/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ /* * hci_transport_usb.c * * HCI Transport API implementation for USB * * Created by Matthias Ringwald on 7/5/09. */ // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size // HCI Commands 0 0 0x00 Control 8/16/32/64 // HCI Events 0 0 0x81 Interrupt (IN) 16 // ACL Data 0 0 0x82 Bulk (IN) 32/64 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 // SCO Data 0 0 0x83 Isochronous (IN) // SCO Data 0 0 0x03 Isochronous (Out) #include #include #include #include /* UNIX standard function definitions */ #include #include #include "btstack-config.h" #include "debug.h" #include "hci.h" #include "hci_transport.h" #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID #endif #define ASYNC_BUFFERS 2 #define AYSNC_POLLING_INTERVAL_MS 1 // // Bluetooth USB Transprot Alternate Settings: // // 0: No active voice channels (for USB compliance) // 1: One 8 kHz voice channel with 8-bit encoding // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding // 3: Three 8 kHz voice channels with 8-bit encoding // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding // --> support only a single SCO connection #define ALT_SETTING (2) // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets // One complete SCO packet with 24 frames every 3 frames (== 3 ms) #define NUM_ISO_PACKETS (3) // results in 9 bytes per frame #define ISO_PACKET_SIZE (9) // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload #define SCO_PACKET_SIZE (49) // Outgoing SCO packet queue // simplified ring buffer implementation #define SCO_RING_BUFFER_COUNT (8) #define SCO_RING_BUFFER_SIZE (SCO_RING_BUFFER_COUNT * SCO_PACKET_SIZE) // prototypes static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); static int usb_close(void *transport_config); typedef enum { LIB_USB_CLOSED = 0, LIB_USB_OPENED, LIB_USB_DEVICE_OPENDED, LIB_USB_INTERFACE_CLAIMED, LIB_USB_TRANSFERS_ALLOCATED } libusb_state_t; // SCO packet state machine typedef enum { H2_W4_SCO_HEADER = 1, H2_W4_PAYLOAD, } H2_SCO_STATE; static libusb_state_t libusb_state = LIB_USB_CLOSED; // single instance static hci_transport_t * hci_transport_usb = NULL; static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; // libusb #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID static struct libusb_device_descriptor desc; static libusb_device * dev; #endif static libusb_device_handle * handle; static struct libusb_transfer *command_out_transfer; static struct libusb_transfer *acl_out_transfer; static struct libusb_transfer *event_in_transfer[ASYNC_BUFFERS]; static struct libusb_transfer *acl_in_transfer[ASYNC_BUFFERS]; #ifdef HAVE_SCO // incoming SCO static H2_SCO_STATE sco_state; static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; static uint16_t sco_read_pos; static uint16_t sco_bytes_to_read; static struct libusb_transfer *sco_in_transfer[ASYNC_BUFFERS]; static uint8_t hci_sco_in_buffer[ASYNC_BUFFERS][SCO_PACKET_SIZE]; // outgoing SCO static uint8_t sco_ring_buffer[SCO_RING_BUFFER_SIZE]; static int sco_ring_write; // packet idx static int sco_ring_transfers_active; static struct libusb_transfer *sco_ring_transfers[SCO_RING_BUFFER_COUNT]; #endif // outgoing buffer for HCI Command packets static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE]; // incoming buffer for HCI Events and ACL Packets static uint8_t hci_event_in_buffer[ASYNC_BUFFERS][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet static uint8_t hci_acl_in_buffer[ASYNC_BUFFERS][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE]; // For (ab)use as a linked list of received packets static struct libusb_transfer *handle_packet; static int doing_pollfds; static int num_pollfds; static data_source_t * pollfd_data_sources; static timer_source_t usb_timer; static int usb_timer_active; static int usb_acl_out_active = 0; static int usb_command_active = 0; // endpoint addresses static int event_in_addr; static int acl_in_addr; static int acl_out_addr; static int sco_in_addr; static int sco_out_addr; static void sco_ring_init(void){ sco_ring_write = 0; sco_ring_transfers_active = 0; } static int sco_ring_have_space(void){ return sco_ring_transfers_active < SCO_RING_BUFFER_COUNT; } // static void queue_transfer(struct libusb_transfer *transfer){ // log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length); transfer->user_data = NULL; // insert first element if (handle_packet == NULL) { handle_packet = transfer; return; } // Walk to end of list and add current packet there struct libusb_transfer *temp = handle_packet; while (temp->user_data) { temp = (struct libusb_transfer*)temp->user_data; } temp->user_data = transfer; } static void async_callback(struct libusb_transfer *transfer) { if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; int r; // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { queue_transfer(transfer); } else if (transfer->status == LIBUSB_TRANSFER_STALL){ log_info("-> Transfer stalled, trying again"); r = libusb_clear_halt(handle, transfer->endpoint); if (r) { log_error("Error rclearing halt %d", r); } r = libusb_submit_transfer(transfer); if (r) { log_error("Error re-submitting transfer %d", r); } } else { log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); // No usable data, just resubmit packet r = libusb_submit_transfer(transfer); if (r) { log_error("Error re-submitting transfer %d", r); } } // log_info("end async_callback"); } static int usb_send_sco_packet(uint8_t *packet, int size){ #ifdef HAVE_SCO int r; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // log_info("usb_send_acl_packet enter, size %u", size); // store packet in free slot int tranfer_index = sco_ring_write; uint8_t * data = &sco_ring_buffer[tranfer_index * SCO_PACKET_SIZE]; memcpy(data, packet, size); // setup transfer struct libusb_transfer * sco_transfer = sco_ring_transfers[tranfer_index]; libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, size, NUM_ISO_PACKETS, async_callback, NULL, 0); libusb_set_iso_packet_lengths(sco_transfer, ISO_PACKET_SIZE); r = libusb_submit_transfer(sco_transfer); if (r < 0) { log_error("Error submitting sco transfer, %d", r); return -1; } // mark slot as full sco_ring_write++; if (sco_ring_write == SCO_RING_BUFFER_COUNT){ sco_ring_write = 0; } sco_ring_transfers_active++; // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_ring_transfers_active); // notify upper stack that packet processed and that it might be possible to send again if (sco_ring_have_space()){ uint8_t event[] = { DAEMON_EVENT_HCI_PACKET_SENT, 0}; packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); } #endif return 0; } static void sco_state_machine_init(void){ sco_state = H2_W4_SCO_HEADER; sco_read_pos = 0; sco_bytes_to_read = 3; } static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ while (size){ if (size < sco_bytes_to_read){ // just store incomplete data memcpy(&sco_buffer[sco_read_pos], buffer, size); sco_read_pos += size; sco_bytes_to_read -= size; return; } // copy requested data memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); sco_read_pos += sco_bytes_to_read; buffer += sco_bytes_to_read; size -= sco_bytes_to_read; // chunk read successfully, next action switch (sco_state){ case H2_W4_SCO_HEADER: sco_state = H2_W4_PAYLOAD; sco_bytes_to_read = sco_buffer[2]; break; case H2_W4_PAYLOAD: // packet complete packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); sco_state_machine_init(); break; } } } static void handle_completed_transfer(struct libusb_transfer *transfer){ int resubmit = 0; int signal_done = 0; if (transfer->endpoint == event_in_addr) { packet_handler(HCI_EVENT_PACKET, transfer-> buffer, transfer->actual_length); resubmit = 1; } else if (transfer->endpoint == acl_in_addr) { // log_info("-> acl"); packet_handler(HCI_ACL_DATA_PACKET, transfer-> buffer, transfer->actual_length); resubmit = 1; } else if (transfer->endpoint == sco_in_addr) { // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); int i; for (i = 0; i < transfer->num_iso_packets; i++) { struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; if (pack->status != LIBUSB_TRANSFER_COMPLETED) { log_error("Error: pack %u status %d\n", i, pack->status); continue; } if (!pack->actual_length) continue; uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); // printf_hexdump(data, pack->actual_length); // log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length); handle_isochronous_data(data, pack->actual_length); } resubmit = 1; } else if (transfer->endpoint == 0){ // log_info("command done, size %u", transfer->actual_length); usb_command_active = 0; signal_done = 1; } else if (transfer->endpoint == acl_out_addr){ // log_info("acl out done, size %u", transfer->actual_length); usb_acl_out_active = 0; signal_done = 1; } else if (transfer->endpoint == sco_out_addr){ log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); if (!sco_ring_have_space()) { // if there isn't space, the last SCO send didn't emit a packet sent event signal_done = 1; } // decrease tab sco_ring_transfers_active--; // log_info("H2: sco out complete, num active num active %u", sco_ring_transfers_active); } else { log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); } if (signal_done){ // notify upper stack that iit might be possible to send again uint8_t event[] = { DAEMON_EVENT_HCI_PACKET_SENT, 0}; packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); } if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; if (resubmit){ // Re-submit transfer transfer->user_data = NULL; int r = libusb_submit_transfer(transfer); if (r) { log_error("Error re-submitting transfer %d", r); } } } static int usb_process_ds(struct data_source *ds) { if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // log_info("begin usb_process_ds"); // always handling an event as we're called when data is ready struct timeval tv; memset(&tv, 0, sizeof(struct timeval)); libusb_handle_events_timeout(NULL, &tv); // Handle any packet in the order that they were received while (handle_packet) { // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); void * next = handle_packet->user_data; handle_completed_transfer(handle_packet); // handle case where libusb_close might be called by hci packet handler if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // Move to next in the list of packets to handle if (next) { handle_packet = (struct libusb_transfer*)next; } else { handle_packet = NULL; } } // log_info("end usb_process_ds"); return 0; } static void usb_process_ts(timer_source_t *timer) { // log_info("in usb_process_ts"); // timer is deactive, when timer callback gets called usb_timer_active = 0; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; // actually handled the packet in the pollfds function usb_process_ds((struct data_source *) NULL); // Get the amount of time until next event is due long msec = AYSNC_POLLING_INTERVAL_MS; // Activate timer run_loop_set_timer(&usb_timer, msec); run_loop_add_timer(&usb_timer); usb_timer_active = 1; return; } #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID // list of known devices, using VendorID/ProductID tuples static const uint16_t known_bt_devices[] = { // DeLOCK Bluetooth 4.0 0x0a5c, 0x21e8, // Asus BT400 0x0b05, 0x17cb, }; static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2; static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ int i; for (i=0; ibNumInterfaces; log_info("active configuration has %u interfaces", num_interfaces); int i; for (i = 0; i < num_interfaces ; i++){ const struct libusb_interface *interface = &config_descriptor->interface[i]; const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; for (r=0;rbNumEndpoints;r++,endpoint++){ log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); switch (endpoint->bmAttributes & 0x3){ case LIBUSB_TRANSFER_TYPE_INTERRUPT: if (event_in_addr) continue; event_in_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for HCI Events", event_in_addr); break; case LIBUSB_TRANSFER_TYPE_BULK: if (endpoint->bEndpointAddress & 0x80) { if (acl_in_addr) continue; acl_in_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); } else { if (acl_out_addr) continue; acl_out_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); } break; case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: if (endpoint->bEndpointAddress & 0x80) { if (sco_in_addr) continue; sco_in_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); } else { if (sco_out_addr) continue; sco_out_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); } break; default: break; } } } libusb_free_config_descriptor(config_descriptor); } // returns index of found device or -1 static int scan_for_bt_device(libusb_device **devs, int start_index) { int i; for (i = start_index; devs[i] ; i++){ dev = devs[i]; int r = libusb_get_device_descriptor(dev, &desc); if (r < 0) { log_error("failed to get device descriptor"); return 0; } log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", desc.idVendor, desc.idProduct, libusb_get_bus_number(dev), libusb_get_device_address(dev), desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); // Detect USB Dongle based Class, Subclass, and Protocol // The class code (bDeviceClass) is 0xE0 – Wireless Controller. // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. // if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){ if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { return i; } // Detect USB Dongle based on whitelist if (is_known_bt_device(desc.idVendor, desc.idProduct)) { return i; } } return -1; } #endif static int prepare_device(libusb_device_handle * aHandle){ int r; int kernel_driver_detached = 0; // Detach OS driver (not possible for OS X and WIN32) #if !defined(__APPLE__) && !defined(_WIN32) r = libusb_kernel_driver_active(aHandle, 0); if (r < 0) { log_error("libusb_kernel_driver_active error %d", r); libusb_close(aHandle); return r; } if (r == 1) { r = libusb_detach_kernel_driver(aHandle, 0); if (r < 0) { log_error("libusb_detach_kernel_driver error %d", r); libusb_close(aHandle); return r; } kernel_driver_detached = 1; } log_info("libusb_detach_kernel_driver"); #endif const int configuration = 1; log_info("setting configuration %d...", configuration); r = libusb_set_configuration(aHandle, configuration); if (r < 0) { log_error("Error libusb_set_configuration: %d", r); if (kernel_driver_detached){ libusb_attach_kernel_driver(aHandle, 0); } libusb_close(aHandle); return r; } // reserve access to device log_info("claiming interface 0..."); r = libusb_claim_interface(aHandle, 0); if (r < 0) { log_error("Error claiming interface %d", r); if (kernel_driver_detached){ libusb_attach_kernel_driver(aHandle, 0); } libusb_close(aHandle); return r; } #ifdef HAVE_SCO log_info("claiming interface 1..."); r = libusb_claim_interface(aHandle, 1); if (r < 0) { log_error("Error claiming interface %d", r); if (kernel_driver_detached){ libusb_attach_kernel_driver(aHandle, 0); } libusb_close(aHandle); return r; } log_info("Switching to setting %u on interface 1..", ALT_SETTING); r = libusb_set_interface_alt_setting(aHandle, 1, ALT_SETTING); if (r < 0) { fprintf(stderr, "Error setting alternative setting %u for interface 1: %s\n", ALT_SETTING, libusb_error_name(r)); libusb_close(aHandle); return r; } #endif return 0; } static int usb_open(void *transport_config){ int r; sco_state_machine_init(); sco_ring_init(); handle_packet = NULL; // default endpoint addresses event_in_addr = 0x81; // EP1, IN interrupt acl_in_addr = 0x82; // EP2, IN bulk acl_out_addr = 0x02; // EP2, OUT bulk sco_in_addr = 0x83; // EP3, IN isochronous sco_out_addr = 0x03; // EP3, OUT isochronous // USB init r = libusb_init(NULL); if (r < 0) return -1; libusb_state = LIB_USB_OPENED; // configure debug level libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID // Use a specified device log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); if (!handle){ log_error("libusb_open_device_with_vid_pid failed!"); usb_close(handle); return -1; } log_info("libusb open %d, handle %p", r, handle); r = prepare_device(handle); if (r < 0){ usb_close(handle); return -1; } #else // Scan system for an appropriate devices libusb_device **devs; ssize_t cnt; log_info("Scanning for USB Bluetooth device"); cnt = libusb_get_device_list(NULL, &devs); if (cnt < 0) { usb_close(handle); return -1; } int startIndex = 0; dev = NULL; while (1){ int deviceIndex = scan_for_bt_device(devs, startIndex); if (deviceIndex < 0){ break; } startIndex = deviceIndex+1; log_info("USB Bluetooth device found, index %u", deviceIndex); handle = NULL; r = libusb_open(devs[deviceIndex], &handle); if (r < 0) { log_error("libusb_open failed!"); handle = NULL; continue; } log_info("libusb open %d, handle %p", r, handle); // reset device libusb_reset_device(handle); if (r < 0) { log_error("libusb_reset_device failed!"); libusb_close(handle); handle = NULL; continue; } // device found r = prepare_device(handle); if (r < 0){ continue; } libusb_state = LIB_USB_INTERFACE_CLAIMED; break; } libusb_free_device_list(devs, 1); if (handle == 0){ log_error("No USB Bluetooth device found"); return -1; } scan_for_bt_endpoints(); #endif // allocate transfer handlers int c; for (c = 0 ; c < ASYNC_BUFFERS ; c++) { event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in if ( !event_in_transfer[c] || !acl_in_transfer[c]) { usb_close(handle); return LIBUSB_ERROR_NO_MEM; } } command_out_transfer = libusb_alloc_transfer(0); acl_out_transfer = libusb_alloc_transfer(0); // TODO check for error libusb_state = LIB_USB_TRANSFERS_ALLOCATED; #ifdef HAVE_SCO // incoming for (c = 0 ; c < ASYNC_BUFFERS ; c++) { sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in log_info("Alloc iso transfer"); if (!sco_in_transfer[c]) { usb_close(handle); return LIBUSB_ERROR_NO_MEM; } // configure sco_in handlers libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr, hci_sco_in_buffer[c], SCO_PACKET_SIZE, NUM_ISO_PACKETS, async_callback, NULL, 0); libusb_set_iso_packet_lengths(sco_in_transfer[c], ISO_PACKET_SIZE); r = libusb_submit_transfer(sco_in_transfer[c]); log_info("Submit iso transfer res = %d", r); if (r) { log_error("Error submitting isochronous in transfer %d", r); usb_close(handle); return r; } } // outgoing for (c=0; c < SCO_RING_BUFFER_COUNT ; c++){ sco_ring_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts } #endif for (c = 0 ; c < ASYNC_BUFFERS ; c++) { // configure event_in handlers libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr, hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; r = libusb_submit_transfer(event_in_transfer[c]); if (r) { log_error("Error submitting interrupt transfer %d", r); usb_close(handle); return r; } // configure acl_in handlers libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr, hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ; r = libusb_submit_transfer(acl_in_transfer[c]); if (r) { log_error("Error submitting bulk in transfer %d", r); usb_close(handle); return r; } } // Check for pollfds functionality doing_pollfds = libusb_pollfds_handle_timeouts(NULL); // NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation here doing_pollfds = 0; if (doing_pollfds) { log_info("Async using pollfds:"); const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); pollfd_data_sources = malloc(sizeof(data_source_t) * num_pollfds); if (!pollfd_data_sources){ log_error("Cannot allocate data sources for pollfds"); usb_close(handle); return 1; } for (r = 0 ; r < num_pollfds ; r++) { data_source_t *ds = &pollfd_data_sources[r]; ds->fd = pollfd[r]->fd; ds->process = usb_process_ds; run_loop_add_data_source(ds); log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); } free(pollfd); } else { log_info("Async using timers:"); usb_timer.process = usb_process_ts; run_loop_set_timer(&usb_timer, AYSNC_POLLING_INTERVAL_MS); run_loop_add_timer(&usb_timer); usb_timer_active = 1; } return 0; } static int usb_close(void *transport_config){ int c; // @TODO: remove all run loops! switch (libusb_state){ case LIB_USB_CLOSED: break; case LIB_USB_TRANSFERS_ALLOCATED: libusb_state = LIB_USB_INTERFACE_CLAIMED; if(usb_timer_active) { run_loop_remove_timer(&usb_timer); usb_timer_active = 0; } // Cancel any asynchronous transfers for (c = 0 ; c < ASYNC_BUFFERS ; c++) { libusb_cancel_transfer(event_in_transfer[c]); libusb_cancel_transfer(acl_in_transfer[c]); #ifdef HAVE_SCO libusb_cancel_transfer(sco_in_transfer[c]); #endif } /* TODO - find a better way to ensure that all transfers have completed */ struct timeval tv; memset(&tv, 0, sizeof(struct timeval)); libusb_handle_events_timeout(NULL, &tv); if (doing_pollfds){ int r; for (r = 0 ; r < num_pollfds ; r++) { data_source_t *ds = &pollfd_data_sources[r]; run_loop_remove_data_source(ds); } free(pollfd_data_sources); pollfd_data_sources = NULL; num_pollfds = 0; doing_pollfds = 0; } case LIB_USB_INTERFACE_CLAIMED: for (c = 0 ; c < ASYNC_BUFFERS ; c++) { if (event_in_transfer[c]) libusb_free_transfer(event_in_transfer[c]); if (acl_in_transfer[c]) libusb_free_transfer(acl_in_transfer[c]); #ifdef HAVE_SCO if (sco_in_transfer[c]) libusb_free_transfer(sco_in_transfer[c]); #endif } // TODO free control and acl out transfers libusb_release_interface(handle, 0); case LIB_USB_DEVICE_OPENDED: libusb_close(handle); case LIB_USB_OPENED: libusb_exit(NULL); } libusb_state = LIB_USB_CLOSED; handle = NULL; return 0; } static int usb_send_cmd_packet(uint8_t *packet, int size){ int r; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // async libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size); // prepare transfer int completed = 0; libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0); command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER; // update stata before submitting transfer usb_command_active = 1; // submit transfer r = libusb_submit_transfer(command_out_transfer); if (r < 0) { usb_command_active = 0; log_error("Error submitting cmd transfer %d", r); return -1; } return 0; } static int usb_send_acl_packet(uint8_t *packet, int size){ int r; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // log_info("usb_send_acl_packet enter, size %u", size); // prepare transfer int completed = 0; libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size, async_callback, &completed, 0); acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK; // update stata before submitting transfer usb_acl_out_active = 1; r = libusb_submit_transfer(acl_out_transfer); if (r < 0) { usb_acl_out_active = 0; log_error("Error submitting acl transfer, %d", r); return -1; } return 0; } static int usb_can_send_packet_now(uint8_t packet_type){ switch (packet_type){ case HCI_COMMAND_DATA_PACKET: return !usb_command_active; case HCI_ACL_DATA_PACKET: return !usb_acl_out_active; case HCI_SCO_DATA_PACKET: return sco_ring_have_space(); default: return 0; } } static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ switch (packet_type){ case HCI_COMMAND_DATA_PACKET: return usb_send_cmd_packet(packet, size); case HCI_ACL_DATA_PACKET: return usb_send_acl_packet(packet, size); case HCI_SCO_DATA_PACKET: return usb_send_sco_packet(packet, size); default: return -1; } } static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ log_info("registering packet handler"); packet_handler = handler; } static const char * usb_get_transport_name(void){ return "USB"; } static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ } // get usb singleton hci_transport_t * hci_transport_usb_instance() { if (!hci_transport_usb) { hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); hci_transport_usb->open = usb_open; hci_transport_usb->close = usb_close; hci_transport_usb->send_packet = usb_send_packet; hci_transport_usb->register_packet_handler = usb_register_packet_handler; hci_transport_usb->get_transport_name = usb_get_transport_name; hci_transport_usb->set_baudrate = NULL; hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; } return hci_transport_usb; }