/****************************************************************************** * * Copyright (C) 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * source file for fast dct operations * ******************************************************************************/ #include "sbc_encoder.h" #include "sbc_enc_func_declare.h" #include "sbc_dct.h" /******************************************************************************* ** ** Function SBC_FastIDCT8 ** ** Description implementation of fast DCT algorithm by Feig and Winograd ** ** ** Returns y = dct(pInVect) ** ** *******************************************************************************/ #if (SBC_IS_64_MULT_IN_IDCT == FALSE) #define SBC_COS_PI_SUR_4 (0x00005a82) /* ((0x8000) * 0.7071) = cos(pi/4) */ #define SBC_COS_PI_SUR_8 (0x00007641) /* ((0x8000) * 0.9239) = (cos(pi/8)) */ #define SBC_COS_3PI_SUR_8 (0x000030fb) /* ((0x8000) * 0.3827) = (cos(3*pi/8)) */ #define SBC_COS_PI_SUR_16 (0x00007d8a) /* ((0x8000) * 0.9808)) = (cos(pi/16)) */ #define SBC_COS_3PI_SUR_16 (0x00006a6d) /* ((0x8000) * 0.8315)) = (cos(3*pi/16)) */ #define SBC_COS_5PI_SUR_16 (0x0000471c) /* ((0x8000) * 0.5556)) = (cos(5*pi/16)) */ #define SBC_COS_7PI_SUR_16 (0x000018f8) /* ((0x8000) * 0.1951)) = (cos(7*pi/16)) */ #define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_16_SIMPLIFIED(a,b,c) #else #define SBC_COS_PI_SUR_4 (0x5A827999) /* ((0x80000000) * 0.707106781) = (cos(pi/4) ) */ #define SBC_COS_PI_SUR_8 (0x7641AF3C) /* ((0x80000000) * 0.923879533) = (cos(pi/8) ) */ #define SBC_COS_3PI_SUR_8 (0x30FBC54D) /* ((0x80000000) * 0.382683432) = (cos(3*pi/8) ) */ #define SBC_COS_PI_SUR_16 (0x7D8A5F3F) /* ((0x80000000) * 0.98078528 )) = (cos(pi/16) ) */ #define SBC_COS_3PI_SUR_16 (0x6A6D98A4) /* ((0x80000000) * 0.831469612)) = (cos(3*pi/16)) */ #define SBC_COS_5PI_SUR_16 (0x471CECE6) /* ((0x80000000) * 0.555570233)) = (cos(5*pi/16)) */ #define SBC_COS_7PI_SUR_16 (0x18F8B83C) /* ((0x80000000) * 0.195090322)) = (cos(7*pi/16)) */ #define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_32(a,b,c) #endif /* SBC_IS_64_MULT_IN_IDCT */ #if (SBC_FAST_DCT == FALSE) extern const SINT16 gas16AnalDCTcoeff8[]; extern const SINT16 gas16AnalDCTcoeff4[]; #endif void SBC_FastIDCT8(SINT32 *pInVect, SINT32 *pOutVect) { #if (SBC_FAST_DCT == TRUE) #if (SBC_ARM_ASM_OPT==TRUE) #else #if (SBC_IPAQ_OPT==TRUE) #if (SBC_IS_64_MULT_IN_IDCT == TRUE) SINT64 s64Temp; #endif #else #if (SBC_IS_64_MULT_IN_IDCT == TRUE) SINT32 s32HiTemp; #else SINT32 s32In2Temp; register SINT32 s32In1Temp; #endif #endif #endif register SINT32 x0, x1, x2, x3, x4, x5, x6, x7,temp; SINT32 res_even[4], res_odd[4]; SBC_IDCT_MULT(SBC_COS_PI_SUR_4,pInVect[4], x0); x1 = (pInVect[3] + pInVect[5]) >>1; x2 = (pInVect[2] + pInVect[6]) >>1; x3 = (pInVect[1] + pInVect[7]) >>1; x4 = (pInVect[0] + pInVect[8]) >>1; x5 = (pInVect[9] - pInVect[15]) >>1; x6 = (pInVect[10] - pInVect[14])>>1; x7 = (pInVect[11] - pInVect[13])>>1; /* 2-point IDCT of x0 and x4 as in (11) */ temp = x0 ; SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( x0 + x4 ), x0); /*x0 = ( x0 + x4 ) * cos(1*pi/4) ; */ SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( temp - x4 ), x4); /*x4 = ( temp - x4 ) * cos(1*pi/4) ; */ /* rearrangement of x2 and x6 as in (15) */ x2 -=x6; x6 <<= 1 ; /* 2-point IDCT of x2 and x6 and post-multiplication as in (15) */ SBC_IDCT_MULT(SBC_COS_PI_SUR_4,x6, x6); /*x6 = x6 * cos(1*pi/4) ; */ temp = x2 ; SBC_IDCT_MULT(SBC_COS_PI_SUR_8,( x2 + x6 ), x2); /*x2 = ( x2 + x6 ) * cos(1*pi/8) ; */ SBC_IDCT_MULT(SBC_COS_3PI_SUR_8,( temp - x6 ), x6); /*x6 = ( temp - x6 ) * cos(3*pi/8) ;*/ /* 4-point IDCT of x0,x2,x4 and x6 as in (11) */ res_even[ 0 ] = x0 + x2 ; res_even[ 1 ] = x4 + x6 ; res_even[ 2 ] = x4 - x6 ; res_even[ 3 ] = x0 - x2 ; /* rearrangement of x1,x3,x5,x7 as in (15) */ x7 <<= 1 ; x5 = ( x5 <<1 ) - x7 ; x3 = ( x3 <<1 ) - x5 ; x1 -= x3 >>1 ; /* two-dimensional IDCT of x1 and x5 */ SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x5, x5); /*x5 = x5 * cos(1*pi/4) ; */ temp = x1 ; x1 = x1 + x5 ; x5 = temp - x5 ; /* rearrangement of x3 and x7 as in (15) */ x3 -= x7; x7 <<= 1 ; SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x7, x7); /*x7 = x7 * cos(1*pi/4) ; */ /* 2-point IDCT of x3 and x7 and post-multiplication as in (15) */ temp = x3 ; SBC_IDCT_MULT( SBC_COS_PI_SUR_8,( x3 + x7 ), x3); /*x3 = ( x3 + x7 ) * cos(1*pi/8) ; */ SBC_IDCT_MULT( SBC_COS_3PI_SUR_8,( temp - x7 ), x7); /*x7 = ( temp - x7 ) * cos(3*pi/8) ;*/ /* 4-point IDCT of x1,x3,x5 and x7 and post multiplication by diagonal matrix as in (14) */ SBC_IDCT_MULT((SBC_COS_PI_SUR_16), ( x1 + x3 ) , res_odd[0]); /*res_odd[ 0 ] = ( x1 + x3 ) * cos(1*pi/16) ; */ SBC_IDCT_MULT((SBC_COS_3PI_SUR_16), ( x5 + x7 ) , res_odd[1]); /*res_odd[ 1 ] = ( x5 + x7 ) * cos(3*pi/16) ; */ SBC_IDCT_MULT((SBC_COS_5PI_SUR_16), ( x5 - x7 ) , res_odd[2]); /*res_odd[ 2 ] = ( x5 - x7 ) * cos(5*pi/16) ; */ SBC_IDCT_MULT((SBC_COS_7PI_SUR_16), ( x1 - x3 ) , res_odd[3]); /*res_odd[ 3 ] = ( x1 - x3 ) * cos(7*pi/16) ; */ /* additions and subtractions as in (9) */ pOutVect[0] = (res_even[ 0 ] + res_odd[ 0 ]) ; pOutVect[1] = (res_even[ 1 ] + res_odd[ 1 ]) ; pOutVect[2] = (res_even[ 2 ] + res_odd[ 2 ]) ; pOutVect[3] = (res_even[ 3 ] + res_odd[ 3 ]) ; pOutVect[7] = (res_even[ 0 ] - res_odd[ 0 ]) ; pOutVect[6] = (res_even[ 1 ] - res_odd[ 1 ]) ; pOutVect[5] = (res_even[ 2 ] - res_odd[ 2 ]) ; pOutVect[4] = (res_even[ 3 ] - res_odd[ 3 ]) ; #else UINT8 Index, k; SINT32 temp; /*Calculate 4 subband samples by matrixing*/ for(Index=0; Index<8; Index++) { temp = 0; for(k=0; k<16; k++) { /*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 );*/ temp += (gas16AnalDCTcoeff8[(Index*8*2)+k] * (pInVect[k] >> 16)); temp += ((gas16AnalDCTcoeff8[(Index*8*2)+k] * (pInVect[k] & 0xFFFF)) >> 16); } pOutVect[Index] = temp; } #endif } /******************************************************************************* ** ** Function SBC_FastIDCT4 ** ** Description implementation of fast DCT algorithm by Feig and Winograd ** ** ** Returns y = dct(x0) ** ** *******************************************************************************/ void SBC_FastIDCT4(SINT32 *pInVect, SINT32 *pOutVect) { #if (SBC_FAST_DCT == TRUE) #if (SBC_ARM_ASM_OPT==TRUE) #else #if (SBC_IPAQ_OPT==TRUE) #if (SBC_IS_64_MULT_IN_IDCT == TRUE) SINT64 s64Temp; #endif #else #if (SBC_IS_64_MULT_IN_IDCT == TRUE) SINT32 s32HiTemp; #else UINT16 s32In2Temp; SINT32 s32In1Temp; #endif #endif #endif SINT32 temp,x2; SINT32 tmp[8]; x2=pInVect[2]>>1; temp=(pInVect[0]+pInVect[4]); SBC_IDCT_MULT((SBC_COS_PI_SUR_4>>1), temp , tmp[0]); tmp[1]=x2-tmp[0]; tmp[0]+=x2; temp=(pInVect[1]+pInVect[3]); SBC_IDCT_MULT((SBC_COS_3PI_SUR_8>>1), temp , tmp[3]); SBC_IDCT_MULT((SBC_COS_PI_SUR_8>>1), temp , tmp[2]); temp=(pInVect[5]-pInVect[7]); SBC_IDCT_MULT((SBC_COS_3PI_SUR_8>>1), temp , tmp[5]); SBC_IDCT_MULT((SBC_COS_PI_SUR_8>>1), temp , tmp[4]); tmp[6]=tmp[2]+tmp[5]; tmp[7]=tmp[3]-tmp[4]; pOutVect[0] = (tmp[0]+tmp[6]); pOutVect[1] = (tmp[1]+tmp[7]); pOutVect[2] = (tmp[1]-tmp[7]); pOutVect[3] = (tmp[0]-tmp[6]); #else UINT8 Index, k; SINT32 temp; /*Calculate 4 subband samples by matrixing*/ for(Index=0; Index<4; Index++) { temp = 0; for(k=0; k<8; k++) { /*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 ); */ temp += (gas16AnalDCTcoeff4[(Index*4*2)+k] * (pInVect[k] >> 16)); temp += ((gas16AnalDCTcoeff4[(Index*4*2)+k] * (pInVect[k] & 0xFFFF)) >> 16); } pOutVect[Index] = temp; } #endif }