mirror of
https://github.com/aseprite/aseprite.git
synced 2025-01-07 19:06:39 +00:00
913a32fbab
Don't use GitHub tables for the spec, they don't work for this kind of documents. I've restored the old layout using just plain text to describe chunks and fields.
341 lines
11 KiB
Markdown
341 lines
11 KiB
Markdown
# Aseprite File Format (.ase/.aseprite) Specifications
|
|
|
|
> Copyright (C) 2001-2017 by David Capello
|
|
|
|
1. [References](#references)
|
|
2. [Introduction](#introduction)
|
|
3. [Header](#header)
|
|
4. [Frames](#frames)
|
|
5. [Chunk Types](#chunk-types)
|
|
6. [File Format Changes](#file-format-changes)
|
|
|
|
## References
|
|
|
|
ASE files use Intel (little-endian) byte order.
|
|
|
|
* `BYTE`: An 8-bit unsigned integer value
|
|
* `WORD`: A 16-bit unsigned integer value
|
|
* `SHORT`: A 16-bit signed integer value
|
|
* `DWORD`: A 32-bit unsigned integer value
|
|
* `FIXED`: A 32-bit fixed point (16.16) value
|
|
* `BYTE[n]`: "n" bytes.
|
|
* `STRING`:
|
|
- `WORD`: string length (number of bytes)
|
|
- `BYTE[length]`: characters (in UTF-8)
|
|
The `'\0'` character is not included.
|
|
* `PIXEL`: One pixel, depending on the image pixel format:
|
|
- **RGBA**: `BYTE[4]`, each pixel have 4 bytes in this order Red, Green, Blue, Alpha.
|
|
- **Grayscale**: `BYTE[2]`, each pixel have 2 bytes in the order Value, Alpha.
|
|
- **Indexed**: `BYTE`, Each pixel uses 1 byte (the index).
|
|
|
|
## Introduction
|
|
|
|
The format is much like FLI/FLC files, but with different magic number
|
|
and differents chunks. Also, the color depth can be 8, 16 or 32 for
|
|
Indexed, Grayscale and RGB respectively, and images are compressed
|
|
images with zlib. Color palettes are in FLI color chunks (it could be
|
|
type=11 or type=4). For color depths more than 8bpp, palettes are
|
|
optional.
|
|
|
|
To read the sprite:
|
|
|
|
* Read the [ASE header](#header)
|
|
* For each frame do (how many frames? the ASE header has that information):
|
|
+ Read the [frame header](#frames)
|
|
+ For each chunk in this frame (how many chunks? the frame header has that information)
|
|
- Read the chunk (it should be layer information, a cel or a palette)
|
|
|
|
## Header
|
|
|
|
A 128-byte header (same as FLC/FLI header, but with other magic number):
|
|
|
|
DWORD File size
|
|
WORD Magic number (0xA5E0)
|
|
WORD Frames
|
|
WORD Width in pixels
|
|
WORD Height in pixels
|
|
WORD Color depth (bits per pixel)
|
|
32 bpp = RGBA
|
|
16 bpp = Grayscale
|
|
8 bpp = Indexed
|
|
DWORD Flags:
|
|
1 = Layer opacity has valid value
|
|
WORD Speed (milliseconds between frame, like in FLC files)
|
|
DEPRECATED: You should use the frame duration field
|
|
from each frame header
|
|
DWORD Set be 0
|
|
DWORD Set be 0
|
|
BYTE Palette entry (index) which represent transparent color
|
|
in all non-background layers (only for Indexed sprites).
|
|
BYTE[3] Ignore these bytes
|
|
WORD Number of colors (0 means 256 for old sprites)
|
|
BYTE Pixel width (pixel ratio is "pixel width/pixel height").
|
|
If this or pixel height field is zero, pixel ratio is 1:1
|
|
BYTE Pixel height
|
|
BYTE[92] For future (set to zero)
|
|
|
|
## Frames
|
|
|
|
After the header come the "frames" data. Each frame has this little
|
|
header of 16 bytes:
|
|
|
|
DWORD Bytes in this frame
|
|
WORD Magic number (always 0xF1FA)
|
|
WORD Number of "chunks" in this frame
|
|
WORD Frame duration (in milliseconds)
|
|
BYTE[6] For future (set to zero)
|
|
|
|
Then each chunk format is:
|
|
|
|
DWORD Chunk size
|
|
WORD Chunk type
|
|
BYTE[] Chunk data
|
|
|
|
## Chunk Types
|
|
|
|
### Old palette chunk (0x0004)
|
|
|
|
Ignore this chunk if you find the new palette chunk (0x2019) Aseprite
|
|
v1.1 saves both chunks 0x0004 and 0x2019 just for backward
|
|
compatibility.
|
|
|
|
WORD Number of packets
|
|
+ For each packet
|
|
BYTE Number of palette entries to skip from the last packet (start from 0)
|
|
BYTE Number of colors in the packet (0 means 256)
|
|
+ For each color in the packet
|
|
BYTE Red (0-255)
|
|
BYTE Green (0-255)
|
|
BYTE Blue (0-255)
|
|
|
|
### Old palette chunk (0x0011)
|
|
|
|
Ignore this chunk if you find the new palette chunk (0x2019)
|
|
|
|
WORD Number of packets
|
|
+ For each packet
|
|
BYTE Number of palette entries to skip from the last packet (start from 0)
|
|
BYTE Number of colors in the packet (0 means 256)
|
|
+ For each color in the packet
|
|
BYTE Red (0-63)
|
|
BYTE Green (0-63)
|
|
BYTE Blue (0-63)
|
|
|
|
### Layer Chunk (0x2004)
|
|
|
|
In the first frame should be a set of layer chunks to determine the
|
|
entire layers layout:
|
|
|
|
WORD Flags:
|
|
1 = Visible
|
|
2 = Editable
|
|
4 = Lock movement
|
|
8 = Background
|
|
16 = Prefer linked cels
|
|
32 = The layer group should be displayed collapsed
|
|
64 = The layer is a reference layer
|
|
WORD Layer type
|
|
0 = Normal (image) layer
|
|
1 = Group
|
|
WORD Layer child level (see NOTE.1)
|
|
WORD Default layer width in pixels (ignored)
|
|
WORD Default layer height in pixels (ignored)
|
|
WORD Blend mode (always 0 for layer set)
|
|
Normal = 0
|
|
Multiply = 1
|
|
Screen = 2
|
|
Overlay = 3
|
|
Darken = 4
|
|
Lighten = 5
|
|
Color Dodge = 6
|
|
Color Burn = 7
|
|
Hard Light = 8
|
|
Soft Light = 9
|
|
Difference = 10
|
|
Exclusion = 11
|
|
Hue = 12
|
|
Saturation = 13
|
|
Color = 14
|
|
Luminosity = 15
|
|
Addition = 16
|
|
Subtract = 17
|
|
Divide = 18
|
|
BYTE Opacity
|
|
Note: valid only if file header flags field has bit 1 set
|
|
BYTE[3] For future (set to zero)
|
|
STRING Layer name
|
|
|
|
### Cel Chunk (0x2005)
|
|
|
|
This chunk determine where to put a cel in the specified
|
|
layer/frame.
|
|
|
|
WORD Layer index (see NOTE.2)
|
|
SHORT X position
|
|
SHORT Y position
|
|
BYTE Opacity level
|
|
WORD Cel type
|
|
BYTE[7] For future (set to zero)
|
|
+ For cel type = 0 (Raw Cel)
|
|
WORD Width in pixels
|
|
WORD Height in pixels
|
|
PIXEL[] Raw pixel data: row by row from top to bottom,
|
|
for each scanline read pixels from left to right.
|
|
+ For cel type = 1 (Linked Cel)
|
|
WORD Frame position to link with
|
|
+ For cel type = 2 (Compressed Image)
|
|
WORD Width in pixels
|
|
WORD Height in pixels
|
|
BYTE[] "Raw Cel" data compressed with ZLIB method
|
|
|
|
Details about the ZLIB and DEFLATE compression methods:
|
|
|
|
* https://www.ietf.org/rfc/rfc1950
|
|
* https://www.ietf.org/rfc/rfc1951
|
|
* Some extra notes that might help you to decode the data:
|
|
http://george.chiramattel.com/blog/2007/09/deflatestream-block-length-does-not-match.html
|
|
|
|
### Cel Extra Chunk (0x2006)
|
|
|
|
Adds extra information to the latest read cel.
|
|
|
|
DWORD Flags (set to zero)
|
|
1 = Precise bounds are set
|
|
FIXED Precise X position
|
|
FIXED Precise Y position
|
|
FIXED Width of the cel in the sprite (scaled in real-time)
|
|
FIXED Height of the cel in the sprite
|
|
BYTE[16] For future use (set to zero)
|
|
|
|
### Mask Chunk (0x2016) DEPRECATED
|
|
|
|
SHORT X position
|
|
SHORT Y position
|
|
WORD Width
|
|
WORD Height
|
|
BYTE[8] For future (set to zero)
|
|
STRING Mask name
|
|
BYTE[] Bit map data (size = height*((width+7)/8))
|
|
Each byte contains 8 pixels (the leftmost pixels are
|
|
packed into the high order bits)
|
|
|
|
### Path Chunk (0x2017)
|
|
|
|
Never used.
|
|
|
|
### Frame Tags Chunk (0x2018)
|
|
|
|
WORD Number of tags
|
|
BYTE[8] For future (set to zero)
|
|
+ For each tag
|
|
WORD From frame
|
|
WORD To frame
|
|
BYTE Loop animation direction
|
|
0 = Forward
|
|
1 = Reverse
|
|
2 = Ping-pong
|
|
BYTE[8] For future (set to zero)
|
|
BYTE[3] RGB values of the tag color
|
|
BYTE Extra byte (zero)
|
|
STRING Tag name
|
|
|
|
### Palette Chunk (0x2019)
|
|
|
|
DWORD New palette size (total number of entries)
|
|
DWORD First color index to change
|
|
DWORD Last color index to change
|
|
BYTE[8] For future (set to zero)
|
|
+ For each palette entry in [from,to] range (to-from+1 entries)
|
|
WORD Entry flags:
|
|
1 = Has name
|
|
BYTE Red (0-255)
|
|
BYTE Green (0-255)
|
|
BYTE Blue (0-255)
|
|
BYTE Alpha (0-255)
|
|
+ If has name bit in entry flags
|
|
STRING Color name
|
|
|
|
### User Data Chunk (0x2020)
|
|
|
|
Insert this user data in the last read chunk. E.g. If we've read a
|
|
layer, this user data belongs to that layer, if we've read a cel, it
|
|
belongs to that cel, etc.
|
|
|
|
DWORD Flags
|
|
1 = Has text
|
|
2 = Has color
|
|
+ If flags have bit 1
|
|
STRING Text
|
|
+ If flags have bit 2
|
|
BYTE Color Red (0-255)
|
|
BYTE Color Green (0-255)
|
|
BYTE Color Blue (0-255)
|
|
BYTE Color Alpha (0-255)
|
|
|
|
### Slice Chunk (0x2022)
|
|
|
|
DWORD Number of "slice keys"
|
|
DWORD Flags
|
|
1 = It's a 9-patches slice
|
|
2 = Has pivot information
|
|
DWORD Reserved
|
|
STRING Name
|
|
+ For each slice key
|
|
DWORD Frame number (this slice is valid from
|
|
this frame to the end of the animation)
|
|
SHORT Slice X origin coordinate in the sprite
|
|
SHORT Slice Y origin coordinate in the sprite
|
|
WORD Slice width (can be 0 if this slice hidden in the
|
|
animation from the given frame)
|
|
WORD Slice height
|
|
+ If flags have bit 1
|
|
SHORT Center X position (relative to slice bounds)
|
|
SHORT Center Y position
|
|
WORD Center width
|
|
WORD Center height
|
|
+ If flags have bit 2
|
|
WORD Pivot X position (relative to the slice origin)
|
|
WORD Pivot Y position (relative to the slice origin)
|
|
|
|
### Notes
|
|
|
|
#### NOTE.1
|
|
|
|
The child level is used to show the relationship of this layer with
|
|
the last one read, for example:
|
|
|
|
Layer name and hierarchy Child Level
|
|
-----------------------------------------------
|
|
- Background 0
|
|
`- Layer1 1
|
|
- Foreground 0
|
|
|- My set1 1
|
|
| `- Layer2 2
|
|
`- Layer3 1
|
|
|
|
#### NOTE.2
|
|
|
|
The layer index is a number to identify any layer in the sprite, for
|
|
example:
|
|
|
|
Layer name and hierarchy Layer index
|
|
-----------------------------------------------
|
|
- Background 0
|
|
`- Layer1 1
|
|
- Foreground 2
|
|
|- My set1 3
|
|
| `- Layer2 4
|
|
`- Layer3 5
|
|
|
|
## File Format Changes
|
|
|
|
1. The first change from the first release of the new .ase format,
|
|
is the new frame duration field. This is because now each frame
|
|
can have different duration.
|
|
|
|
How to read both formats (old and new one)? You should set all
|
|
frames durations to the "speed" field read from the main ASE
|
|
header. Then, if you found a frame with the frame-duration
|
|
field > 0, you should update the duration of the frame with
|
|
that value.
|