aseprite/INSTALL.md
David Capello cf514f0c53 New font selector (fix #4363)
This new font selector list installed fonts with its proper name. It
still needs some extra work to select font set styles (regular, bold,
italic, etc.)
2024-08-26 11:47:57 -03:00

9.2 KiB

Table of contents

Platforms

You should be able to compile Aseprite successfully on the following platforms:

Get the source code

You can get the source code downloading a Aseprite-v1.x-Source.zip file from the latest Aseprite release (in that case please follow the compilation instructions inside the .zip file):

https://github.com/aseprite/aseprite/releases

Or you can clone the repository and all its submodules using the following command:

git clone --recursive https://github.com/aseprite/aseprite.git

To update an existing clone you can use the following commands:

cd aseprite
git pull
git submodule update --init --recursive

You can use Git for Windows to clone the repository on Windows.

Dependencies

To compile Aseprite you will need:

Windows dependencies

macOS dependencies

On macOS you will need macOS 11.3 SDK and Xcode 13.1 (older versions might work).

Linux dependencies

You will need the following dependencies on Ubuntu/Debian:

sudo apt-get install -y g++ clang libc++-dev libc++abi-dev cmake ninja-build libx11-dev libxcursor-dev libxi-dev libgl1-mesa-dev libfontconfig1-dev

Or use clang-10 packages (or newer) in case that clang in your distribution is older than clang 10.0:

sudo apt-get install -y clang-10 libc++-10-dev libc++abi-10-dev

On Fedora:

sudo dnf install -y gcc-c++ clang libcxx-devel cmake ninja-build libX11-devel libXcursor-devel libXi-devel mesa-libGL-devel fontconfig-devel

On Arch:

sudo pacman -S gcc clang libc++ cmake ninja libx11 libxcursor mesa-libgl fontconfig libwebp

On SUSE:

sudo zypper install gcc-c++ clang libc++-devel libc++abi-devel cmake ninja libX11-devel libXcursor-devel libXi-devel Mesa-libGL-devel fontconfig-devel

Compiling

  1. Get Aseprite code, put it in a folder like C:\aseprite, and create a build directory inside to leave all the files that are result of the compilation process (.exe, .lib, .obj, .a, .o, etc).

     cd C:\aseprite
     mkdir build
    

    In this way, if you want to start with a fresh copy of Aseprite source code, you can remove the build directory and start again.

  2. Enter in the new directory and execute cmake:

     cd C:\aseprite\build
     cmake -G Ninja -DLAF_BACKEND=skia ..
    

    Here cmake needs different options depending on your platform. You must check the details for Windows, macOS, and Linux. Some cmake options can be modified using tools like ccmake or cmake-gui.

  3. After you have executed and configured cmake, you have to compile the project:

     cd C:\aseprite\build
     ninja aseprite
    
  4. When ninja finishes the compilation, you can find the executable inside C:\aseprite\build\bin\aseprite.exe.

Windows details

Open a command prompt window with the VS 2022 tools. For this you can search for x64 Native Tools Command Prompt for VS 2022 in the Start menu, or open a cmd.exe terminal and run:

call "C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\VsDevCmd.bat" -arch=x64

The command above is required while using the 64-bit version of Skia. When compiling with the 32-bit version, it is possible to open a developer command prompt instead.

And then

cd aseprite
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DLAF_BACKEND=skia -DSKIA_DIR=C:\deps\skia -DSKIA_LIBRARY_DIR=C:\deps\skia\out\Release-x64 -DSKIA_LIBRARY=C:\deps\skia\out\Release-x64\skia.lib -G Ninja ..
ninja aseprite

In this case, C:\deps\skia is the directory where Skia was compiled or uncompressed.

MinGW

We don't support MinGW compiler and it might bring some problems into the compilation process. If you see that the detected C++ compiler by cmake is C:\MinGW\bin\c++.exe or something similar, you have to get rid of MinGW path (C:\MinGW\bin) from the PATH environment variable and run cmake again from scratch, so the Visual Studio C++ compiler (cl.exe) is used instead.

You can define the CMAKE_IGNORE_PATH variable when running cmake for the first time in case that you don't know or don't want to modify the PATH variable, e.g.:

cmake -DCMAKE_IGNORE_PATH=C:\MinGW\bin ...

More information in issue #2449

macOS details

Run cmake with the following parameters and then ninja:

cd aseprite
mkdir build
cd build
cmake \
  -DCMAKE_BUILD_TYPE=RelWithDebInfo \
  -DCMAKE_OSX_ARCHITECTURES=x86_64 \
  -DCMAKE_OSX_DEPLOYMENT_TARGET=10.9 \
  -DCMAKE_OSX_SYSROOT=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk \
  -DLAF_BACKEND=skia \
  -DSKIA_DIR=$HOME/deps/skia \
  -DSKIA_LIBRARY_DIR=$HOME/deps/skia/out/Release-x64 \
  -DSKIA_LIBRARY=$HOME/deps/skia/out/Release-x64/libskia.a \
  -G Ninja \
  ..
ninja aseprite

In this case, $HOME/deps/skia is the directory where Skia was compiled or downloaded. Make sure that CMAKE_OSX_SYSROOT is pointing to the correct SDK directory (in this case /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk), but it could be different in your Mac.

Apple Silicon

If you running macOS on an ARM64/AArch64/Apple Silicon Mac (e.g. M1), you can compile a native ARM64 version of Aseprite following similar steps as above but when we call cmake, we have some differences:

cd aseprite
mkdir build
cd build
cmake \
  -DCMAKE_BUILD_TYPE=RelWithDebInfo \
  -DCMAKE_OSX_ARCHITECTURES=arm64 \
  -DCMAKE_OSX_DEPLOYMENT_TARGET=11.0 \
  -DCMAKE_OSX_SYSROOT=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk \
  -DLAF_BACKEND=skia \
  -DSKIA_DIR=$HOME/deps/skia \
  -DSKIA_LIBRARY_DIR=$HOME/deps/skia/out/Release-arm64 \
  -DSKIA_LIBRARY=$HOME/deps/skia/out/Release-arm64/libskia.a \
  -DPNG_ARM_NEON:STRING=on \
  -G Ninja \
  ..
ninja aseprite

Issues with Retina displays

If you have a Retina display, check the following issue:

https://github.com/aseprite/aseprite/issues/589

Linux details

You need to use clang and libc++ to compile Aseprite:

cd aseprite
mkdir build
cd build
export CC=clang
export CXX=clang++
cmake \
  -DCMAKE_BUILD_TYPE=RelWithDebInfo \
  -DCMAKE_CXX_FLAGS:STRING=-stdlib=libc++ \
  -DCMAKE_EXE_LINKER_FLAGS:STRING=-stdlib=libc++ \
  -DLAF_BACKEND=skia \
  -DSKIA_DIR=$HOME/deps/skia \
  -DSKIA_LIBRARY_DIR=$HOME/deps/skia/out/Release-x64 \
  -DSKIA_LIBRARY=$HOME/deps/skia/out/Release-x64/libskia.a \
  -G Ninja \
  ..
ninja aseprite

In this case, $HOME/deps/skia is the directory where Skia was compiled or uncompressed.

GCC compiler

In case that you are using the pre-compiled Skia version, you must use the clang compiler and libc++ to compile Aseprite. Only if you compile Skia with GCC, you will be able to compile Aseprite with GCC, and this is not recommended as you will have a performance penalty doing so.

Using shared third party libraries

If you don't want to use the embedded code of third party libraries (i.e. to use your installed versions), you can disable static linking configuring each USE_SHARED_ option.

After running cmake -G, you can edit build/CMakeCache.txt file, and enable the USE_SHARED_ flag (set its value to ON) of the library that you want to be linked dynamically.