mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-01-11 03:47:01 +00:00
1025 lines
34 KiB
C
1025 lines
34 KiB
C
/*
|
||
* Copyright (C) 2014 BlueKitchen GmbH
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. Neither the name of the copyright holders nor the names of
|
||
* contributors may be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
* 4. Any redistribution, use, or modification is done solely for
|
||
* personal benefit and not for any commercial purpose or for
|
||
* monetary gain.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
|
||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
|
||
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* Please inquire about commercial licensing options at
|
||
* contact@bluekitchen-gmbh.com
|
||
*
|
||
*/
|
||
|
||
/*
|
||
* hci_transport_usb.c
|
||
*
|
||
* HCI Transport API implementation for USB
|
||
*
|
||
* Created by Matthias Ringwald on 7/5/09.
|
||
*/
|
||
|
||
// Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size
|
||
// HCI Commands 0 0 0x00 Control 8/16/32/64
|
||
// HCI Events 0 0 0x81 Interrupt (IN) 16
|
||
// ACL Data 0 0 0x82 Bulk (IN) 32/64
|
||
// ACL Data 0 0 0x02 Bulk (OUT) 32/64
|
||
// SCO Data 0 0 0x83 Isochronous (IN)
|
||
// SCO Data 0 0 0x03 Isochronous (Out)
|
||
|
||
#include <stdio.h>
|
||
#include <strings.h>
|
||
#include <string.h>
|
||
#include <unistd.h> /* UNIX standard function definitions */
|
||
#include <sys/types.h>
|
||
|
||
#include <libusb.h>
|
||
|
||
#include "btstack-config.h"
|
||
|
||
#include "debug.h"
|
||
#include "hci.h"
|
||
#include "hci_transport.h"
|
||
|
||
#if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0)
|
||
#define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
|
||
#endif
|
||
|
||
#define ASYNC_BUFFERS 2
|
||
#define AYSNC_POLLING_INTERVAL_MS 1
|
||
|
||
//
|
||
// Bluetooth USB Transprot Alternate Settings:
|
||
//
|
||
// 0: No active voice channels (for USB compliance)
|
||
// 1: One 8 kHz voice channel with 8-bit encoding
|
||
// 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding
|
||
// 3: Three 8 kHz voice channels with 8-bit encoding
|
||
// 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding
|
||
// 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding
|
||
// --> support only a single SCO connection
|
||
#define ALT_SETTING (2)
|
||
|
||
// for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets
|
||
// One complete SCO packet with 24 frames every 3 frames (== 3 ms)
|
||
#define NUM_ISO_PACKETS (3)
|
||
// results in 9 bytes per frame
|
||
#define ISO_PACKET_SIZE (9)
|
||
|
||
// 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel)
|
||
// note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload
|
||
#define SCO_PACKET_SIZE (49)
|
||
|
||
// Outgoing SCO packet queue
|
||
// simplified ring buffer implementation
|
||
#define SCO_RING_BUFFER_COUNT (8)
|
||
#define SCO_RING_BUFFER_SIZE (SCO_RING_BUFFER_COUNT * SCO_PACKET_SIZE)
|
||
|
||
// prototypes
|
||
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size);
|
||
static int usb_close(void *transport_config);
|
||
|
||
typedef enum {
|
||
LIB_USB_CLOSED = 0,
|
||
LIB_USB_OPENED,
|
||
LIB_USB_DEVICE_OPENDED,
|
||
LIB_USB_INTERFACE_CLAIMED,
|
||
LIB_USB_TRANSFERS_ALLOCATED
|
||
} libusb_state_t;
|
||
|
||
// SCO packet state machine
|
||
typedef enum {
|
||
H2_W4_SCO_HEADER = 1,
|
||
H2_W4_PAYLOAD,
|
||
} H2_SCO_STATE;
|
||
|
||
static libusb_state_t libusb_state = LIB_USB_CLOSED;
|
||
|
||
// single instance
|
||
static hci_transport_t * hci_transport_usb = NULL;
|
||
|
||
static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler;
|
||
|
||
// libusb
|
||
#ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
|
||
static struct libusb_device_descriptor desc;
|
||
static libusb_device * dev;
|
||
#endif
|
||
static libusb_device_handle * handle;
|
||
|
||
static struct libusb_transfer *command_out_transfer;
|
||
static struct libusb_transfer *acl_out_transfer;
|
||
static struct libusb_transfer *event_in_transfer[ASYNC_BUFFERS];
|
||
static struct libusb_transfer *acl_in_transfer[ASYNC_BUFFERS];
|
||
|
||
#ifdef HAVE_SCO
|
||
|
||
// incoming SCO
|
||
static H2_SCO_STATE sco_state;
|
||
static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE];
|
||
static uint16_t sco_read_pos;
|
||
static uint16_t sco_bytes_to_read;
|
||
static struct libusb_transfer *sco_in_transfer[ASYNC_BUFFERS];
|
||
static uint8_t hci_sco_in_buffer[ASYNC_BUFFERS][SCO_PACKET_SIZE];
|
||
|
||
// outgoing SCO
|
||
static uint8_t sco_ring_buffer[SCO_RING_BUFFER_SIZE];
|
||
static int sco_ring_write; // packet idx
|
||
static int sco_ring_transfers_active;
|
||
static struct libusb_transfer *sco_ring_transfers[SCO_RING_BUFFER_COUNT];
|
||
#endif
|
||
|
||
// outgoing buffer for HCI Command packets
|
||
static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE];
|
||
|
||
// incoming buffer for HCI Events and ACL Packets
|
||
static uint8_t hci_event_in_buffer[ASYNC_BUFFERS][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet
|
||
static uint8_t hci_acl_in_buffer[ASYNC_BUFFERS][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE];
|
||
|
||
// For (ab)use as a linked list of received packets
|
||
static struct libusb_transfer *handle_packet;
|
||
|
||
static int doing_pollfds;
|
||
static int num_pollfds;
|
||
static data_source_t * pollfd_data_sources;
|
||
static timer_source_t usb_timer;
|
||
static int usb_timer_active;
|
||
|
||
static int usb_acl_out_active = 0;
|
||
static int usb_command_active = 0;
|
||
|
||
// endpoint addresses
|
||
static int event_in_addr;
|
||
static int acl_in_addr;
|
||
static int acl_out_addr;
|
||
static int sco_in_addr;
|
||
static int sco_out_addr;
|
||
|
||
|
||
static void sco_ring_init(void){
|
||
sco_ring_write = 0;
|
||
sco_ring_transfers_active = 0;
|
||
}
|
||
|
||
static int sco_ring_have_space(void){
|
||
return sco_ring_transfers_active < SCO_RING_BUFFER_COUNT;
|
||
}
|
||
|
||
|
||
//
|
||
static void queue_transfer(struct libusb_transfer *transfer){
|
||
|
||
// log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length);
|
||
|
||
transfer->user_data = NULL;
|
||
|
||
// insert first element
|
||
if (handle_packet == NULL) {
|
||
handle_packet = transfer;
|
||
return;
|
||
}
|
||
|
||
// Walk to end of list and add current packet there
|
||
struct libusb_transfer *temp = handle_packet;
|
||
while (temp->user_data) {
|
||
temp = (struct libusb_transfer*)temp->user_data;
|
||
}
|
||
temp->user_data = transfer;
|
||
}
|
||
|
||
static void async_callback(struct libusb_transfer *transfer)
|
||
{
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
|
||
int r;
|
||
// log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length );
|
||
|
||
if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
|
||
queue_transfer(transfer);
|
||
} else if (transfer->status == LIBUSB_TRANSFER_STALL){
|
||
log_info("-> Transfer stalled, trying again");
|
||
r = libusb_clear_halt(handle, transfer->endpoint);
|
||
if (r) {
|
||
log_error("Error rclearing halt %d", r);
|
||
}
|
||
r = libusb_submit_transfer(transfer);
|
||
if (r) {
|
||
log_error("Error re-submitting transfer %d", r);
|
||
}
|
||
} else {
|
||
log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length);
|
||
// No usable data, just resubmit packet
|
||
r = libusb_submit_transfer(transfer);
|
||
if (r) {
|
||
log_error("Error re-submitting transfer %d", r);
|
||
}
|
||
}
|
||
// log_info("end async_callback");
|
||
}
|
||
|
||
|
||
static int usb_send_sco_packet(uint8_t *packet, int size){
|
||
#ifdef HAVE_SCO
|
||
int r;
|
||
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
|
||
|
||
// log_info("usb_send_acl_packet enter, size %u", size);
|
||
|
||
// store packet in free slot
|
||
int tranfer_index = sco_ring_write;
|
||
uint8_t * data = &sco_ring_buffer[tranfer_index * SCO_PACKET_SIZE];
|
||
memcpy(data, packet, size);
|
||
|
||
// setup transfer
|
||
struct libusb_transfer * sco_transfer = sco_ring_transfers[tranfer_index];
|
||
libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, size, NUM_ISO_PACKETS, async_callback, NULL, 0);
|
||
libusb_set_iso_packet_lengths(sco_transfer, ISO_PACKET_SIZE);
|
||
r = libusb_submit_transfer(sco_transfer);
|
||
if (r < 0) {
|
||
log_error("Error submitting sco transfer, %d", r);
|
||
return -1;
|
||
}
|
||
|
||
// mark slot as full
|
||
sco_ring_write++;
|
||
if (sco_ring_write == SCO_RING_BUFFER_COUNT){
|
||
sco_ring_write = 0;
|
||
}
|
||
sco_ring_transfers_active++;
|
||
|
||
// log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_ring_transfers_active);
|
||
|
||
// notify upper stack that packet processed and that it might be possible to send again
|
||
if (sco_ring_have_space()){
|
||
uint8_t event[] = { DAEMON_EVENT_HCI_PACKET_SENT, 0};
|
||
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
|
||
}
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
static void sco_state_machine_init(void){
|
||
sco_state = H2_W4_SCO_HEADER;
|
||
sco_read_pos = 0;
|
||
sco_bytes_to_read = 3;
|
||
}
|
||
|
||
static void handle_isochronous_data(uint8_t * buffer, uint16_t size){
|
||
while (size){
|
||
if (size < sco_bytes_to_read){
|
||
// just store incomplete data
|
||
memcpy(&sco_buffer[sco_read_pos], buffer, size);
|
||
sco_read_pos += size;
|
||
sco_bytes_to_read -= size;
|
||
return;
|
||
}
|
||
// copy requested data
|
||
memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read);
|
||
sco_read_pos += sco_bytes_to_read;
|
||
buffer += sco_bytes_to_read;
|
||
size -= sco_bytes_to_read;
|
||
|
||
// chunk read successfully, next action
|
||
switch (sco_state){
|
||
case H2_W4_SCO_HEADER:
|
||
sco_state = H2_W4_PAYLOAD;
|
||
sco_bytes_to_read = sco_buffer[2];
|
||
break;
|
||
case H2_W4_PAYLOAD:
|
||
// packet complete
|
||
packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos);
|
||
sco_state_machine_init();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void handle_completed_transfer(struct libusb_transfer *transfer){
|
||
|
||
int resubmit = 0;
|
||
int signal_done = 0;
|
||
|
||
if (transfer->endpoint == event_in_addr) {
|
||
packet_handler(HCI_EVENT_PACKET, transfer-> buffer, transfer->actual_length);
|
||
resubmit = 1;
|
||
} else if (transfer->endpoint == acl_in_addr) {
|
||
// log_info("-> acl");
|
||
packet_handler(HCI_ACL_DATA_PACKET, transfer-> buffer, transfer->actual_length);
|
||
resubmit = 1;
|
||
} else if (transfer->endpoint == sco_in_addr) {
|
||
// log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS);
|
||
int i;
|
||
for (i = 0; i < transfer->num_iso_packets; i++) {
|
||
struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i];
|
||
if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
|
||
log_error("Error: pack %u status %d\n", i, pack->status);
|
||
continue;
|
||
}
|
||
if (!pack->actual_length) continue;
|
||
uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i);
|
||
// printf_hexdump(data, pack->actual_length);
|
||
// log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length);
|
||
handle_isochronous_data(data, pack->actual_length);
|
||
}
|
||
resubmit = 1;
|
||
} else if (transfer->endpoint == 0){
|
||
// log_info("command done, size %u", transfer->actual_length);
|
||
usb_command_active = 0;
|
||
signal_done = 1;
|
||
} else if (transfer->endpoint == acl_out_addr){
|
||
// log_info("acl out done, size %u", transfer->actual_length);
|
||
usb_acl_out_active = 0;
|
||
signal_done = 1;
|
||
} else if (transfer->endpoint == sco_out_addr){
|
||
log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}",
|
||
transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status,
|
||
transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status,
|
||
transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status);
|
||
if (!sco_ring_have_space()) {
|
||
// if there isn't space, the last SCO send didn't emit a packet sent event
|
||
signal_done = 1;
|
||
}
|
||
// decrease tab
|
||
sco_ring_transfers_active--;
|
||
// log_info("H2: sco out complete, num active num active %u", sco_ring_transfers_active);
|
||
} else {
|
||
log_info("usb_process_ds endpoint unknown %x", transfer->endpoint);
|
||
}
|
||
|
||
if (signal_done){
|
||
// notify upper stack that iit might be possible to send again
|
||
uint8_t event[] = { DAEMON_EVENT_HCI_PACKET_SENT, 0};
|
||
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
|
||
}
|
||
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
|
||
|
||
if (resubmit){
|
||
// Re-submit transfer
|
||
transfer->user_data = NULL;
|
||
int r = libusb_submit_transfer(transfer);
|
||
if (r) {
|
||
log_error("Error re-submitting transfer %d", r);
|
||
}
|
||
}
|
||
}
|
||
|
||
static int usb_process_ds(struct data_source *ds) {
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
|
||
|
||
// log_info("begin usb_process_ds");
|
||
// always handling an event as we're called when data is ready
|
||
struct timeval tv;
|
||
memset(&tv, 0, sizeof(struct timeval));
|
||
libusb_handle_events_timeout(NULL, &tv);
|
||
|
||
// Handle any packet in the order that they were received
|
||
while (handle_packet) {
|
||
// log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status);
|
||
void * next = handle_packet->user_data;
|
||
handle_completed_transfer(handle_packet);
|
||
// handle case where libusb_close might be called by hci packet handler
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
|
||
|
||
// Move to next in the list of packets to handle
|
||
if (next) {
|
||
handle_packet = (struct libusb_transfer*)next;
|
||
} else {
|
||
handle_packet = NULL;
|
||
}
|
||
}
|
||
// log_info("end usb_process_ds");
|
||
return 0;
|
||
}
|
||
|
||
static void usb_process_ts(timer_source_t *timer) {
|
||
// log_info("in usb_process_ts");
|
||
|
||
// timer is deactive, when timer callback gets called
|
||
usb_timer_active = 0;
|
||
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
|
||
|
||
// actually handled the packet in the pollfds function
|
||
usb_process_ds((struct data_source *) NULL);
|
||
|
||
// Get the amount of time until next event is due
|
||
long msec = AYSNC_POLLING_INTERVAL_MS;
|
||
|
||
// Activate timer
|
||
run_loop_set_timer(&usb_timer, msec);
|
||
run_loop_add_timer(&usb_timer);
|
||
usb_timer_active = 1;
|
||
|
||
return;
|
||
}
|
||
|
||
#ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
|
||
|
||
// list of known devices, using VendorID/ProductID tuples
|
||
static const uint16_t known_bt_devices[] = {
|
||
// DeLOCK Bluetooth 4.0
|
||
0x0a5c, 0x21e8,
|
||
// Asus BT400
|
||
0x0b05, 0x17cb,
|
||
};
|
||
|
||
static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2;
|
||
|
||
static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){
|
||
int i;
|
||
for (i=0; i<num_known_devices; i++){
|
||
if (known_bt_devices[i*2] == vendor_id && known_bt_devices[i*2+1] == product_id){
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void scan_for_bt_endpoints(void) {
|
||
int r;
|
||
|
||
event_in_addr = 0;
|
||
acl_in_addr = 0;
|
||
acl_out_addr = 0;
|
||
sco_out_addr = 0;
|
||
sco_in_addr = 0;
|
||
|
||
// get endpoints from interface descriptor
|
||
struct libusb_config_descriptor *config_descriptor;
|
||
r = libusb_get_active_config_descriptor(dev, &config_descriptor);
|
||
|
||
int num_interfaces = config_descriptor->bNumInterfaces;
|
||
log_info("active configuration has %u interfaces", num_interfaces);
|
||
|
||
int i;
|
||
for (i = 0; i < num_interfaces ; i++){
|
||
const struct libusb_interface *interface = &config_descriptor->interface[i];
|
||
const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting;
|
||
log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints);
|
||
|
||
const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint;
|
||
|
||
for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){
|
||
log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes);
|
||
|
||
switch (endpoint->bmAttributes & 0x3){
|
||
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
|
||
if (event_in_addr) continue;
|
||
event_in_addr = endpoint->bEndpointAddress;
|
||
log_info("-> using 0x%2.2X for HCI Events", event_in_addr);
|
||
break;
|
||
case LIBUSB_TRANSFER_TYPE_BULK:
|
||
if (endpoint->bEndpointAddress & 0x80) {
|
||
if (acl_in_addr) continue;
|
||
acl_in_addr = endpoint->bEndpointAddress;
|
||
log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr);
|
||
} else {
|
||
if (acl_out_addr) continue;
|
||
acl_out_addr = endpoint->bEndpointAddress;
|
||
log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr);
|
||
}
|
||
break;
|
||
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
|
||
if (endpoint->bEndpointAddress & 0x80) {
|
||
if (sco_in_addr) continue;
|
||
sco_in_addr = endpoint->bEndpointAddress;
|
||
log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr);
|
||
} else {
|
||
if (sco_out_addr) continue;
|
||
sco_out_addr = endpoint->bEndpointAddress;
|
||
log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
libusb_free_config_descriptor(config_descriptor);
|
||
}
|
||
|
||
// returns index of found device or -1
|
||
static int scan_for_bt_device(libusb_device **devs, int start_index) {
|
||
int i;
|
||
for (i = start_index; devs[i] ; i++){
|
||
dev = devs[i];
|
||
int r = libusb_get_device_descriptor(dev, &desc);
|
||
if (r < 0) {
|
||
log_error("failed to get device descriptor");
|
||
return 0;
|
||
}
|
||
|
||
log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ",
|
||
desc.idVendor, desc.idProduct,
|
||
libusb_get_bus_number(dev), libusb_get_device_address(dev),
|
||
desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol);
|
||
|
||
// Detect USB Dongle based Class, Subclass, and Protocol
|
||
// The class code (bDeviceClass) is 0xE0 – Wireless Controller.
|
||
// The SubClass code (bDeviceSubClass) is 0x01 – RF Controller.
|
||
// The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming.
|
||
// if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){
|
||
if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) {
|
||
return i;
|
||
}
|
||
|
||
// Detect USB Dongle based on whitelist
|
||
if (is_known_bt_device(desc.idVendor, desc.idProduct)) {
|
||
return i;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
#endif
|
||
|
||
static int prepare_device(libusb_device_handle * aHandle){
|
||
|
||
int r;
|
||
int kernel_driver_detached = 0;
|
||
|
||
// Detach OS driver (not possible for OS X and WIN32)
|
||
#if !defined(__APPLE__) && !defined(_WIN32)
|
||
r = libusb_kernel_driver_active(aHandle, 0);
|
||
if (r < 0) {
|
||
log_error("libusb_kernel_driver_active error %d", r);
|
||
libusb_close(aHandle);
|
||
return r;
|
||
}
|
||
|
||
if (r == 1) {
|
||
r = libusb_detach_kernel_driver(aHandle, 0);
|
||
if (r < 0) {
|
||
log_error("libusb_detach_kernel_driver error %d", r);
|
||
libusb_close(aHandle);
|
||
return r;
|
||
}
|
||
kernel_driver_detached = 1;
|
||
}
|
||
log_info("libusb_detach_kernel_driver");
|
||
#endif
|
||
|
||
const int configuration = 1;
|
||
log_info("setting configuration %d...", configuration);
|
||
r = libusb_set_configuration(aHandle, configuration);
|
||
if (r < 0) {
|
||
log_error("Error libusb_set_configuration: %d", r);
|
||
if (kernel_driver_detached){
|
||
libusb_attach_kernel_driver(aHandle, 0);
|
||
}
|
||
libusb_close(aHandle);
|
||
return r;
|
||
}
|
||
|
||
// reserve access to device
|
||
log_info("claiming interface 0...");
|
||
r = libusb_claim_interface(aHandle, 0);
|
||
if (r < 0) {
|
||
log_error("Error claiming interface %d", r);
|
||
if (kernel_driver_detached){
|
||
libusb_attach_kernel_driver(aHandle, 0);
|
||
}
|
||
libusb_close(aHandle);
|
||
return r;
|
||
}
|
||
|
||
#ifdef HAVE_SCO
|
||
log_info("claiming interface 1...");
|
||
r = libusb_claim_interface(aHandle, 1);
|
||
if (r < 0) {
|
||
log_error("Error claiming interface %d", r);
|
||
if (kernel_driver_detached){
|
||
libusb_attach_kernel_driver(aHandle, 0);
|
||
}
|
||
libusb_close(aHandle);
|
||
return r;
|
||
}
|
||
log_info("Switching to setting %u on interface 1..", ALT_SETTING);
|
||
r = libusb_set_interface_alt_setting(aHandle, 1, ALT_SETTING);
|
||
if (r < 0) {
|
||
fprintf(stderr, "Error setting alternative setting %u for interface 1: %s\n", ALT_SETTING, libusb_error_name(r));
|
||
libusb_close(aHandle);
|
||
return r;
|
||
}
|
||
#endif
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int usb_open(void *transport_config){
|
||
int r;
|
||
|
||
sco_state_machine_init();
|
||
sco_ring_init();
|
||
handle_packet = NULL;
|
||
|
||
// default endpoint addresses
|
||
event_in_addr = 0x81; // EP1, IN interrupt
|
||
acl_in_addr = 0x82; // EP2, IN bulk
|
||
acl_out_addr = 0x02; // EP2, OUT bulk
|
||
sco_in_addr = 0x83; // EP3, IN isochronous
|
||
sco_out_addr = 0x03; // EP3, OUT isochronous
|
||
|
||
// USB init
|
||
r = libusb_init(NULL);
|
||
if (r < 0) return -1;
|
||
|
||
libusb_state = LIB_USB_OPENED;
|
||
|
||
// configure debug level
|
||
libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING);
|
||
|
||
#ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
|
||
|
||
// Use a specified device
|
||
log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID);
|
||
handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID);
|
||
|
||
if (!handle){
|
||
log_error("libusb_open_device_with_vid_pid failed!");
|
||
usb_close(handle);
|
||
return -1;
|
||
}
|
||
log_info("libusb open %d, handle %p", r, handle);
|
||
|
||
r = prepare_device(handle);
|
||
if (r < 0){
|
||
usb_close(handle);
|
||
return -1;
|
||
}
|
||
|
||
#else
|
||
// Scan system for an appropriate devices
|
||
libusb_device **devs;
|
||
ssize_t cnt;
|
||
|
||
log_info("Scanning for USB Bluetooth device");
|
||
cnt = libusb_get_device_list(NULL, &devs);
|
||
if (cnt < 0) {
|
||
usb_close(handle);
|
||
return -1;
|
||
}
|
||
|
||
int startIndex = 0;
|
||
dev = NULL;
|
||
|
||
while (1){
|
||
int deviceIndex = scan_for_bt_device(devs, startIndex);
|
||
if (deviceIndex < 0){
|
||
break;
|
||
}
|
||
startIndex = deviceIndex+1;
|
||
|
||
log_info("USB Bluetooth device found, index %u", deviceIndex);
|
||
|
||
handle = NULL;
|
||
r = libusb_open(devs[deviceIndex], &handle);
|
||
|
||
if (r < 0) {
|
||
log_error("libusb_open failed!");
|
||
handle = NULL;
|
||
continue;
|
||
}
|
||
|
||
log_info("libusb open %d, handle %p", r, handle);
|
||
|
||
// reset device
|
||
libusb_reset_device(handle);
|
||
if (r < 0) {
|
||
log_error("libusb_reset_device failed!");
|
||
libusb_close(handle);
|
||
handle = NULL;
|
||
continue;
|
||
}
|
||
|
||
// device found
|
||
r = prepare_device(handle);
|
||
|
||
if (r < 0){
|
||
continue;
|
||
}
|
||
|
||
libusb_state = LIB_USB_INTERFACE_CLAIMED;
|
||
|
||
break;
|
||
}
|
||
|
||
libusb_free_device_list(devs, 1);
|
||
|
||
if (handle == 0){
|
||
log_error("No USB Bluetooth device found");
|
||
return -1;
|
||
}
|
||
|
||
scan_for_bt_endpoints();
|
||
|
||
#endif
|
||
|
||
// allocate transfer handlers
|
||
int c;
|
||
for (c = 0 ; c < ASYNC_BUFFERS ; c++) {
|
||
event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events
|
||
acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in
|
||
if ( !event_in_transfer[c] || !acl_in_transfer[c]) {
|
||
usb_close(handle);
|
||
return LIBUSB_ERROR_NO_MEM;
|
||
}
|
||
}
|
||
|
||
command_out_transfer = libusb_alloc_transfer(0);
|
||
acl_out_transfer = libusb_alloc_transfer(0);
|
||
|
||
// TODO check for error
|
||
|
||
libusb_state = LIB_USB_TRANSFERS_ALLOCATED;
|
||
|
||
#ifdef HAVE_SCO
|
||
|
||
// incoming
|
||
for (c = 0 ; c < ASYNC_BUFFERS ; c++) {
|
||
sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in
|
||
log_info("Alloc iso transfer");
|
||
if (!sco_in_transfer[c]) {
|
||
usb_close(handle);
|
||
return LIBUSB_ERROR_NO_MEM;
|
||
}
|
||
// configure sco_in handlers
|
||
libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr,
|
||
hci_sco_in_buffer[c], SCO_PACKET_SIZE, NUM_ISO_PACKETS, async_callback, NULL, 0);
|
||
libusb_set_iso_packet_lengths(sco_in_transfer[c], ISO_PACKET_SIZE);
|
||
r = libusb_submit_transfer(sco_in_transfer[c]);
|
||
log_info("Submit iso transfer res = %d", r);
|
||
if (r) {
|
||
log_error("Error submitting isochronous in transfer %d", r);
|
||
usb_close(handle);
|
||
return r;
|
||
}
|
||
}
|
||
|
||
// outgoing
|
||
for (c=0; c < SCO_RING_BUFFER_COUNT ; c++){
|
||
sco_ring_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts
|
||
}
|
||
#endif
|
||
|
||
for (c = 0 ; c < ASYNC_BUFFERS ; c++) {
|
||
// configure event_in handlers
|
||
libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr,
|
||
hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ;
|
||
r = libusb_submit_transfer(event_in_transfer[c]);
|
||
if (r) {
|
||
log_error("Error submitting interrupt transfer %d", r);
|
||
usb_close(handle);
|
||
return r;
|
||
}
|
||
|
||
// configure acl_in handlers
|
||
libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr,
|
||
hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ;
|
||
r = libusb_submit_transfer(acl_in_transfer[c]);
|
||
if (r) {
|
||
log_error("Error submitting bulk in transfer %d", r);
|
||
usb_close(handle);
|
||
return r;
|
||
}
|
||
|
||
}
|
||
|
||
// Check for pollfds functionality
|
||
doing_pollfds = libusb_pollfds_handle_timeouts(NULL);
|
||
|
||
// NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation here
|
||
doing_pollfds = 0;
|
||
|
||
if (doing_pollfds) {
|
||
log_info("Async using pollfds:");
|
||
|
||
const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL);
|
||
for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++);
|
||
pollfd_data_sources = malloc(sizeof(data_source_t) * num_pollfds);
|
||
if (!pollfd_data_sources){
|
||
log_error("Cannot allocate data sources for pollfds");
|
||
usb_close(handle);
|
||
return 1;
|
||
}
|
||
for (r = 0 ; r < num_pollfds ; r++) {
|
||
data_source_t *ds = &pollfd_data_sources[r];
|
||
ds->fd = pollfd[r]->fd;
|
||
ds->process = usb_process_ds;
|
||
run_loop_add_data_source(ds);
|
||
log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events);
|
||
}
|
||
free(pollfd);
|
||
} else {
|
||
log_info("Async using timers:");
|
||
|
||
usb_timer.process = usb_process_ts;
|
||
run_loop_set_timer(&usb_timer, AYSNC_POLLING_INTERVAL_MS);
|
||
run_loop_add_timer(&usb_timer);
|
||
usb_timer_active = 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int usb_close(void *transport_config){
|
||
int c;
|
||
// @TODO: remove all run loops!
|
||
|
||
switch (libusb_state){
|
||
case LIB_USB_CLOSED:
|
||
break;
|
||
|
||
case LIB_USB_TRANSFERS_ALLOCATED:
|
||
libusb_state = LIB_USB_INTERFACE_CLAIMED;
|
||
|
||
if(usb_timer_active) {
|
||
run_loop_remove_timer(&usb_timer);
|
||
usb_timer_active = 0;
|
||
}
|
||
|
||
// Cancel any asynchronous transfers
|
||
for (c = 0 ; c < ASYNC_BUFFERS ; c++) {
|
||
libusb_cancel_transfer(event_in_transfer[c]);
|
||
libusb_cancel_transfer(acl_in_transfer[c]);
|
||
#ifdef HAVE_SCO
|
||
libusb_cancel_transfer(sco_in_transfer[c]);
|
||
#endif
|
||
}
|
||
|
||
/* TODO - find a better way to ensure that all transfers have completed */
|
||
struct timeval tv;
|
||
memset(&tv, 0, sizeof(struct timeval));
|
||
libusb_handle_events_timeout(NULL, &tv);
|
||
|
||
if (doing_pollfds){
|
||
int r;
|
||
for (r = 0 ; r < num_pollfds ; r++) {
|
||
data_source_t *ds = &pollfd_data_sources[r];
|
||
run_loop_remove_data_source(ds);
|
||
}
|
||
free(pollfd_data_sources);
|
||
pollfd_data_sources = NULL;
|
||
num_pollfds = 0;
|
||
doing_pollfds = 0;
|
||
}
|
||
|
||
case LIB_USB_INTERFACE_CLAIMED:
|
||
for (c = 0 ; c < ASYNC_BUFFERS ; c++) {
|
||
if (event_in_transfer[c]) libusb_free_transfer(event_in_transfer[c]);
|
||
if (acl_in_transfer[c]) libusb_free_transfer(acl_in_transfer[c]);
|
||
#ifdef HAVE_SCO
|
||
if (sco_in_transfer[c]) libusb_free_transfer(sco_in_transfer[c]);
|
||
#endif
|
||
}
|
||
|
||
// TODO free control and acl out transfers
|
||
|
||
libusb_release_interface(handle, 0);
|
||
|
||
case LIB_USB_DEVICE_OPENDED:
|
||
libusb_close(handle);
|
||
|
||
case LIB_USB_OPENED:
|
||
libusb_exit(NULL);
|
||
}
|
||
|
||
libusb_state = LIB_USB_CLOSED;
|
||
handle = NULL;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int usb_send_cmd_packet(uint8_t *packet, int size){
|
||
int r;
|
||
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
|
||
|
||
// async
|
||
libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size);
|
||
memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size);
|
||
|
||
// prepare transfer
|
||
int completed = 0;
|
||
libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0);
|
||
command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER;
|
||
|
||
// update stata before submitting transfer
|
||
usb_command_active = 1;
|
||
|
||
// submit transfer
|
||
r = libusb_submit_transfer(command_out_transfer);
|
||
|
||
if (r < 0) {
|
||
usb_command_active = 0;
|
||
log_error("Error submitting cmd transfer %d", r);
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int usb_send_acl_packet(uint8_t *packet, int size){
|
||
int r;
|
||
|
||
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
|
||
|
||
// log_info("usb_send_acl_packet enter, size %u", size);
|
||
|
||
// prepare transfer
|
||
int completed = 0;
|
||
libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size,
|
||
async_callback, &completed, 0);
|
||
acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
|
||
|
||
// update stata before submitting transfer
|
||
usb_acl_out_active = 1;
|
||
|
||
r = libusb_submit_transfer(acl_out_transfer);
|
||
if (r < 0) {
|
||
usb_acl_out_active = 0;
|
||
log_error("Error submitting acl transfer, %d", r);
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int usb_can_send_packet_now(uint8_t packet_type){
|
||
switch (packet_type){
|
||
case HCI_COMMAND_DATA_PACKET:
|
||
return !usb_command_active;
|
||
case HCI_ACL_DATA_PACKET:
|
||
return !usb_acl_out_active;
|
||
case HCI_SCO_DATA_PACKET:
|
||
return sco_ring_have_space();
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){
|
||
switch (packet_type){
|
||
case HCI_COMMAND_DATA_PACKET:
|
||
return usb_send_cmd_packet(packet, size);
|
||
case HCI_ACL_DATA_PACKET:
|
||
return usb_send_acl_packet(packet, size);
|
||
case HCI_SCO_DATA_PACKET:
|
||
return usb_send_sco_packet(packet, size);
|
||
default:
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
|
||
log_info("registering packet handler");
|
||
packet_handler = handler;
|
||
}
|
||
|
||
static const char * usb_get_transport_name(void){
|
||
return "USB";
|
||
}
|
||
|
||
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
|
||
}
|
||
|
||
// get usb singleton
|
||
hci_transport_t * hci_transport_usb_instance() {
|
||
if (!hci_transport_usb) {
|
||
hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t));
|
||
hci_transport_usb->open = usb_open;
|
||
hci_transport_usb->close = usb_close;
|
||
hci_transport_usb->send_packet = usb_send_packet;
|
||
hci_transport_usb->register_packet_handler = usb_register_packet_handler;
|
||
hci_transport_usb->get_transport_name = usb_get_transport_name;
|
||
hci_transport_usb->set_baudrate = NULL;
|
||
hci_transport_usb->can_send_packet_now = usb_can_send_packet_now;
|
||
}
|
||
return hci_transport_usb;
|
||
}
|