/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define BTSTACK_FILE__ "btstack_util.c" /* * General utility functions */ #include "btstack_config.h" #include "btstack_debug.h" #include "btstack_util.h" #ifdef _MSC_VER #include #include #endif #ifdef ENABLE_PRINTF_HEXDUMP #include #endif #include /** * @brief Compare two Bluetooth addresses * @param a * @param b * @return 0 if equal */ int bd_addr_cmp(const bd_addr_t a, const bd_addr_t b){ return memcmp(a,b, BD_ADDR_LEN); } /** * @brief Copy Bluetooth address * @param dest * @param src */ void bd_addr_copy(bd_addr_t dest, const bd_addr_t src){ (void)memcpy(dest, src, BD_ADDR_LEN); } uint16_t little_endian_read_16(const uint8_t * buffer, int position){ return (uint16_t)(((uint16_t) buffer[position]) | (((uint16_t)buffer[position+1]) << 8)); } uint32_t little_endian_read_24(const uint8_t * buffer, int position){ return ((uint32_t) buffer[position]) | (((uint32_t)buffer[position+1]) << 8) | (((uint32_t)buffer[position+2]) << 16); } uint32_t little_endian_read_32(const uint8_t * buffer, int position){ return ((uint32_t) buffer[position]) | (((uint32_t)buffer[position+1]) << 8) | (((uint32_t)buffer[position+2]) << 16) | (((uint32_t) buffer[position+3]) << 24); } void little_endian_store_16(uint8_t * buffer, uint16_t position, uint16_t value){ uint16_t pos = position; buffer[pos++] = (uint8_t)value; buffer[pos++] = (uint8_t)(value >> 8); } void little_endian_store_24(uint8_t * buffer, uint16_t position, uint32_t value){ uint16_t pos = position; buffer[pos++] = (uint8_t)(value); buffer[pos++] = (uint8_t)(value >> 8); buffer[pos++] = (uint8_t)(value >> 16); } void little_endian_store_32(uint8_t * buffer, uint16_t position, uint32_t value){ uint16_t pos = position; buffer[pos++] = (uint8_t)(value); buffer[pos++] = (uint8_t)(value >> 8); buffer[pos++] = (uint8_t)(value >> 16); buffer[pos++] = (uint8_t)(value >> 24); } uint32_t big_endian_read_16(const uint8_t * buffer, int position) { return (uint16_t)(((uint16_t) buffer[position+1]) | (((uint16_t)buffer[position]) << 8)); } uint32_t big_endian_read_24(const uint8_t * buffer, int position) { return ( ((uint32_t)buffer[position+2]) | (((uint32_t)buffer[position+1]) << 8) | (((uint32_t) buffer[position]) << 16)); } uint32_t big_endian_read_32(const uint8_t * buffer, int position) { return ((uint32_t) buffer[position+3]) | (((uint32_t)buffer[position+2]) << 8) | (((uint32_t)buffer[position+1]) << 16) | (((uint32_t) buffer[position]) << 24); } void big_endian_store_16(uint8_t * buffer, uint16_t position, uint16_t value){ uint16_t pos = position; buffer[pos++] = (uint8_t)(value >> 8); buffer[pos++] = (uint8_t)(value); } void big_endian_store_24(uint8_t * buffer, uint16_t position, uint32_t value){ uint16_t pos = position; buffer[pos++] = (uint8_t)(value >> 16); buffer[pos++] = (uint8_t)(value >> 8); buffer[pos++] = (uint8_t)(value); } void big_endian_store_32(uint8_t * buffer, uint16_t position, uint32_t value){ uint16_t pos = position; buffer[pos++] = (uint8_t)(value >> 24); buffer[pos++] = (uint8_t)(value >> 16); buffer[pos++] = (uint8_t)(value >> 8); buffer[pos++] = (uint8_t)(value); } // general swap/endianess utils void reverse_bytes(const uint8_t * src, uint8_t * dest, int len){ int i; for (i = 0; i < len; i++) dest[len - 1 - i] = src[i]; } void reverse_24(const uint8_t * src, uint8_t * dest){ reverse_bytes(src, dest, 3); } void reverse_48(const uint8_t * src, uint8_t * dest){ reverse_bytes(src, dest, 6); } void reverse_56(const uint8_t * src, uint8_t * dest){ reverse_bytes(src, dest, 7); } void reverse_64(const uint8_t * src, uint8_t * dest){ reverse_bytes(src, dest, 8); } void reverse_128(const uint8_t * src, uint8_t * dest){ reverse_bytes(src, dest, 16); } void reverse_256(const uint8_t * src, uint8_t * dest){ reverse_bytes(src, dest, 32); } void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){ reverse_bytes(src, dest, 6); } bool btstack_is_null(const uint8_t * buffer, uint16_t size){ uint16_t i; for (i=0; i < size ; i++){ if (buffer[i] != 0) { return false; } } return true; } bool btstack_is_null_bd_addr( const bd_addr_t addr ){ return btstack_is_null( addr, sizeof(bd_addr_t) ); } uint32_t btstack_min(uint32_t a, uint32_t b){ return (a < b) ? a : b; } uint32_t btstack_max(uint32_t a, uint32_t b){ return (a > b) ? a : b; } /** * @brief Calculate delta between two uint32_t points in time * @return time_a - time_b - result > 0 if time_a is newer than time_b */ int32_t btstack_time_delta(uint32_t time_a, uint32_t time_b){ return (int32_t)(time_a - time_b); } /** * @brief Calculate delta between two uint16_t points in time * @return time_a - time_b - result > 0 if time_a is newer than time_b */ int16_t btstack_time16_delta(uint16_t time_a, uint16_t time_b){ return (int16_t)(time_a - time_b); } char char_for_nibble(uint8_t nibble){ static const char * char_to_nibble = "0123456789ABCDEF"; if (nibble < 16){ return char_to_nibble[nibble]; } else { return '?'; } } static inline char char_for_high_nibble(int value){ return char_for_nibble((value >> 4) & 0x0f); } static inline char char_for_low_nibble(int value){ return char_for_nibble(value & 0x0f); } int nibble_for_char(char c){ if ((c >= '0') && (c <= '9')) return c - '0'; if ((c >= 'a') && (c <= 'f')) return c - 'a' + 10; if ((c >= 'A') && (c <= 'F')) return c - 'A' + 10; return -1; } #ifdef ENABLE_PRINTF_HEXDUMP void printf_hexdump(const void * data, int size){ char buffer[4]; buffer[2] = ' '; buffer[3] = 0; const uint8_t * ptr = (const uint8_t *) data; while (size > 0){ uint8_t byte = *ptr++; buffer[0] = char_for_high_nibble(byte); buffer[1] = char_for_low_nibble(byte); printf("%s", buffer); size--; } printf("\n"); } #endif #if defined(ENABLE_LOG_INFO) || defined(ENABLE_LOG_DEBUG) static void log_hexdump(int level, const void * data, int size){ #define ITEMS_PER_LINE 16 // template '0x12, ' #define BYTES_PER_BYTE 6 char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1]; int i, j; j = 0; for (i=0; i (BYTES_PER_BYTE * (ITEMS_PER_LINE-1))){ j = 0; } uint8_t byte = ((uint8_t *)data)[i]; buffer[j++] = '0'; buffer[j++] = 'x'; buffer[j++] = char_for_high_nibble(byte); buffer[j++] = char_for_low_nibble(byte); buffer[j++] = ','; buffer[j++] = ' '; if (j >= (BYTES_PER_BYTE * ITEMS_PER_LINE) ){ buffer[j] = 0; HCI_DUMP_LOG(level, "%s", buffer); j = 0; } } if (j != 0){ buffer[j] = 0; HCI_DUMP_LOG(level, "%s", buffer); } } #endif void log_debug_hexdump(const void * data, int size){ #ifdef ENABLE_LOG_DEBUG log_hexdump(HCI_DUMP_LOG_LEVEL_DEBUG, data, size); #else UNUSED(data); // ok: no code UNUSED(size); // ok: no code #endif } void log_info_hexdump(const void * data, int size){ #ifdef ENABLE_LOG_INFO log_hexdump(HCI_DUMP_LOG_LEVEL_INFO, data, size); #else UNUSED(data); // ok: no code UNUSED(size); // ok: no code #endif } void log_info_key(const char * name, sm_key_t key){ #ifdef ENABLE_LOG_INFO char buffer[16*2+1]; int i; int j = 0; for (i=0; i<16;i++){ uint8_t byte = key[i]; buffer[j++] = char_for_high_nibble(byte); buffer[j++] = char_for_low_nibble(byte); } buffer[j] = 0; log_info("%-6s %s", name, buffer); #else UNUSED(name); (void)key; #endif } // UUIDs are stored in big endian, similar to bd_addr_t // Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */ 0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB }; void uuid_add_bluetooth_prefix(uint8_t * uuid128, uint32_t short_uuid){ (void)memcpy(uuid128, bluetooth_base_uuid, 16); big_endian_store_32(uuid128, 0, short_uuid); } int uuid_has_bluetooth_prefix(const uint8_t * uuid128){ return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0; } static char uuid128_to_str_buffer[32+4+1]; char * uuid128_to_str(const uint8_t * uuid){ int i; int j = 0; // after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9); for (i=0;i<16;i++){ uint8_t byte = uuid[i]; uuid128_to_str_buffer[j++] = char_for_high_nibble(byte); uuid128_to_str_buffer[j++] = char_for_low_nibble(byte); if (dash_locations & (1< '9')) return val; val = (val * 10u) + (uint8_t)(chr - '0'); } } int string_len_for_uint32(uint32_t i){ if (i < 10) return 1; if (i < 100) return 2; if (i < 1000) return 3; if (i < 10000) return 4; if (i < 100000) return 5; if (i < 1000000) return 6; if (i < 10000000) return 7; if (i < 100000000) return 8; if (i < 1000000000) return 9; return 10; } int count_set_bits_uint32(uint32_t x){ uint32_t v = x; v = (v & 0x55555555) + ((v >> 1) & 0x55555555U); v = (v & 0x33333333) + ((v >> 2) & 0x33333333U); v = (v & 0x0F0F0F0F) + ((v >> 4) & 0x0F0F0F0FU); v = (v & 0x00FF00FF) + ((v >> 8) & 0x00FF00FFU); v = (v & 0x0000FFFF) + ((v >> 16) & 0x0000FFFFU); return v; } uint8_t btstack_clz(uint32_t value) { #if defined(__GNUC__) || defined (__clang__) // use gcc/clang intrinsic return (uint8_t) __builtin_clz(value); #elif defined(_MSC_VER) // use MSVC intrinsic DWORD leading_zero = 0; if (_BitScanReverse( &leading_zero, value )){ return (uint8_t)(31 - leading_zero); } else { return 32; } #else // divide-and-conquer implementation for 32-bit integers uint32_t x = value; if (x == 0) return 32; uint8_t r = 0; if ((x & 0xffff0000u) == 0) { x <<= 16; r += 16; } if ((x & 0xff000000u) == 0) { x <<= 8; r += 8; } if ((x & 0xf0000000u) == 0) { x <<= 4; r += 4; } if ((x & 0xc0000000u) == 0) { x <<= 2; r += 2; } if ((x & 0x80000000u) == 0) { x <<= 1; r += 1; } return r; #endif } /* * CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0. */ #define CRC8_INIT 0xFF // Initial FCS value #define CRC8_OK 0xCF // Good final FCS value static const uint8_t crc8table[256] = { /* reversed, 8-bit, poly=0x07 */ 0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B, 0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67, 0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43, 0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F, 0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B, 0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17, 0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33, 0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F, 0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B, 0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87, 0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3, 0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF, 0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB, 0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7, 0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3, 0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF }; /*-----------------------------------------------------------------------------------*/ static uint8_t crc8(uint8_t *data, uint16_t len){ uint16_t count; uint8_t crc = CRC8_INIT; for (count = 0; count < len; count++){ crc = crc8table[crc ^ data[count]]; } return crc; } /*-----------------------------------------------------------------------------------*/ uint8_t btstack_crc8_check(uint8_t *data, uint16_t len, uint8_t check_sum){ uint8_t crc; crc = crc8(data, len); crc = crc8table[crc ^ check_sum]; if (crc == CRC8_OK){ return 0; /* Valid */ } else { return 1; /* Failed */ } } /*-----------------------------------------------------------------------------------*/ uint8_t btstack_crc8_calc(uint8_t *data, uint16_t len){ /* Ones complement */ return 0xFFu - crc8(data, len); } uint16_t btstack_next_cid_ignoring_zero(uint16_t current_cid){ uint16_t next_cid; if (current_cid == 0xffff) { next_cid = 1; } else { next_cid = current_cid + 1; } return next_cid; } uint16_t btstack_strcpy(char * dst, uint16_t dst_size, const char * src){ uint16_t bytes_to_copy = (uint16_t) btstack_min( dst_size - 1, strlen(src)); (void) memcpy(dst, src, bytes_to_copy); dst[bytes_to_copy] = 0; return bytes_to_copy + 1; } void btstack_strcat(char * dst, uint16_t dst_size, const char * src){ uint16_t src_len = (uint16_t) strlen(src); uint16_t dst_len = (uint16_t) strlen(dst); uint16_t bytes_to_copy = btstack_min( src_len, dst_size - dst_len - 1); (void) memcpy( &dst[dst_len], src, bytes_to_copy); dst[dst_len + bytes_to_copy] = 0; } uint16_t btstack_virtual_memcpy( const uint8_t * field_data, uint16_t field_len, uint16_t field_offset, // position of field in complete data block uint8_t * buffer, uint16_t buffer_size, uint16_t buffer_offset){ uint16_t after_buffer = buffer_offset + buffer_size ; // bail before buffer if ((field_offset + field_len) < buffer_offset){ return 0; } // bail after buffer if (field_offset >= after_buffer){ return 0; } // calc overlap uint16_t bytes_to_copy = field_len; uint16_t skip_at_start = 0; if (field_offset < buffer_offset){ skip_at_start = buffer_offset - field_offset; bytes_to_copy -= skip_at_start; } uint16_t skip_at_end = 0; if ((field_offset + field_len) > after_buffer){ skip_at_end = (field_offset + field_len) - after_buffer; bytes_to_copy -= skip_at_end; } btstack_assert((skip_at_end + skip_at_start) <= field_len); btstack_assert(bytes_to_copy <= field_len); memcpy(&buffer[(field_offset + skip_at_start) - buffer_offset], &field_data[skip_at_start], bytes_to_copy); return bytes_to_copy; }