mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-01-18 19:21:54 +00:00
242 lines
8.8 KiB
C
242 lines
8.8 KiB
C
/******************************************************************************
|
|
*
|
|
* Copyright (C) 1999-2012 Broadcom Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
******************************************************************************/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* source file for fast dct operations
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include "sbc_encoder.h"
|
|
#include "sbc_enc_func_declare.h"
|
|
#include "sbc_dct.h"
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
**
|
|
** Function SBC_FastIDCT8
|
|
**
|
|
** Description implementation of fast DCT algorithm by Feig and Winograd
|
|
**
|
|
**
|
|
** Returns y = dct(pInVect)
|
|
**
|
|
**
|
|
*******************************************************************************/
|
|
|
|
#if (SBC_IS_64_MULT_IN_IDCT == FALSE)
|
|
#define SBC_COS_PI_SUR_4 (0x00005a82) /* ((0x8000) * 0.7071) = cos(pi/4) */
|
|
#define SBC_COS_PI_SUR_8 (0x00007641) /* ((0x8000) * 0.9239) = (cos(pi/8)) */
|
|
#define SBC_COS_3PI_SUR_8 (0x000030fb) /* ((0x8000) * 0.3827) = (cos(3*pi/8)) */
|
|
#define SBC_COS_PI_SUR_16 (0x00007d8a) /* ((0x8000) * 0.9808)) = (cos(pi/16)) */
|
|
#define SBC_COS_3PI_SUR_16 (0x00006a6d) /* ((0x8000) * 0.8315)) = (cos(3*pi/16)) */
|
|
#define SBC_COS_5PI_SUR_16 (0x0000471c) /* ((0x8000) * 0.5556)) = (cos(5*pi/16)) */
|
|
#define SBC_COS_7PI_SUR_16 (0x000018f8) /* ((0x8000) * 0.1951)) = (cos(7*pi/16)) */
|
|
#define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_16_SIMPLIFIED(a,b,c)
|
|
#else
|
|
#define SBC_COS_PI_SUR_4 (0x5A827999) /* ((0x80000000) * 0.707106781) = (cos(pi/4) ) */
|
|
#define SBC_COS_PI_SUR_8 (0x7641AF3C) /* ((0x80000000) * 0.923879533) = (cos(pi/8) ) */
|
|
#define SBC_COS_3PI_SUR_8 (0x30FBC54D) /* ((0x80000000) * 0.382683432) = (cos(3*pi/8) ) */
|
|
#define SBC_COS_PI_SUR_16 (0x7D8A5F3F) /* ((0x80000000) * 0.98078528 )) = (cos(pi/16) ) */
|
|
#define SBC_COS_3PI_SUR_16 (0x6A6D98A4) /* ((0x80000000) * 0.831469612)) = (cos(3*pi/16)) */
|
|
#define SBC_COS_5PI_SUR_16 (0x471CECE6) /* ((0x80000000) * 0.555570233)) = (cos(5*pi/16)) */
|
|
#define SBC_COS_7PI_SUR_16 (0x18F8B83C) /* ((0x80000000) * 0.195090322)) = (cos(7*pi/16)) */
|
|
#define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_32(a,b,c)
|
|
#endif /* SBC_IS_64_MULT_IN_IDCT */
|
|
|
|
#if (SBC_FAST_DCT == FALSE)
|
|
extern const SINT16 gas16AnalDCTcoeff8[];
|
|
extern const SINT16 gas16AnalDCTcoeff4[];
|
|
#endif
|
|
|
|
void SBC_FastIDCT8(SINT32 *pInVect, SINT32 *pOutVect)
|
|
{
|
|
#if (SBC_FAST_DCT == TRUE)
|
|
#if (SBC_ARM_ASM_OPT==TRUE)
|
|
#else
|
|
#if (SBC_IPAQ_OPT==TRUE)
|
|
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
|
|
SINT64 s64Temp;
|
|
#endif
|
|
#else
|
|
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
|
|
SINT32 s32HiTemp;
|
|
#else
|
|
SINT32 s32In2Temp;
|
|
register SINT32 s32In1Temp;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
register SINT32 x0, x1, x2, x3, x4, x5, x6, x7,temp;
|
|
SINT32 res_even[4], res_odd[4];
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_4,pInVect[4], x0);
|
|
|
|
x1 = (pInVect[3] + pInVect[5]) >>1;
|
|
x2 = (pInVect[2] + pInVect[6]) >>1;
|
|
x3 = (pInVect[1] + pInVect[7]) >>1;
|
|
x4 = (pInVect[0] + pInVect[8]) >>1;
|
|
x5 = (pInVect[9] - pInVect[15]) >>1;
|
|
x6 = (pInVect[10] - pInVect[14])>>1;
|
|
x7 = (pInVect[11] - pInVect[13])>>1;
|
|
|
|
/* 2-point IDCT of x0 and x4 as in (11) */
|
|
temp = x0 ;
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( x0 + x4 ), x0); /*x0 = ( x0 + x4 ) * cos(1*pi/4) ; */
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( temp - x4 ), x4); /*x4 = ( temp - x4 ) * cos(1*pi/4) ; */
|
|
|
|
/* rearrangement of x2 and x6 as in (15) */
|
|
x2 -=x6;
|
|
x6 <<= 1 ;
|
|
|
|
/* 2-point IDCT of x2 and x6 and post-multiplication as in (15) */
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_4,x6, x6); /*x6 = x6 * cos(1*pi/4) ; */
|
|
temp = x2 ;
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_8,( x2 + x6 ), x2); /*x2 = ( x2 + x6 ) * cos(1*pi/8) ; */
|
|
SBC_IDCT_MULT(SBC_COS_3PI_SUR_8,( temp - x6 ), x6); /*x6 = ( temp - x6 ) * cos(3*pi/8) ;*/
|
|
|
|
/* 4-point IDCT of x0,x2,x4 and x6 as in (11) */
|
|
res_even[ 0 ] = x0 + x2 ;
|
|
res_even[ 1 ] = x4 + x6 ;
|
|
res_even[ 2 ] = x4 - x6 ;
|
|
res_even[ 3 ] = x0 - x2 ;
|
|
|
|
|
|
/* rearrangement of x1,x3,x5,x7 as in (15) */
|
|
x7 <<= 1 ;
|
|
x5 = ( x5 <<1 ) - x7 ;
|
|
x3 = ( x3 <<1 ) - x5 ;
|
|
x1 -= x3 >>1 ;
|
|
|
|
/* two-dimensional IDCT of x1 and x5 */
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x5, x5); /*x5 = x5 * cos(1*pi/4) ; */
|
|
temp = x1 ;
|
|
x1 = x1 + x5 ;
|
|
x5 = temp - x5 ;
|
|
|
|
/* rearrangement of x3 and x7 as in (15) */
|
|
x3 -= x7;
|
|
x7 <<= 1 ;
|
|
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x7, x7); /*x7 = x7 * cos(1*pi/4) ; */
|
|
|
|
/* 2-point IDCT of x3 and x7 and post-multiplication as in (15) */
|
|
temp = x3 ;
|
|
SBC_IDCT_MULT( SBC_COS_PI_SUR_8,( x3 + x7 ), x3); /*x3 = ( x3 + x7 ) * cos(1*pi/8) ; */
|
|
SBC_IDCT_MULT( SBC_COS_3PI_SUR_8,( temp - x7 ), x7); /*x7 = ( temp - x7 ) * cos(3*pi/8) ;*/
|
|
|
|
/* 4-point IDCT of x1,x3,x5 and x7 and post multiplication by diagonal matrix as in (14) */
|
|
SBC_IDCT_MULT((SBC_COS_PI_SUR_16), ( x1 + x3 ) , res_odd[0]); /*res_odd[ 0 ] = ( x1 + x3 ) * cos(1*pi/16) ; */
|
|
SBC_IDCT_MULT((SBC_COS_3PI_SUR_16), ( x5 + x7 ) , res_odd[1]); /*res_odd[ 1 ] = ( x5 + x7 ) * cos(3*pi/16) ; */
|
|
SBC_IDCT_MULT((SBC_COS_5PI_SUR_16), ( x5 - x7 ) , res_odd[2]); /*res_odd[ 2 ] = ( x5 - x7 ) * cos(5*pi/16) ; */
|
|
SBC_IDCT_MULT((SBC_COS_7PI_SUR_16), ( x1 - x3 ) , res_odd[3]); /*res_odd[ 3 ] = ( x1 - x3 ) * cos(7*pi/16) ; */
|
|
|
|
/* additions and subtractions as in (9) */
|
|
pOutVect[0] = (res_even[ 0 ] + res_odd[ 0 ]) ;
|
|
pOutVect[1] = (res_even[ 1 ] + res_odd[ 1 ]) ;
|
|
pOutVect[2] = (res_even[ 2 ] + res_odd[ 2 ]) ;
|
|
pOutVect[3] = (res_even[ 3 ] + res_odd[ 3 ]) ;
|
|
pOutVect[7] = (res_even[ 0 ] - res_odd[ 0 ]) ;
|
|
pOutVect[6] = (res_even[ 1 ] - res_odd[ 1 ]) ;
|
|
pOutVect[5] = (res_even[ 2 ] - res_odd[ 2 ]) ;
|
|
pOutVect[4] = (res_even[ 3 ] - res_odd[ 3 ]) ;
|
|
#else
|
|
UINT8 Index, k;
|
|
SINT32 temp;
|
|
/*Calculate 4 subband samples by matrixing*/
|
|
for(Index=0; Index<8; Index++)
|
|
{
|
|
temp = 0;
|
|
for(k=0; k<16; k++)
|
|
{
|
|
/*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 );*/
|
|
temp += (gas16AnalDCTcoeff8[(Index*8*2)+k] * (pInVect[k] >> 16));
|
|
temp += ((gas16AnalDCTcoeff8[(Index*8*2)+k] * (pInVect[k] & 0xFFFF)) >> 16);
|
|
}
|
|
pOutVect[Index] = temp;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*******************************************************************************
|
|
**
|
|
** Function SBC_FastIDCT4
|
|
**
|
|
** Description implementation of fast DCT algorithm by Feig and Winograd
|
|
**
|
|
**
|
|
** Returns y = dct(x0)
|
|
**
|
|
**
|
|
*******************************************************************************/
|
|
void SBC_FastIDCT4(SINT32 *pInVect, SINT32 *pOutVect)
|
|
{
|
|
#if (SBC_FAST_DCT == TRUE)
|
|
#if (SBC_ARM_ASM_OPT==TRUE)
|
|
#else
|
|
#if (SBC_IPAQ_OPT==TRUE)
|
|
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
|
|
SINT64 s64Temp;
|
|
#endif
|
|
#else
|
|
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
|
|
SINT32 s32HiTemp;
|
|
#else
|
|
UINT16 s32In2Temp;
|
|
SINT32 s32In1Temp;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
SINT32 temp,x2;
|
|
SINT32 tmp[8];
|
|
|
|
x2=pInVect[2]>>1;
|
|
temp=(pInVect[0]+pInVect[4]);
|
|
SBC_IDCT_MULT((SBC_COS_PI_SUR_4>>1), temp , tmp[0]);
|
|
tmp[1]=x2-tmp[0];
|
|
tmp[0]+=x2;
|
|
temp=(pInVect[1]+pInVect[3]);
|
|
SBC_IDCT_MULT((SBC_COS_3PI_SUR_8>>1), temp , tmp[3]);
|
|
SBC_IDCT_MULT((SBC_COS_PI_SUR_8>>1), temp , tmp[2]);
|
|
temp=(pInVect[5]-pInVect[7]);
|
|
SBC_IDCT_MULT((SBC_COS_3PI_SUR_8>>1), temp , tmp[5]);
|
|
SBC_IDCT_MULT((SBC_COS_PI_SUR_8>>1), temp , tmp[4]);
|
|
tmp[6]=tmp[2]+tmp[5];
|
|
tmp[7]=tmp[3]-tmp[4];
|
|
pOutVect[0] = (tmp[0]+tmp[6]);
|
|
pOutVect[1] = (tmp[1]+tmp[7]);
|
|
pOutVect[2] = (tmp[1]-tmp[7]);
|
|
pOutVect[3] = (tmp[0]-tmp[6]);
|
|
#else
|
|
UINT8 Index, k;
|
|
SINT32 temp;
|
|
/*Calculate 4 subband samples by matrixing*/
|
|
for(Index=0; Index<4; Index++)
|
|
{
|
|
temp = 0;
|
|
for(k=0; k<8; k++)
|
|
{
|
|
/*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 ); */
|
|
temp += (gas16AnalDCTcoeff4[(Index*4*2)+k] * (pInVect[k] >> 16));
|
|
temp += ((gas16AnalDCTcoeff4[(Index*4*2)+k] * (pInVect[k] & 0xFFFF)) >> 16);
|
|
}
|
|
pOutVect[Index] = temp;
|
|
}
|
|
#endif
|
|
}
|