|
|
|
edpt_activate(rhport, desc_edpt);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
@ -728,6 +825,8 @@ void dcd_edpt_close_all(uint8_t rhport) {
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
|
|
|
|
|
|
|
|
|
|
_allocated_ep_in_count = 1;
|
|
|
|
|
|
|
|
|
|
// Disable non-control interrupt
|
|
|
|
|
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
|
|
|
|
|
|
|
|
|
@ -745,26 +844,21 @@ void dcd_edpt_close_all(uint8_t rhport) {
|
|
|
|
|
xfer_status[n][TUSB_DIR_IN].max_size = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// reset allocated fifo OUT
|
|
|
|
|
dwc2->grxfsiz = calc_grxfsiz(64, ep_count);
|
|
|
|
|
// reset allocated fifo IN
|
|
|
|
|
_allocated_fifo_words_tx = 16;
|
|
|
|
|
dfifo_flush_tx(dwc2, 0x10); // all tx fifo
|
|
|
|
|
dfifo_flush_rx(dwc2);
|
|
|
|
|
|
|
|
|
|
fifo_flush_tx(dwc2, 0x10); // all tx fifo
|
|
|
|
|
fifo_flush_rx(dwc2);
|
|
|
|
|
dfifo_init(rhport); // re-init dfifo
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
|
|
|
|
|
TU_ASSERT(fifo_alloc(rhport, ep_addr, largest_packet_size));
|
|
|
|
|
TU_ASSERT(dfifo_alloc(rhport, ep_addr, largest_packet_size));
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
|
|
|
|
|
// Disable EP to clear potential incomplete transfers
|
|
|
|
|
edpt_disable(rhport, p_endpoint_desc->bEndpointAddress, false);
|
|
|
|
|
|
|
|
|
|
edpt_activate(rhport, p_endpoint_desc);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -831,6 +925,9 @@ void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
|
|
|
|
|
|
|
|
|
|
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
|
|
|
|
|
edpt_disable(rhport, ep_addr, true);
|
|
|
|
|
if((tu_edpt_number(ep_addr) == 0) && dma_enabled(DWC2_REG(rhport))) {
|
|
|
|
|
dma_setup_prepare(rhport);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
|
|
|
|
@ -851,56 +948,9 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
|
|
// Read a single data packet from receive FIFO
|
|
|
|
|
static void read_fifo_packet(uint8_t rhport, uint8_t* dst, uint16_t len) {
|
|
|
|
|
(void) rhport;
|
|
|
|
|
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
volatile const uint32_t* rx_fifo = dwc2->fifo[0];
|
|
|
|
|
|
|
|
|
|
// Reading full available 32 bit words from fifo
|
|
|
|
|
uint16_t full_words = len >> 2;
|
|
|
|
|
while (full_words--) {
|
|
|
|
|
tu_unaligned_write32(dst, *rx_fifo);
|
|
|
|
|
dst += 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Read the remaining 1-3 bytes from fifo
|
|
|
|
|
uint8_t const bytes_rem = len & 0x03;
|
|
|
|
|
if (bytes_rem != 0) {
|
|
|
|
|
uint32_t const tmp = *rx_fifo;
|
|
|
|
|
dst[0] = tu_u32_byte0(tmp);
|
|
|
|
|
if (bytes_rem > 1) dst[1] = tu_u32_byte1(tmp);
|
|
|
|
|
if (bytes_rem > 2) dst[2] = tu_u32_byte2(tmp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Write a single data packet to EPIN FIFO
|
|
|
|
|
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const* src, uint16_t len) {
|
|
|
|
|
(void) rhport;
|
|
|
|
|
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
|
volatile uint32_t* tx_fifo = dwc2->fifo[fifo_num];
|
|
|
|
|
|
|
|
|
|
// Pushing full available 32 bit words to fifo
|
|
|
|
|
uint16_t full_words = len >> 2;
|
|
|
|
|
while (full_words--) {
|
|
|
|
|
*tx_fifo = tu_unaligned_read32(src);
|
|
|
|
|
src += 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Write the remaining 1-3 bytes into fifo
|
|
|
|
|
uint8_t const bytes_rem = len & 0x03;
|
|
|
|
|
if (bytes_rem) {
|
|
|
|
|
uint32_t tmp_word = src[0];
|
|
|
|
|
if (bytes_rem > 1) tmp_word |= (src[1] << 8);
|
|
|
|
|
if (bytes_rem > 2) tmp_word |= (src[2] << 16);
|
|
|
|
|
|
|
|
|
|
*tx_fifo = tmp_word;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
// Interrupt Handler
|
|
|
|
|
//--------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
static void handle_rxflvl_irq(uint8_t rhport) {
|
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
@ -954,7 +1004,7 @@ static void handle_rxflvl_irq(uint8_t rhport) {
|
|
|
|
|
tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt);
|
|
|
|
|
} else {
|
|
|
|
|
// Linear buffer
|
|
|
|
|
read_fifo_packet(rhport, xfer->buffer, bcnt);
|
|
|
|
|
dfifo_read_packet(rhport, xfer->buffer, bcnt);
|
|
|
|
|
|
|
|
|
|
// Increment pointer to xfer data
|
|
|
|
|
xfer->buffer += bcnt;
|
|
|
|
@ -978,21 +1028,7 @@ static void handle_rxflvl_irq(uint8_t rhport) {
|
|
|
|
|
// XFRC complete is additionally generated when
|
|
|
|
|
// - setup packet is received
|
|
|
|
|
// - complete the data stage of control write is complete
|
|
|
|
|
if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) {
|
|
|
|
|
uint32_t doepint = epout->doepint;
|
|
|
|
|
|
|
|
|
|
if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR)) {
|
|
|
|
|
// skip this "no-data" transfer complete event
|
|
|
|
|
// Note: STPKTRX will be clear later by setup received handler
|
|
|
|
|
uint32_t clear_flags = DOEPINT_XFRC;
|
|
|
|
|
|
|
|
|
|
if (doepint & DOEPINT_OTEPSPR) clear_flags |= DOEPINT_OTEPSPR;
|
|
|
|
|
|
|
|
|
|
epout->doepint = clear_flags;
|
|
|
|
|
|
|
|
|
|
// TU_LOG(DWC2_DEBUG, " FIX extra transfer complete on setup/data compete\r\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// It will be handled in handle_epout_irq()
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default: // Invalid
|
|
|
|
@ -1013,18 +1049,7 @@ static void handle_epout_irq(uint8_t rhport) {
|
|
|
|
|
|
|
|
|
|
uint32_t const doepint = epout->doepint;
|
|
|
|
|
|
|
|
|
|
// SETUP packet Setup Phase done.
|
|
|
|
|
if (doepint & DOEPINT_STUP) {
|
|
|
|
|
uint32_t clear_flag = DOEPINT_STUP;
|
|
|
|
|
|
|
|
|
|
// STPKTRX is only available for version from 3_00a
|
|
|
|
|
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) {
|
|
|
|
|
clear_flag |= DOEPINT_STPKTRX;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
epout->doepint = clear_flag;
|
|
|
|
|
dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true);
|
|
|
|
|
}
|
|
|
|
|
TU_ASSERT((epout->doepint & DOEPINT_AHBERR) == 0, );
|
|
|
|
|
|
|
|
|
|
// OUT XFER complete
|
|
|
|
|
if (epout->doepint & DOEPINT_XFRC) {
|
|
|
|
@ -1032,14 +1057,66 @@ static void handle_epout_irq(uint8_t rhport) {
|
|
|
|
|
|
|
|
|
|
xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
|
|
|
|
|
|
|
|
|
|
// EP0 can only handle one packet
|
|
|
|
|
if ((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
|
|
|
|
|
// Schedule another packet to be received.
|
|
|
|
|
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
|
|
|
|
|
if(dma_enabled(dwc2)) {
|
|
|
|
|
if (doepint & DOEPINT_STUP) {
|
|
|
|
|
// STPKTRX is only available for version from 3_00a
|
|
|
|
|
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid > DWC2_CORE_REV_3_00a)) {
|
|
|
|
|
epout->doepint = DOEPINT_STPKTRX;
|
|
|
|
|
}
|
|
|
|
|
} else if (doepint & DOEPINT_OTEPSPR) {
|
|
|
|
|
epout->doepint = DOEPINT_OTEPSPR;
|
|
|
|
|
} else {
|
|
|
|
|
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid > DWC2_CORE_REV_3_00a)) {
|
|
|
|
|
epout->doepint = DOEPINT_STPKTRX;
|
|
|
|
|
} else {
|
|
|
|
|
// EP0 can only handle one packet
|
|
|
|
|
if ((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
|
|
|
|
|
// Schedule another packet to be received.
|
|
|
|
|
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
|
|
|
|
|
} else {
|
|
|
|
|
// Fix packet length
|
|
|
|
|
uint16_t remain = (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos;
|
|
|
|
|
xfer->total_len -= remain;
|
|
|
|
|
// this is ZLP, so prepare EP0 for next setup
|
|
|
|
|
if(n == 0 && xfer->total_len == 0) {
|
|
|
|
|
dma_setup_prepare(rhport);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
|
|
|
|
|
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid == DWC2_CORE_REV_3_10a)) {
|
|
|
|
|
epout->doepint = DOEPINT_STPKTRX;
|
|
|
|
|
} else {
|
|
|
|
|
if ((doepint & DOEPINT_OTEPSPR) && (dwc2->gsnpsid == DWC2_CORE_REV_3_10a)) {
|
|
|
|
|
epout->doepint = DOEPINT_OTEPSPR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// EP0 can only handle one packet
|
|
|
|
|
if ((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
|
|
|
|
|
// Schedule another packet to be received.
|
|
|
|
|
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
|
|
|
|
|
} else {
|
|
|
|
|
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// SETUP packet Setup Phase done.
|
|
|
|
|
if (doepint & DOEPINT_STUP) {
|
|
|
|
|
epout->doepint = DOEPINT_STUP;
|
|
|
|
|
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid > DWC2_CORE_REV_3_00a)) {
|
|
|
|
|
epout->doepint = DOEPINT_STPKTRX;
|
|
|
|
|
}
|
|
|
|
|
if(dma_enabled(dwc2) && (dwc2->gsnpsid > DWC2_CORE_REV_3_00a)) {
|
|
|
|
|
dma_setup_prepare(rhport);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -1064,6 +1141,9 @@ static void handle_epin_irq(uint8_t rhport) {
|
|
|
|
|
// Schedule another packet to be transmitted.
|
|
|
|
|
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
|
|
|
|
|
} else {
|
|
|
|
|
if((n == 0) && dma_enabled(dwc2)) {
|
|
|
|
|
dma_setup_prepare(rhport);
|
|
|
|
|
}
|
|
|
|
|
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -1093,7 +1173,7 @@ static void handle_epin_irq(uint8_t rhport) {
|
|
|
|
|
volatile uint32_t* tx_fifo = dwc2->fifo[n];
|
|
|
|
|
tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size);
|
|
|
|
|
} else {
|
|
|
|
|
write_fifo_packet(rhport, n, xfer->buffer, packet_size);
|
|
|
|
|
dfifo_write_packet(rhport, n, xfer->buffer, packet_size);
|
|
|
|
|
|
|
|
|
|
// Increment pointer to xfer data
|
|
|
|
|
xfer->buffer += packet_size;
|
|
|
|
|