fmt/doc/api.md
2024-06-02 13:17:04 -07:00

653 lines
19 KiB
Markdown

# API Reference
The {fmt} library API consists of the following components:
- [`fmt/base.h`](#base-api): the base API providing main formatting functions
for `char`/UTF-8 with C++20 compile-time checks and minimal dependencies
- [`fmt/format.h`](#format-api): the full format API providing additional
formatting functions and locale support
- [`fmt/ranges.h`](#ranges-api): formatting of ranges and tuples
- [`fmt/chrono.h`](#chrono-api): date and time formatting
- [`fmt/std.h`](#std-api): formatters for standard library types
- [`fmt/compile.h`](#compile-api): format string compilation
- [`fmt/color.h`](#color-api): terminal colors and text styles
- [`fmt/os.h`](#os-api): system APIs
- [`fmt/ostream.h`](#ostream-api): `std::ostream` support
- [`fmt/args.h`](#args-api): dynamic argument lists
- [`fmt/printf.h`](#printf-api): `printf` formatting
- [`fmt/xchar.h`](#xchar-api): optional `wchar_t` support
All functions and types provided by the library reside in namespace `fmt`
and macros have prefix `FMT_`.
## Base API
`fmt/base.h` defines the base API which provides main formatting functions
for `char`/UTF-8 with C++20 compile-time checks. It has minimal include
dependencies for better compile times. This header is only beneficial when
using {fmt} as a library (the default) and not in the header-only mode.
It also provides `formatter` specializations for the following types:
- `int`, `unsigned`, `long long`, `unsigned long long`
- `float`, `double`, `long double`
- `bool`
- `char`
- `const char*`, `fmt::string_view`
- `const void*`
The following functions use [format string syntax](syntax.md) similar to that
of [str.format](https://docs.python.org/3/library/stdtypes.html#str.format)
in Python. They take *fmt* and *args* as arguments.
*fmt* is a format string that contains literal text and replacement fields
surrounded by braces `{}`. The fields are replaced with formatted arguments
in the resulting string. [`fmt::format_string`](#format_string) is a format
string which can be implicitly constructed from a string literal or a
`constexpr` string and is checked at compile time in C++20. To pass a runtime
format string wrap it in [fmt::runtime](#runtime).
*args* is an argument list representing objects to be formatted.
I/O errors are reported as [`std::system_error`](
https://en.cppreference.com/w/cpp/error/system_error) exceptions unless
specified otherwise.
::: print(format_string<T...>, T&&...)
::: print(FILE*, format_string<T...>, T&&...)
::: println(format_string<T...>, T&&...)
::: println(FILE*, format_string<T...>, T&&...)
::: format_to(OutputIt&&, format_string<T...>, T&&...)
::: format_to_n(OutputIt, size_t, format_string<T...>, T&&...)
::: format_to_n_result
::: formatted_size(format_string<T...>, T&&...)
<a id="udt"></a>
### Formatting User-Defined Types
The {fmt} library provides formatters for many standard C++ types.
See [`fmt/ranges.h`](#ranges-api) for ranges and tuples including standard
containers such as `std::vector`, [`fmt/chrono.h`](#chrono-api) for date and
time formatting and [`fmt/std.h`](#std-api) for other standard library types.
There are two ways to make a user-defined type formattable: providing a
`format_as` function or specializing the `formatter` struct template.
Use `format_as` if you want to make your type formattable as some other
type with the same format specifiers. The `format_as` function should
take an object of your type and return an object of a formattable type.
It should be defined in the same namespace as your type.
Example ([run](https://godbolt.org/z/nvME4arz8)):
#include <fmt/format.h>
namespace kevin_namespacy {
enum class film {
house_of_cards, american_beauty, se7en = 7
};
auto format_as(film f) { return fmt::underlying(f); }
}
int main() {
fmt::print("{}\n", kevin_namespacy::film::se7en); // Output: 7
}
Using specialization is more complex but gives you full control over
parsing and formatting. To use this method specialize the `formatter`
struct template for your type and implement `parse` and `format`
methods.
The recommended way of defining a formatter is by reusing an existing
one via inheritance or composition. This way you can support standard
format specifiers without implementing them yourself. For example:
```c++
// color.h:
#include <fmt/base.h>
enum class color {red, green, blue};
template <> struct fmt::formatter<color>: formatter<string_view> {
// parse is inherited from formatter<string_view>.
auto format(color c, format_context& ctx) const
-> format_context::iterator;
};
```
```c++
// color.cc:
#include "color.h"
#include <fmt/format.h>
auto fmt::formatter<color>::format(color c, format_context& ctx) const
-> format_context::iterator {
string_view name = "unknown";
switch (c) {
case color::red: name = "red"; break;
case color::green: name = "green"; break;
case color::blue: name = "blue"; break;
}
return formatter<string_view>::format(name, ctx);
}
```
Note that `formatter<string_view>::format` is defined in `fmt/format.h`
so it has to be included in the source file. Since `parse` is inherited
from `formatter<string_view>` it will recognize all string format
specifications, for example
```c++
fmt::format("{:>10}", color::blue)
```
will return `" blue"`.
<!-- The experimental `nested_formatter` provides an easy way of applying a
formatter to one or more subobjects.
For example:
#include <fmt/format.h>
struct point {
double x, y;
};
template <>
struct fmt::formatter<point> : nested_formatter<double> {
auto format(point p, format_context& ctx) const {
return write_padded(ctx, [=](auto out) {
return format_to(out, "({}, {})", this->nested(p.x),
this->nested(p.y));
});
}
};
int main() {
fmt::print("[{:>20.2f}]", point{1, 2});
}
prints:
[ (1.00, 2.00)]
Notice that fill, align and width are applied to the whole object which
is the recommended behavior while the remaining specifiers apply to
elements. -->
In general the formatter has the following form:
template <> struct fmt::formatter<T> {
// Parses format specifiers and stores them in the formatter.
//
// [ctx.begin(), ctx.end()) is a, possibly empty, character range that
// contains a part of the format string starting from the format
// specifications to be parsed, e.g. in
//
// fmt::format("{:f} continued", ...);
//
// the range will contain "f} continued". The formatter should parse
// specifiers until '}' or the end of the range. In this example the
// formatter should parse the 'f' specifier and return an iterator
// pointing to '}'.
constexpr auto parse(format_parse_context& ctx)
-> format_parse_context::iterator;
// Formats value using the parsed format specification stored in this
// formatter and writes the output to ctx.out().
auto format(const T& value, format_context& ctx) const
-> format_context::iterator;
};
It is recommended to at least support fill, align and width that apply
to the whole object and have the same semantics as in standard
formatters.
You can also write a formatter for a hierarchy of classes:
```c++
// demo.h:
#include <type_traits>
#include <fmt/core.h>
struct A {
virtual ~A() {}
virtual std::string name() const { return "A"; }
};
struct B : A {
virtual std::string name() const { return "B"; }
};
template <typename T>
struct fmt::formatter<T, std::enable_if_t<std::is_base_of_v<A, T>, char>> :
fmt::formatter<std::string> {
auto format(const A& a, format_context& ctx) const {
return formatter<std::string>::format(a.name(), ctx);
}
};
```
```c++
// demo.cc:
#include "demo.h"
#include <fmt/format.h>
int main() {
B b;
A& a = b;
fmt::print("{}", a); // Output: B
}
```
Providing both a `formatter` specialization and a `format_as` overload is
disallowed.
::: basic_format_parse_context
::: context
::: format_context
### Compile-Time Format String Checks
Compile-time format string checks are enabled by default on compilers
that support C++20 `consteval`. On older compilers you can use the
[FMT_STRING](#legacy-checks) macro defined in `fmt/format.h` instead.
Unused arguments are allowed as in Python's `str.format` and ordinary functions.
::: basic_format_string
::: format_string
::: runtime(string_view)
### Named Arguments
::: arg(const Char*, const T&)
Named arguments are not supported in compile-time checks at the moment.
### Type Erasure
You can create your own formatting function with compile-time checks and
small binary footprint, for example ([run](https://godbolt.org/z/b9Pbasvzc)):
```c++
#include <fmt/format.h>
void vlog(const char* file, int line,
fmt::string_view fmt, fmt::format_args args) {
fmt::print("{}: {}: {}", file, line, fmt::vformat(fmt, args));
}
template <typename... T>
void log(const char* file, int line,
fmt::format_string<T...> fmt, T&&... args) {
vlog(file, line, fmt, fmt::make_format_args(args...));
}
#define MY_LOG(fmt, ...) log(__FILE__, __LINE__, fmt, __VA_ARGS__)
MY_LOG("invalid squishiness: {}", 42);
```
Note that `vlog` is not parameterized on argument types which improves
compile times and reduces binary code size compared to a fully
parameterized version.
::: make_format_args(T&...)
::: basic_format_args
::: format_args
::: basic_format_arg
### Compatibility
::: basic_string_view
::: string_view
## Format API
`fmt/format.h` defines the full format API providing additional
formatting functions and locale support.
<a id="format"></a>
::: format(format_string<T...>, T&&...)
::: vformat(string_view, format_args)
### Utilities
::: ptr(T)
::: underlying(Enum)
::: to_string(const T&)
::: group_digits(T)
::: detail::buffer
::: basic_memory_buffer
### System Errors
{fmt} does not use `errno` to communicate errors to the user, but it may
call system functions which set `errno`. Users should not make any
assumptions about the value of `errno` being preserved by library
functions.
::: system_error
::: format_system_error
### Literal-Based API
The following user-defined literals are defined in `fmt/format.h`.
::: operator""_a()
### Custom Allocators
The {fmt} library supports custom dynamic memory allocators. A custom
allocator class can be specified as a template argument to
[`fmt::basic_memory_buffer`](#basic_memory_buffer):
using custom_memory_buffer =
fmt::basic_memory_buffer<char, fmt::inline_buffer_size, custom_allocator>;
It is also possible to write a formatting function that uses a custom
allocator:
using custom_string =
std::basic_string<char, std::char_traits<char>, custom_allocator>;
custom_string vformat(custom_allocator alloc, fmt::string_view format_str,
fmt::format_args args) {
auto buf = custom_memory_buffer(alloc);
fmt::vformat_to(std::back_inserter(buf), format_str, args);
return custom_string(buf.data(), buf.size(), alloc);
}
template <typename ...Args>
inline custom_string format(custom_allocator alloc,
fmt::string_view format_str,
const Args& ... args) {
return vformat(alloc, format_str, fmt::make_format_args(args...));
}
The allocator will be used for the output container only. Formatting
functions normally don't do any allocations for built-in and string
types except for non-default floating-point formatting that occasionally
falls back on `sprintf`.
### Locale
All formatting is locale-independent by default. Use the `'L'` format
specifier to insert the appropriate number separator characters from the
locale:
#include <fmt/core.h>
#include <locale>
std::locale::global(std::locale("en_US.UTF-8"));
auto s = fmt::format("{:L}", 1000000); // s == "1,000,000"
`fmt/format.h` provides the following overloads of formatting functions
that take `std::locale` as a parameter. The locale type is a template
parameter to avoid the expensive `<locale>` include.
::: format(const Locale&, format_string<T...>, T&&...)
::: format_to(OutputIt, const Locale&, format_string<T...>, T&&...)
::: formatted_size(const Locale&, format_string<T...>, T&&...)
<a id="legacy-checks"></a>
### Legacy Compile-Time Format String Checks
`FMT_STRING` enables compile-time checks on older compilers. It requires
C++14 or later and is a no-op in C++11.
::: FMT_STRING
To force the use of legacy compile-time checks, define the preprocessor
variable `FMT_ENFORCE_COMPILE_STRING`. When set, functions accepting
`FMT_STRING` will fail to compile with regular strings.
<a id="ranges-api"></a>
## Range and Tuple Formatting
`fmt/ranges.h` provides formatting support for ranges and tuples:
#include <fmt/ranges.h>
fmt::print("{}", std::tuple<char, int>{'a', 42});
// Output: ('a', 42)
Using `fmt::join`, you can separate tuple elements with a custom separator:
#include <fmt/ranges.h>
auto t = std::tuple<int, char>{1, 'a'};
fmt::print("{}", fmt::join(t, ", "));
// Output: 1, a
::: join(Range&&, string_view)
::: join(It, Sentinel, string_view)
::: join(std::initializer_list<T>, string_view)
<a id="chrono-api"></a>
## Date and Time Formatting
`fmt/chrono.h` provides formatters for
- [`std::chrono::duration`](https://en.cppreference.com/w/cpp/chrono/duration)
- [`std::chrono::time_point`](
https://en.cppreference.com/w/cpp/chrono/time_point)
- [`std::tm`](https://en.cppreference.com/w/cpp/chrono/c/tm)
The format syntax is described in [Chrono Format Specifications](syntax.md#
chrono-format-specifications).
**Example**:
#include <fmt/chrono.h>
int main() {
std::time_t t = std::time(nullptr);
fmt::print("The date is {:%Y-%m-%d}.", fmt::localtime(t));
// Output: The date is 2020-11-07.
// (with 2020-11-07 replaced by the current date)
using namespace std::literals::chrono_literals;
fmt::print("Default format: {} {}\n", 42s, 100ms);
// Output: Default format: 42s 100ms
fmt::print("strftime-like format: {:%H:%M:%S}\n", 3h + 15min + 30s);
// Output: strftime-like format: 03:15:30
}
::: localtime(std::time_t)
::: gmtime(std::time_t)
<a id="std-api"></a>
## Standard Library Types Formatting
`fmt/std.h` provides formatters for:
- [`std::atomic`](https://en.cppreference.com/w/cpp/atomic/atomic)
- [`std::atomic_flag`](https://en.cppreference.com/w/cpp/atomic/atomic_flag)
- [`std::bitset`](https://en.cppreference.com/w/cpp/utility/bitset)
- [`std::error_code`](https://en.cppreference.com/w/cpp/error/error_code)
- [`std::filesystem::path`](https://en.cppreference.com/w/cpp/filesystem/path)
- [`std::monostate`](https://en.cppreference.com/w/cpp/utility/variant/monostate)
- [`std::optional`](https://en.cppreference.com/w/cpp/utility/optional)
- [`std::source_location`](https://en.cppreference.com/w/cpp/utility/source_location)
- [`std::thread::id`](https://en.cppreference.com/w/cpp/thread/thread/id)
- [`std::variant`](https://en.cppreference.com/w/cpp/utility/variant/variant)
::: ptr(const std::unique_ptr<T, Deleter>&)
::: ptr(const std::shared_ptr<T>&)
### Formatting Variants
A `std::variant` is only formattable if every variant alternative is
formattable, and requires the `__cpp_lib_variant` [library
feature](https://en.cppreference.com/w/cpp/feature_test).
**Example**:
#include <fmt/std.h>
fmt::print("{}", std::variant<char, float>('x'));
// Output: variant('x')
fmt::print("{}", std::variant<std::monostate, char>());
// Output: variant(monostate)
<a id="compile-api"></a>
## Format String Compilation
`fmt/compile.h` provides format string compilation enabled via the
`FMT_COMPILE` macro or the `_cf` user-defined literal. Format strings
marked with `FMT_COMPILE` or `_cf` are parsed, checked and converted
into efficient formatting code at compile-time. This supports arguments
of built-in and string types as well as user-defined types with `format`
functions taking the format context type as a template parameter in
their `formatter` specializations. For example:
template <> struct fmt::formatter<point> {
constexpr auto parse(format_parse_context& ctx);
template <typename FormatContext>
auto format(const point& p, FormatContext& ctx) const;
};
Format string compilation can generate more binary code compared to the
default API and is only recommended in places where formatting is a
performance bottleneck.
::: FMT_COMPILE
::: operator""_cf
<a id="color-api"></a>
## Terminal Colors and Text Styles
`fmt/color.h` provides support for terminal color and text style output.
::: print(const text_style&, format_string<T...>, T&&...)
::: fg(detail::color_type)
::: bg(detail::color_type)
::: styled(const T&, text_style)
<a id="os-api"></a>
## System APIs
::: ostream
::: windows_error
<a id="ostream-api"></a>
## `std::ostream` Support
`fmt/ostream.h` provides `std::ostream` support including formatting of
user-defined types that have an overloaded insertion operator
(`operator<<`). In order to make a type formattable via `std::ostream`
you should provide a `formatter` specialization inherited from
`ostream_formatter`:
#include <fmt/ostream.h>
struct date {
int year, month, day;
friend std::ostream& operator<<(std::ostream& os, const date& d) {
return os << d.year << '-' << d.month << '-' << d.day;
}
};
template <> struct fmt::formatter<date> : ostream_formatter {};
std::string s = fmt::format("The date is {}", date{2012, 12, 9});
// s == "The date is 2012-12-9"
::: streamed(const T&)
::: print(std::ostream&, format_string<T...>, T&&...)
<a id="args-api"></a>
## Dynamic Argument Lists
The header `fmt/args.h` provides `dynamic_format_arg_store`, a builder-like API
that can be used to construct format argument lists dynamically.
::: dynamic_format_arg_store
<a id="printf-api"></a>
## `printf` Formatting
The header `fmt/printf.h` provides `printf`-like formatting
functionality. The following functions use [printf format string
syntax](https://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html)
with the POSIX extension for positional arguments. Unlike their standard
counterparts, the `fmt` functions are type-safe and throw an exception
if an argument type doesn't match its format specification.
::: printf(string_view, const T&...)
::: fprintf(std::FILE*, const S&, const T&...)
::: sprintf(const S&, const T&...)
<a id="xchar-api"></a>
## Wide Strings
The optional header `fmt/xchar.h` provides support for `wchar_t` and
exotic character types.
::: is_char
::: wstring_view
::: wformat_context
::: to_wstring(const T&)
## Compatibility with C++20 `std::format`
{fmt} implements nearly all of the [C++20 formatting
library](https://en.cppreference.com/w/cpp/utility/format) with the
following differences:
- Names are defined in the `fmt` namespace instead of `std` to avoid
collisions with standard library implementations.
- Width calculation doesn't use grapheme clusterization. The latter has
been implemented in a separate branch but hasn't been integrated yet.