psasim: add support for psa_mac_xxx() functions

Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
This commit is contained in:
Tom Cosgrove 2024-06-21 10:41:56 +01:00 committed by Valerio Setti
parent baace2f7ba
commit 853ca0cdb0
7 changed files with 1966 additions and 0 deletions

View File

@ -36,6 +36,14 @@ enum {
PSA_HASH_UPDATE,
PSA_HASH_VERIFY,
PSA_IMPORT_KEY,
PSA_MAC_ABORT,
PSA_MAC_COMPUTE,
PSA_MAC_SIGN_FINISH,
PSA_MAC_SIGN_SETUP,
PSA_MAC_UPDATE,
PSA_MAC_VERIFY,
PSA_MAC_VERIFY_FINISH,
PSA_MAC_VERIFY_SETUP,
};
#endif /* _PSA_FUNCTIONS_CODES_H_ */

View File

@ -1976,3 +1976,607 @@ fail:
return status;
}
psa_status_t psa_mac_abort(
psa_mac_operation_t *operation
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_mac_operation_t_needs(*operation);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_mac_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_ABORT,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_ABORT server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_compute(
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
const uint8_t *input, size_t input_length,
uint8_t *mac, size_t mac_size,
size_t *mac_length
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_mbedtls_svc_key_id_t_needs(key) +
psasim_serialise_psa_algorithm_t_needs(alg) +
psasim_serialise_buffer_needs(input, input_length) +
psasim_serialise_buffer_needs(mac, mac_size) +
psasim_serialise_size_t_needs(*mac_length);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_mbedtls_svc_key_id_t(&pos, &remaining, key);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_algorithm_t(&pos, &remaining, alg);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, input, input_length);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, mac, mac_size);
if (!ok) {
goto fail;
}
ok = psasim_serialise_size_t(&pos, &remaining, *mac_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_COMPUTE,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_COMPUTE server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_return_buffer(&rpos, &rremain, mac, mac_size);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_size_t(&rpos, &rremain, mac_length);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_sign_finish(
psa_mac_operation_t *operation,
uint8_t *mac, size_t mac_size,
size_t *mac_length
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_mac_operation_t_needs(*operation) +
psasim_serialise_buffer_needs(mac, mac_size) +
psasim_serialise_size_t_needs(*mac_length);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_mac_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, mac, mac_size);
if (!ok) {
goto fail;
}
ok = psasim_serialise_size_t(&pos, &remaining, *mac_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_SIGN_FINISH,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_SIGN_FINISH server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_return_buffer(&rpos, &rremain, mac, mac_size);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_size_t(&rpos, &rremain, mac_length);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_sign_setup(
psa_mac_operation_t *operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_mac_operation_t_needs(*operation) +
psasim_serialise_mbedtls_svc_key_id_t_needs(key) +
psasim_serialise_psa_algorithm_t_needs(alg);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_mac_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_mbedtls_svc_key_id_t(&pos, &remaining, key);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_algorithm_t(&pos, &remaining, alg);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_SIGN_SETUP,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_SIGN_SETUP server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_update(
psa_mac_operation_t *operation,
const uint8_t *input, size_t input_length
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_mac_operation_t_needs(*operation) +
psasim_serialise_buffer_needs(input, input_length);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_mac_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, input, input_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_UPDATE,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_UPDATE server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_verify(
mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
const uint8_t *input, size_t input_length,
const uint8_t *mac, size_t mac_length
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_mbedtls_svc_key_id_t_needs(key) +
psasim_serialise_psa_algorithm_t_needs(alg) +
psasim_serialise_buffer_needs(input, input_length) +
psasim_serialise_buffer_needs(mac, mac_length);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_mbedtls_svc_key_id_t(&pos, &remaining, key);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_algorithm_t(&pos, &remaining, alg);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, input, input_length);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, mac, mac_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_VERIFY,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_VERIFY server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_verify_finish(
psa_mac_operation_t *operation,
const uint8_t *mac, size_t mac_length
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_mac_operation_t_needs(*operation) +
psasim_serialise_buffer_needs(mac, mac_length);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_mac_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&pos, &remaining, mac, mac_length);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_VERIFY_FINISH,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_VERIFY_FINISH server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}
psa_status_t psa_mac_verify_setup(
psa_mac_operation_t *operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg
)
{
uint8_t *params = NULL;
uint8_t *result = NULL;
size_t result_length;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t needed = psasim_serialise_begin_needs() +
psasim_serialise_psa_mac_operation_t_needs(*operation) +
psasim_serialise_mbedtls_svc_key_id_t_needs(key) +
psasim_serialise_psa_algorithm_t_needs(alg);
params = malloc(needed);
if (params == NULL) {
status = PSA_ERROR_INSUFFICIENT_MEMORY;
goto fail;
}
uint8_t *pos = params;
size_t remaining = needed;
int ok;
ok = psasim_serialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_mac_operation_t(&pos, &remaining, *operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_mbedtls_svc_key_id_t(&pos, &remaining, key);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_algorithm_t(&pos, &remaining, alg);
if (!ok) {
goto fail;
}
ok = psa_crypto_call(PSA_MAC_VERIFY_SETUP,
params, (size_t) (pos - params), &result, &result_length);
if (!ok) {
printf("PSA_MAC_VERIFY_SETUP server call failed\n");
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_length;
ok = psasim_deserialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_status_t(&rpos, &rremain, &status);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
fail:
free(params);
free(result);
return status;
}

View File

@ -2234,6 +2234,706 @@ fail:
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_abort_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_mac_operation_t *operation;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_mac_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_abort(
operation
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_mac_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_compute_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
mbedtls_svc_key_id_t key;
psa_algorithm_t alg;
uint8_t *input = NULL;
size_t input_length;
uint8_t *mac = NULL;
size_t mac_size;
size_t mac_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_mbedtls_svc_key_id_t(&pos, &remaining, &key);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_algorithm_t(&pos, &remaining, &alg);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &input, &input_length);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &mac, &mac_size);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_size_t(&pos, &remaining, &mac_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_compute(
key,
alg,
input, input_length,
mac, mac_size,
&mac_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_serialise_buffer_needs(mac, mac_size) +
psasim_serialise_size_t_needs(mac_length);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&rpos, &rremain, mac, mac_size);
if (!ok) {
goto fail;
}
ok = psasim_serialise_size_t(&rpos, &rremain, mac_length);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(input);
free(mac);
return 1; // success
fail:
free(result);
free(input);
free(mac);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_sign_finish_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_mac_operation_t *operation;
uint8_t *mac = NULL;
size_t mac_size;
size_t mac_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_mac_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &mac, &mac_size);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_size_t(&pos, &remaining, &mac_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_sign_finish(
operation,
mac, mac_size,
&mac_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_mac_operation_t_needs(operation) +
psasim_serialise_buffer_needs(mac, mac_size) +
psasim_serialise_size_t_needs(mac_length);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
ok = psasim_serialise_buffer(&rpos, &rremain, mac, mac_size);
if (!ok) {
goto fail;
}
ok = psasim_serialise_size_t(&rpos, &rremain, mac_length);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(mac);
return 1; // success
fail:
free(result);
free(mac);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_sign_setup_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_mac_operation_t *operation;
mbedtls_svc_key_id_t key;
psa_algorithm_t alg;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_mac_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_mbedtls_svc_key_id_t(&pos, &remaining, &key);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_algorithm_t(&pos, &remaining, &alg);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_sign_setup(
operation,
key,
alg
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_mac_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_update_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_mac_operation_t *operation;
uint8_t *input = NULL;
size_t input_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_mac_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &input, &input_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_update(
operation,
input, input_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_mac_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(input);
return 1; // success
fail:
free(result);
free(input);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_verify_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
mbedtls_svc_key_id_t key;
psa_algorithm_t alg;
uint8_t *input = NULL;
size_t input_length;
uint8_t *mac = NULL;
size_t mac_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_mbedtls_svc_key_id_t(&pos, &remaining, &key);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_algorithm_t(&pos, &remaining, &alg);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &input, &input_length);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &mac, &mac_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_verify(
key,
alg,
input, input_length,
mac, mac_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(input);
free(mac);
return 1; // success
fail:
free(result);
free(input);
free(mac);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_verify_finish_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_mac_operation_t *operation;
uint8_t *mac = NULL;
size_t mac_length;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_mac_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_buffer(&pos, &remaining, &mac, &mac_length);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_verify_finish(
operation,
mac, mac_length
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_mac_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
free(mac);
return 1; // success
fail:
free(result);
free(mac);
return 0; // This shouldn't happen!
}
// Returns 1 for success, 0 for failure
int psa_mac_verify_setup_wrapper(
uint8_t *in_params, size_t in_params_len,
uint8_t **out_params, size_t *out_params_len)
{
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_mac_operation_t *operation;
mbedtls_svc_key_id_t key;
psa_algorithm_t alg;
uint8_t *pos = in_params;
size_t remaining = in_params_len;
uint8_t *result = NULL;
int ok;
ok = psasim_deserialise_begin(&pos, &remaining);
if (!ok) {
goto fail;
}
ok = psasim_server_deserialise_psa_mac_operation_t(&pos, &remaining, &operation);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_mbedtls_svc_key_id_t(&pos, &remaining, &key);
if (!ok) {
goto fail;
}
ok = psasim_deserialise_psa_algorithm_t(&pos, &remaining, &alg);
if (!ok) {
goto fail;
}
// Now we call the actual target function
status = psa_mac_verify_setup(
operation,
key,
alg
);
// NOTE: Should really check there is no overflow as we go along.
size_t result_size =
psasim_serialise_begin_needs() +
psasim_serialise_psa_status_t_needs(status) +
psasim_server_serialise_psa_mac_operation_t_needs(operation);
result = malloc(result_size);
if (result == NULL) {
goto fail;
}
uint8_t *rpos = result;
size_t rremain = result_size;
ok = psasim_serialise_begin(&rpos, &rremain);
if (!ok) {
goto fail;
}
ok = psasim_serialise_psa_status_t(&rpos, &rremain, status);
if (!ok) {
goto fail;
}
ok = psasim_server_serialise_psa_mac_operation_t(&rpos, &rremain, operation);
if (!ok) {
goto fail;
}
*out_params = result;
*out_params_len = result_size;
return 1; // success
fail:
free(result);
return 0; // This shouldn't happen!
}
psa_status_t psa_crypto_call(psa_msg_t msg)
{
int ok = 0;
@ -2370,6 +3070,38 @@ psa_status_t psa_crypto_call(psa_msg_t msg)
ok = psa_import_key_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_ABORT:
ok = psa_mac_abort_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_COMPUTE:
ok = psa_mac_compute_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_SIGN_FINISH:
ok = psa_mac_sign_finish_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_SIGN_SETUP:
ok = psa_mac_sign_setup_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_UPDATE:
ok = psa_mac_update_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_VERIFY:
ok = psa_mac_verify_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_VERIFY_FINISH:
ok = psa_mac_verify_finish_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
case PSA_MAC_VERIFY_SETUP:
ok = psa_mac_verify_setup_wrapper(in_params, in_params_len,
&out_params, &out_params_len);
break;
}
free(in_params);

View File

@ -2398,3 +2398,407 @@ psa_status_t psa_destroy_key(mbedtls_svc_key_id_t key);
*/
psa_status_t psa_generate_random(uint8_t *output,
size_t output_size);
/** Calculate the MAC (message authentication code) of a message.
*
* \note To verify the MAC of a message against an
* expected value, use psa_mac_verify() instead.
* Beware that comparing integrity or authenticity data such as
* MAC values with a function such as \c memcmp is risky
* because the time taken by the comparison may leak information
* about the MAC value which could allow an attacker to guess
* a valid MAC and thereby bypass security controls.
*
* \param key Identifier of the key to use for the operation. It
* must allow the usage PSA_KEY_USAGE_SIGN_MESSAGE.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(\p alg) is true).
* \param[in] input Buffer containing the input message.
* \param input_length Size of the \p input buffer in bytes.
* \param[out] mac Buffer where the MAC value is to be written.
* \param mac_size Size of the \p mac buffer in bytes.
* \param[out] mac_length On success, the number of bytes
* that make up the MAC value.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
* \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a MAC algorithm.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* \p mac_size is too small
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE
* The key could not be retrieved from storage.
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_compute(mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
uint8_t *mac,
size_t mac_size,
size_t *mac_length);
/** Calculate the MAC of a message and compare it with a reference value.
*
* \param key Identifier of the key to use for the operation. It
* must allow the usage PSA_KEY_USAGE_VERIFY_MESSAGE.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(\p alg) is true).
* \param[in] input Buffer containing the input message.
* \param input_length Size of the \p input buffer in bytes.
* \param[in] mac Buffer containing the expected MAC value.
* \param mac_length Size of the \p mac buffer in bytes.
*
* \retval #PSA_SUCCESS
* The expected MAC is identical to the actual MAC of the input.
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The MAC of the message was calculated successfully, but it
* differs from the expected value.
* \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
* \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a MAC algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE
* The key could not be retrieved from storage.
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_verify(mbedtls_svc_key_id_t key,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *mac,
size_t mac_length);
/** The type of the state data structure for multipart MAC operations.
*
* Before calling any function on a MAC operation object, the application must
* initialize it by any of the following means:
* - Set the structure to all-bits-zero, for example:
* \code
* psa_mac_operation_t operation;
* memset(&operation, 0, sizeof(operation));
* \endcode
* - Initialize the structure to logical zero values, for example:
* \code
* psa_mac_operation_t operation = {0};
* \endcode
* - Initialize the structure to the initializer #PSA_MAC_OPERATION_INIT,
* for example:
* \code
* psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
* \endcode
* - Assign the result of the function psa_mac_operation_init()
* to the structure, for example:
* \code
* psa_mac_operation_t operation;
* operation = psa_mac_operation_init();
* \endcode
*
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure.
* Implementation details can change in future versions without notice. */
typedef struct psa_mac_operation_s psa_mac_operation_t;
/** \def PSA_MAC_OPERATION_INIT
*
* This macro returns a suitable initializer for a MAC operation object of type
* #psa_mac_operation_t.
*/
/** Return an initial value for a MAC operation object.
*/
static psa_mac_operation_t psa_mac_operation_init(void);
/** Set up a multipart MAC calculation operation.
*
* This function sets up the calculation of the MAC
* (message authentication code) of a byte string.
* To verify the MAC of a message against an
* expected value, use psa_mac_verify_setup() instead.
*
* The sequence of operations to calculate a MAC is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Initialize the operation object with one of the methods described in the
* documentation for #psa_mac_operation_t, e.g. #PSA_MAC_OPERATION_INIT.
* -# Call psa_mac_sign_setup() to specify the algorithm and key.
* -# Call psa_mac_update() zero, one or more times, passing a fragment
* of the message each time. The MAC that is calculated is the MAC
* of the concatenation of these messages in order.
* -# At the end of the message, call psa_mac_sign_finish() to finish
* calculating the MAC value and retrieve it.
*
* If an error occurs at any step after a call to psa_mac_sign_setup(), the
* operation will need to be reset by a call to psa_mac_abort(). The
* application may call psa_mac_abort() at any time after the operation
* has been initialized.
*
* After a successful call to psa_mac_sign_setup(), the application must
* eventually terminate the operation through one of the following methods:
* - A successful call to psa_mac_sign_finish().
* - A call to psa_mac_abort().
*
* \param[in,out] operation The operation object to set up. It must have
* been initialized as per the documentation for
* #psa_mac_operation_t and not yet in use.
* \param key Identifier of the key to use for the operation. It
* must remain valid until the operation terminates.
* It must allow the usage PSA_KEY_USAGE_SIGN_MESSAGE.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(\p alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
* \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a MAC algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE
* The key could not be retrieved from storage.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (it must be inactive), or
* the library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_sign_setup(psa_mac_operation_t *operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg);
/** Set up a multipart MAC verification operation.
*
* This function sets up the verification of the MAC
* (message authentication code) of a byte string against an expected value.
*
* The sequence of operations to verify a MAC is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Initialize the operation object with one of the methods described in the
* documentation for #psa_mac_operation_t, e.g. #PSA_MAC_OPERATION_INIT.
* -# Call psa_mac_verify_setup() to specify the algorithm and key.
* -# Call psa_mac_update() zero, one or more times, passing a fragment
* of the message each time. The MAC that is calculated is the MAC
* of the concatenation of these messages in order.
* -# At the end of the message, call psa_mac_verify_finish() to finish
* calculating the actual MAC of the message and verify it against
* the expected value.
*
* If an error occurs at any step after a call to psa_mac_verify_setup(), the
* operation will need to be reset by a call to psa_mac_abort(). The
* application may call psa_mac_abort() at any time after the operation
* has been initialized.
*
* After a successful call to psa_mac_verify_setup(), the application must
* eventually terminate the operation through one of the following methods:
* - A successful call to psa_mac_verify_finish().
* - A call to psa_mac_abort().
*
* \param[in,out] operation The operation object to set up. It must have
* been initialized as per the documentation for
* #psa_mac_operation_t and not yet in use.
* \param key Identifier of the key to use for the operation. It
* must remain valid until the operation terminates.
* It must allow the usage
* PSA_KEY_USAGE_VERIFY_MESSAGE.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(\p alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
* \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a MAC algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE
* The key could not be retrieved from storage.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (it must be inactive), or
* the library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_verify_setup(psa_mac_operation_t *operation,
mbedtls_svc_key_id_t key,
psa_algorithm_t alg);
/** Add a message fragment to a multipart MAC operation.
*
* The application must call psa_mac_sign_setup() or psa_mac_verify_setup()
* before calling this function.
*
* If this function returns an error status, the operation enters an error
* state and must be aborted by calling psa_mac_abort().
*
* \param[in,out] operation Active MAC operation.
* \param[in] input Buffer containing the message fragment to add to
* the MAC calculation.
* \param input_length Size of the \p input buffer in bytes.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (it must be active), or
* the library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_update(psa_mac_operation_t *operation,
const uint8_t *input,
size_t input_length);
/** Finish the calculation of the MAC of a message.
*
* The application must call psa_mac_sign_setup() before calling this function.
* This function calculates the MAC of the message formed by concatenating
* the inputs passed to preceding calls to psa_mac_update().
*
* When this function returns successfully, the operation becomes inactive.
* If this function returns an error status, the operation enters an error
* state and must be aborted by calling psa_mac_abort().
*
* \warning Applications should not call this function if they expect
* a specific value for the MAC. Call psa_mac_verify_finish() instead.
* Beware that comparing integrity or authenticity data such as
* MAC values with a function such as \c memcmp is risky
* because the time taken by the comparison may leak information
* about the MAC value which could allow an attacker to guess
* a valid MAC and thereby bypass security controls.
*
* \param[in,out] operation Active MAC operation.
* \param[out] mac Buffer where the MAC value is to be written.
* \param mac_size Size of the \p mac buffer in bytes.
* \param[out] mac_length On success, the number of bytes
* that make up the MAC value. This is always
* #PSA_MAC_LENGTH(\c key_type, \c key_bits, \c alg)
* where \c key_type and \c key_bits are the type and
* bit-size respectively of the key and \c alg is the
* MAC algorithm that is calculated.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p mac buffer is too small. You can determine a
* sufficient buffer size by calling PSA_MAC_LENGTH().
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (it must be an active mac sign
* operation), or the library has not been previously initialized
* by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_sign_finish(psa_mac_operation_t *operation,
uint8_t *mac,
size_t mac_size,
size_t *mac_length);
/** Finish the calculation of the MAC of a message and compare it with
* an expected value.
*
* The application must call psa_mac_verify_setup() before calling this function.
* This function calculates the MAC of the message formed by concatenating
* the inputs passed to preceding calls to psa_mac_update(). It then
* compares the calculated MAC with the expected MAC passed as a
* parameter to this function.
*
* When this function returns successfully, the operation becomes inactive.
* If this function returns an error status, the operation enters an error
* state and must be aborted by calling psa_mac_abort().
*
* \note Implementations shall make the best effort to ensure that the
* comparison between the actual MAC and the expected MAC is performed
* in constant time.
*
* \param[in,out] operation Active MAC operation.
* \param[in] mac Buffer containing the expected MAC value.
* \param mac_length Size of the \p mac buffer in bytes.
*
* \retval #PSA_SUCCESS
* The expected MAC is identical to the actual MAC of the message.
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The MAC of the message was calculated successfully, but it
* differs from the expected MAC.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (it must be an active mac verify
* operation), or the library has not been previously initialized
* by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_verify_finish(psa_mac_operation_t *operation,
const uint8_t *mac,
size_t mac_length);
/** Abort a MAC operation.
*
* Aborting an operation frees all associated resources except for the
* \p operation structure itself. Once aborted, the operation object
* can be reused for another operation by calling
* psa_mac_sign_setup() or psa_mac_verify_setup() again.
*
* You may call this function any time after the operation object has
* been initialized by one of the methods described in #psa_mac_operation_t.
*
* In particular, calling psa_mac_abort() after the operation has been
* terminated by a call to psa_mac_abort(), psa_mac_sign_finish() or
* psa_mac_verify_finish() is safe and has no effect.
*
* \param[in,out] operation Initialized MAC operation.
*
* \retval #PSA_SUCCESS \emptydescription
* \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
* \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
* \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_abort(psa_mac_operation_t *operation);

View File

@ -139,6 +139,44 @@ static ssize_t find_aead_slot_by_handle(psasim_client_handle_t handle)
return -1; /* not found */
}
static psa_mac_operation_t mac_operations[MAX_LIVE_HANDLES_PER_CLASS];
static psasim_client_handle_t mac_operation_handles[MAX_LIVE_HANDLES_PER_CLASS];
static psasim_client_handle_t next_mac_operation_handle = 1;
/* Get a free slot */
static ssize_t allocate_mac_operation_slot(void)
{
psasim_client_handle_t handle = next_mac_operation_handle++;
if (next_mac_operation_handle == 0) { /* wrapped around */
FATAL("Mac operation handle wrapped");
}
for (ssize_t i = 0; i < MAX_LIVE_HANDLES_PER_CLASS; i++) {
if (mac_operation_handles[i] == 0) {
mac_operation_handles[i] = handle;
return i;
}
}
ERROR("All slots are currently used. Unable to allocate a new one.");
return -1; /* all in use */
}
/* Find the slot given the handle */
static ssize_t find_mac_slot_by_handle(psasim_client_handle_t handle)
{
for (ssize_t i = 0; i < MAX_LIVE_HANDLES_PER_CLASS; i++) {
if (mac_operation_handles[i] == handle) {
return i;
}
}
ERROR("Unable to find slot by handle %u", handle);
return -1; /* not found */
}
size_t psasim_serialise_begin_needs(void)
{
/* The serialisation buffer will
@ -679,6 +717,99 @@ int psasim_deserialise_psa_key_attributes_t(uint8_t **pos,
return 1;
}
size_t psasim_serialise_psa_mac_operation_t_needs(psa_mac_operation_t value)
{
return sizeof(value);
}
int psasim_serialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t value)
{
if (*remaining < sizeof(value)) {
return 0;
}
memcpy(*pos, &value, sizeof(value));
*pos += sizeof(value);
return 1;
}
int psasim_deserialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t *value)
{
if (*remaining < sizeof(*value)) {
return 0;
}
memcpy(value, *pos, sizeof(*value));
*pos += sizeof(*value);
*remaining -= sizeof(*value);
return 1;
}
size_t psasim_server_serialise_psa_mac_operation_t_needs(psa_mac_operation_t *operation)
{
(void) operation;
/* We will actually return a handle */
return sizeof(psasim_operation_t);
}
int psasim_server_serialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t *operation)
{
psasim_operation_t client_operation;
if (*remaining < sizeof(client_operation)) {
return 0;
}
ssize_t slot = operation - mac_operations;
client_operation.handle = mac_operation_handles[slot];
memcpy(*pos, &client_operation, sizeof(client_operation));
*pos += sizeof(client_operation);
return 1;
}
int psasim_server_deserialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t **operation)
{
psasim_operation_t client_operation;
if (*remaining < sizeof(psasim_operation_t)) {
return 0;
}
memcpy(&client_operation, *pos, sizeof(psasim_operation_t));
*pos += sizeof(psasim_operation_t);
*remaining -= sizeof(psasim_operation_t);
ssize_t slot;
if (client_operation.handle == 0) { /* We need a new handle */
slot = allocate_mac_operation_slot();
} else {
slot = find_mac_slot_by_handle(client_operation.handle);
}
if (slot < 0) {
return 0;
}
*operation = &mac_operations[slot];
return 1;
}
size_t psasim_serialise_mbedtls_svc_key_id_t_needs(mbedtls_svc_key_id_t value)
{
return sizeof(value);
@ -720,4 +851,6 @@ void psa_sim_serialize_reset(void)
memset(hash_operations, 0, sizeof(hash_operations));
memset(aead_operation_handles, 0, sizeof(aead_operation_handles));
memset(aead_operations, 0, sizeof(aead_operations));
memset(mac_operation_handles, 0, sizeof(mac_operation_handles));
memset(mac_operations, 0, sizeof(mac_operations));
}

View File

@ -583,6 +583,90 @@ int psasim_deserialise_psa_key_attributes_t(uint8_t **pos,
size_t *remaining,
psa_key_attributes_t *value);
/** Return how much buffer space is needed by \c psasim_serialise_psa_mac_operation_t()
* to serialise a `psa_mac_operation_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_psa_mac_operation_t() to serialise
* the given value.
*/
size_t psasim_serialise_psa_mac_operation_t_needs(psa_mac_operation_t value);
/** Serialise a `psa_mac_operation_t` into a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_serialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t value);
/** Deserialise a `psa_mac_operation_t` from a buffer.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to a `psa_mac_operation_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_deserialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t *value);
/** Return how much buffer space is needed by \c psasim_server_serialise_psa_mac_operation_t()
* to serialise a `psa_mac_operation_t`.
*
* \param value The value that will be serialised into the buffer
* (needed in case some serialisations are value-
* dependent).
*
* \return The number of bytes needed in the buffer by
* \c psasim_serialise_psa_mac_operation_t() to serialise
* the given value.
*/
size_t psasim_server_serialise_psa_mac_operation_t_needs(psa_mac_operation_t *value);
/** Serialise a `psa_mac_operation_t` into a buffer on the server side.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value The value to serialise into the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_server_serialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t *value);
/** Deserialise a `psa_mac_operation_t` from a buffer on the server side.
*
* \param pos[in,out] Pointer to a `uint8_t *` holding current position
* in the buffer.
* \param remaining[in,out] Pointer to a `size_t` holding number of bytes
* remaining in the buffer.
* \param value Pointer to a `psa_mac_operation_t` to receive the value
* deserialised from the buffer.
*
* \return \c 1 on success ("okay"), \c 0 on error.
*/
int psasim_server_deserialise_psa_mac_operation_t(uint8_t **pos,
size_t *remaining,
psa_mac_operation_t **value);
/** Return how much buffer space is needed by \c psasim_serialise_mbedtls_svc_key_id_t()
* to serialise a `mbedtls_svc_key_id_t`.
*

View File

@ -41,6 +41,7 @@ my @types = qw(unsigned-int int size_t
psa_hash_operation_t
psa_aead_operation_t
psa_key_attributes_t
psa_mac_operation_t
mbedtls_svc_key_id_t);
grep(s/-/ /g, @types);