btstack/src/btstack_util.c
2023-11-14 11:53:14 +01:00

613 lines
19 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
* GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "btstack_util.c"
/*
* General utility functions
*/
#include "btstack_config.h"
#include "btstack_debug.h"
#include "btstack_util.h"
#ifdef _MSC_VER
#include <intrin.h>
#include <windows.h>
#endif
#ifdef ENABLE_PRINTF_HEXDUMP
#include <stdio.h>
#endif
#include <string.h>
/**
* @brief Compare two Bluetooth addresses
* @param a
* @param b
* @return 0 if equal
*/
int bd_addr_cmp(const bd_addr_t a, const bd_addr_t b){
return memcmp(a,b, BD_ADDR_LEN);
}
/**
* @brief Copy Bluetooth address
* @param dest
* @param src
*/
void bd_addr_copy(bd_addr_t dest, const bd_addr_t src){
(void)memcpy(dest, src, BD_ADDR_LEN);
}
uint16_t little_endian_read_16(const uint8_t * buffer, int position){
return (uint16_t)(((uint16_t) buffer[position]) | (((uint16_t)buffer[position+1]) << 8));
}
uint32_t little_endian_read_24(const uint8_t * buffer, int position){
return ((uint32_t) buffer[position]) | (((uint32_t)buffer[position+1]) << 8) | (((uint32_t)buffer[position+2]) << 16);
}
uint32_t little_endian_read_32(const uint8_t * buffer, int position){
return ((uint32_t) buffer[position]) | (((uint32_t)buffer[position+1]) << 8) | (((uint32_t)buffer[position+2]) << 16) | (((uint32_t) buffer[position+3]) << 24);
}
void little_endian_store_16(uint8_t * buffer, uint16_t position, uint16_t value){
uint16_t pos = position;
buffer[pos++] = (uint8_t)value;
buffer[pos++] = (uint8_t)(value >> 8);
}
void little_endian_store_24(uint8_t * buffer, uint16_t position, uint32_t value){
uint16_t pos = position;
buffer[pos++] = (uint8_t)(value);
buffer[pos++] = (uint8_t)(value >> 8);
buffer[pos++] = (uint8_t)(value >> 16);
}
void little_endian_store_32(uint8_t * buffer, uint16_t position, uint32_t value){
uint16_t pos = position;
buffer[pos++] = (uint8_t)(value);
buffer[pos++] = (uint8_t)(value >> 8);
buffer[pos++] = (uint8_t)(value >> 16);
buffer[pos++] = (uint8_t)(value >> 24);
}
uint32_t big_endian_read_16(const uint8_t * buffer, int position) {
return (uint16_t)(((uint16_t) buffer[position+1]) | (((uint16_t)buffer[position]) << 8));
}
uint32_t big_endian_read_24(const uint8_t * buffer, int position) {
return ( ((uint32_t)buffer[position+2]) | (((uint32_t)buffer[position+1]) << 8) | (((uint32_t) buffer[position]) << 16));
}
uint32_t big_endian_read_32(const uint8_t * buffer, int position) {
return ((uint32_t) buffer[position+3]) | (((uint32_t)buffer[position+2]) << 8) | (((uint32_t)buffer[position+1]) << 16) | (((uint32_t) buffer[position]) << 24);
}
void big_endian_store_16(uint8_t * buffer, uint16_t position, uint16_t value){
uint16_t pos = position;
buffer[pos++] = (uint8_t)(value >> 8);
buffer[pos++] = (uint8_t)(value);
}
void big_endian_store_24(uint8_t * buffer, uint16_t position, uint32_t value){
uint16_t pos = position;
buffer[pos++] = (uint8_t)(value >> 16);
buffer[pos++] = (uint8_t)(value >> 8);
buffer[pos++] = (uint8_t)(value);
}
void big_endian_store_32(uint8_t * buffer, uint16_t position, uint32_t value){
uint16_t pos = position;
buffer[pos++] = (uint8_t)(value >> 24);
buffer[pos++] = (uint8_t)(value >> 16);
buffer[pos++] = (uint8_t)(value >> 8);
buffer[pos++] = (uint8_t)(value);
}
// general swap/endianess utils
void reverse_bytes(const uint8_t * src, uint8_t * dest, int len){
int i;
for (i = 0; i < len; i++)
dest[len - 1 - i] = src[i];
}
void reverse_24(const uint8_t * src, uint8_t * dest){
reverse_bytes(src, dest, 3);
}
void reverse_48(const uint8_t * src, uint8_t * dest){
reverse_bytes(src, dest, 6);
}
void reverse_56(const uint8_t * src, uint8_t * dest){
reverse_bytes(src, dest, 7);
}
void reverse_64(const uint8_t * src, uint8_t * dest){
reverse_bytes(src, dest, 8);
}
void reverse_128(const uint8_t * src, uint8_t * dest){
reverse_bytes(src, dest, 16);
}
void reverse_256(const uint8_t * src, uint8_t * dest){
reverse_bytes(src, dest, 32);
}
void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){
reverse_bytes(src, dest, 6);
}
bool btstack_is_null(const uint8_t * buffer, uint16_t size){
uint16_t i;
for (i=0; i < size ; i++){
if (buffer[i] != 0) {
return false;
}
}
return true;
}
bool btstack_is_null_bd_addr( const bd_addr_t addr ){
return btstack_is_null( addr, sizeof(bd_addr_t) );
}
uint32_t btstack_min(uint32_t a, uint32_t b){
return (a < b) ? a : b;
}
uint32_t btstack_max(uint32_t a, uint32_t b){
return (a > b) ? a : b;
}
/**
* @brief Calculate delta between two uint32_t points in time
* @return time_a - time_b - result > 0 if time_a is newer than time_b
*/
int32_t btstack_time_delta(uint32_t time_a, uint32_t time_b){
return (int32_t)(time_a - time_b);
}
/**
* @brief Calculate delta between two uint16_t points in time
* @return time_a - time_b - result > 0 if time_a is newer than time_b
*/
int16_t btstack_time16_delta(uint16_t time_a, uint16_t time_b){
return (int16_t)(time_a - time_b);
}
char char_for_nibble(uint8_t nibble){
static const char * char_to_nibble = "0123456789ABCDEF";
if (nibble < 16){
return char_to_nibble[nibble];
} else {
return '?';
}
}
static inline char char_for_high_nibble(int value){
return char_for_nibble((value >> 4) & 0x0f);
}
static inline char char_for_low_nibble(int value){
return char_for_nibble(value & 0x0f);
}
int nibble_for_char(char c){
if ((c >= '0') && (c <= '9')) return c - '0';
if ((c >= 'a') && (c <= 'f')) return c - 'a' + 10;
if ((c >= 'A') && (c <= 'F')) return c - 'A' + 10;
return -1;
}
#ifdef ENABLE_PRINTF_HEXDUMP
void printf_hexdump(const void * data, int size){
char buffer[4];
buffer[2] = ' ';
buffer[3] = 0;
const uint8_t * ptr = (const uint8_t *) data;
while (size > 0){
uint8_t byte = *ptr++;
buffer[0] = char_for_high_nibble(byte);
buffer[1] = char_for_low_nibble(byte);
printf("%s", buffer);
size--;
}
printf("\n");
}
#endif
#if defined(ENABLE_LOG_INFO) || defined(ENABLE_LOG_DEBUG)
static void log_hexdump(int level, const void * data, int size){
#define ITEMS_PER_LINE 16
// template '0x12, '
#define BYTES_PER_BYTE 6
char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1];
int i, j;
j = 0;
for (i=0; i<size;i++){
// help static analyzer proof that j stays within bounds
if (j > (BYTES_PER_BYTE * (ITEMS_PER_LINE-1))){
j = 0;
}
uint8_t byte = ((uint8_t *)data)[i];
buffer[j++] = '0';
buffer[j++] = 'x';
buffer[j++] = char_for_high_nibble(byte);
buffer[j++] = char_for_low_nibble(byte);
buffer[j++] = ',';
buffer[j++] = ' ';
if (j >= (BYTES_PER_BYTE * ITEMS_PER_LINE) ){
buffer[j] = 0;
HCI_DUMP_LOG(level, "%s", buffer);
j = 0;
}
}
if (j != 0){
buffer[j] = 0;
HCI_DUMP_LOG(level, "%s", buffer);
}
}
#endif
void log_debug_hexdump(const void * data, int size){
#ifdef ENABLE_LOG_DEBUG
log_hexdump(HCI_DUMP_LOG_LEVEL_DEBUG, data, size);
#else
UNUSED(data); // ok: no code
UNUSED(size); // ok: no code
#endif
}
void log_info_hexdump(const void * data, int size){
#ifdef ENABLE_LOG_INFO
log_hexdump(HCI_DUMP_LOG_LEVEL_INFO, data, size);
#else
UNUSED(data); // ok: no code
UNUSED(size); // ok: no code
#endif
}
void log_info_key(const char * name, sm_key_t key){
#ifdef ENABLE_LOG_INFO
char buffer[16*2+1];
int i;
int j = 0;
for (i=0; i<16;i++){
uint8_t byte = key[i];
buffer[j++] = char_for_high_nibble(byte);
buffer[j++] = char_for_low_nibble(byte);
}
buffer[j] = 0;
log_info("%-6s %s", name, buffer);
#else
UNUSED(name);
(void)key;
#endif
}
// UUIDs are stored in big endian, similar to bd_addr_t
// Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB
const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */
0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB };
void uuid_add_bluetooth_prefix(uint8_t * uuid128, uint32_t short_uuid){
(void)memcpy(uuid128, bluetooth_base_uuid, 16);
big_endian_store_32(uuid128, 0, short_uuid);
}
int uuid_has_bluetooth_prefix(const uint8_t * uuid128){
return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0;
}
static char uuid128_to_str_buffer[32+4+1];
char * uuid128_to_str(const uint8_t * uuid){
int i;
int j = 0;
// after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash
const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9);
for (i=0;i<16;i++){
uint8_t byte = uuid[i];
uuid128_to_str_buffer[j++] = char_for_high_nibble(byte);
uuid128_to_str_buffer[j++] = char_for_low_nibble(byte);
if (dash_locations & (1<<i)){
uuid128_to_str_buffer[j++] = '-';
}
}
return uuid128_to_str_buffer;
}
static char bd_addr_to_str_buffer[6*3]; // 12:45:78:01:34:67\0
char * bd_addr_to_str_with_delimiter(const bd_addr_t addr, char delimiter){
char * p = bd_addr_to_str_buffer;
int i;
for (i = 0; i < 6 ; i++) {
uint8_t byte = addr[i];
*p++ = char_for_high_nibble(byte);
*p++ = char_for_low_nibble(byte);
*p++ = delimiter;
}
*--p = 0;
return (char *) bd_addr_to_str_buffer;
}
char * bd_addr_to_str(const bd_addr_t addr){
return bd_addr_to_str_with_delimiter(addr, ':');
}
void btstack_replace_bd_addr_placeholder(uint8_t * buffer, uint16_t size, const bd_addr_t address){
const int bd_addr_string_len = 17;
uint16_t i = 0;
while ((i + bd_addr_string_len) <= size){
if (memcmp(&buffer[i], "00:00:00:00:00:00", bd_addr_string_len)) {
i++;
continue;
}
// set address
(void)memcpy(&buffer[i], bd_addr_to_str(address), bd_addr_string_len);
i += bd_addr_string_len;
}
}
static int scan_hex_byte(const char * byte_string){
int upper_nibble = nibble_for_char(byte_string[0]);
if (upper_nibble < 0) return -1;
int lower_nibble = nibble_for_char(byte_string[1]);
if (lower_nibble < 0) return -1;
return (upper_nibble << 4) | lower_nibble;
}
int sscanf_bd_addr(const char * addr_string, bd_addr_t addr){
const char * the_string = addr_string;
uint8_t buffer[BD_ADDR_LEN];
int result = 0;
int i;
for (i = 0; i < BD_ADDR_LEN; i++) {
int single_byte = scan_hex_byte(the_string);
if (single_byte < 0) break;
the_string += 2;
buffer[i] = (uint8_t)single_byte;
// don't check separator after last byte
if (i == (BD_ADDR_LEN - 1)) {
result = 1;
break;
}
// skip supported separators
char next_char = *the_string;
if ((next_char == ':') || (next_char == '-') || (next_char == ' ')) {
the_string++;
}
}
if (result != 0){
bd_addr_copy(addr, buffer);
}
return result;
}
uint32_t btstack_atoi(const char * str){
const char * the_string = str;
uint32_t val = 0;
while (true){
char chr = *the_string++;
if (!chr || (chr < '0') || (chr > '9'))
return val;
val = (val * 10u) + (uint8_t)(chr - '0');
}
}
int string_len_for_uint32(uint32_t i){
if (i < 10) return 1;
if (i < 100) return 2;
if (i < 1000) return 3;
if (i < 10000) return 4;
if (i < 100000) return 5;
if (i < 1000000) return 6;
if (i < 10000000) return 7;
if (i < 100000000) return 8;
if (i < 1000000000) return 9;
return 10;
}
int count_set_bits_uint32(uint32_t x){
uint32_t v = x;
v = (v & 0x55555555) + ((v >> 1) & 0x55555555U);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333U);
v = (v & 0x0F0F0F0F) + ((v >> 4) & 0x0F0F0F0FU);
v = (v & 0x00FF00FF) + ((v >> 8) & 0x00FF00FFU);
v = (v & 0x0000FFFF) + ((v >> 16) & 0x0000FFFFU);
return v;
}
uint8_t btstack_clz(uint32_t value) {
#if defined(__GNUC__) || defined (__clang__)
// use gcc/clang intrinsic
return (uint8_t) __builtin_clz(value);
#elif defined(_MSC_VER)
// use MSVC intrinsic
DWORD leading_zero = 0;
if (_BitScanReverse( &leading_zero, value )){
return (uint8_t)(31 - leading_zero);
} else {
return 32;
}
#else
// divide-and-conquer implementation for 32-bit integers
uint32_t x = value;
if (x == 0) return 32;
uint8_t r = 0;
if ((x & 0xffff0000u) == 0) {
x <<= 16;
r += 16;
}
if ((x & 0xff000000u) == 0) {
x <<= 8;
r += 8;
}
if ((x & 0xf0000000u) == 0) {
x <<= 4;
r += 4;
}
if ((x & 0xc0000000u) == 0) {
x <<= 2;
r += 2;
}
if ((x & 0x80000000u) == 0) {
x <<= 1;
r += 1;
}
return r;
#endif
}
/*
* CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0.
*/
#define CRC8_INIT 0xFF // Initial FCS value
#define CRC8_OK 0xCF // Good final FCS value
static const uint8_t crc8table[256] = { /* reversed, 8-bit, poly=0x07 */
0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};
/*-----------------------------------------------------------------------------------*/
static uint8_t crc8(uint8_t *data, uint16_t len){
uint16_t count;
uint8_t crc = CRC8_INIT;
for (count = 0; count < len; count++){
crc = crc8table[crc ^ data[count]];
}
return crc;
}
/*-----------------------------------------------------------------------------------*/
uint8_t btstack_crc8_check(uint8_t *data, uint16_t len, uint8_t check_sum){
uint8_t crc;
crc = crc8(data, len);
crc = crc8table[crc ^ check_sum];
if (crc == CRC8_OK){
return 0; /* Valid */
} else {
return 1; /* Failed */
}
}
/*-----------------------------------------------------------------------------------*/
uint8_t btstack_crc8_calc(uint8_t *data, uint16_t len){
/* Ones complement */
return 0xFFu - crc8(data, len);
}
uint16_t btstack_next_cid_ignoring_zero(uint16_t current_cid){
uint16_t next_cid;
if (current_cid == 0xffff) {
next_cid = 1;
} else {
next_cid = current_cid + 1;
}
return next_cid;
}
uint16_t btstack_strcpy(char * dst, uint16_t dst_size, const char * src){
uint16_t bytes_to_copy = (uint16_t) btstack_min( dst_size - 1, strlen(src));
(void) memcpy(dst, src, bytes_to_copy);
dst[bytes_to_copy] = 0;
return bytes_to_copy + 1;
}
void btstack_strcat(char * dst, uint16_t dst_size, const char * src){
uint16_t src_len = (uint16_t) strlen(src);
uint16_t dst_len = (uint16_t) strlen(dst);
uint16_t bytes_to_copy = btstack_min( src_len, dst_size - dst_len - 1);
(void) memcpy( &dst[dst_len], src, bytes_to_copy);
dst[dst_len + bytes_to_copy] = 0;
}
uint16_t btstack_virtual_memcpy(
const uint8_t * field_data, uint16_t field_len, uint16_t field_offset, // position of field in complete data block
uint8_t * buffer, uint16_t buffer_size, uint16_t buffer_offset){
uint16_t after_buffer = buffer_offset + buffer_size ;
// bail before buffer
if ((field_offset + field_len) < buffer_offset){
return 0;
}
// bail after buffer
if (field_offset >= after_buffer){
return 0;
}
// calc overlap
uint16_t bytes_to_copy = field_len;
uint16_t skip_at_start = 0;
if (field_offset < buffer_offset){
skip_at_start = buffer_offset - field_offset;
bytes_to_copy -= skip_at_start;
}
uint16_t skip_at_end = 0;
if ((field_offset + field_len) > after_buffer){
skip_at_end = (field_offset + field_len) - after_buffer;
bytes_to_copy -= skip_at_end;
}
btstack_assert((skip_at_end + skip_at_start) <= field_len);
btstack_assert(bytes_to_copy <= field_len);
memcpy(&buffer[(field_offset + skip_at_start) - buffer_offset], &field_data[skip_at_start], bytes_to_copy);
return bytes_to_copy;
}