mirror of
https://github.com/aseprite/aseprite.git
synced 2025-03-26 08:37:08 +00:00
321 lines
10 KiB
C++
321 lines
10 KiB
C++
// Aseprite Render Library
|
|
// Copyright (c) 2001-2017 David Capello
|
|
//
|
|
// This file is released under the terms of the MIT license.
|
|
// Read LICENSE.txt for more information.
|
|
|
|
#ifndef RENDER_ORDERED_DITHER_H_INCLUDED
|
|
#define RENDER_ORDERED_DITHER_H_INCLUDED
|
|
#pragma once
|
|
|
|
#include "doc/color.h"
|
|
#include "doc/image_impl.h"
|
|
#include "doc/palette.h"
|
|
#include "doc/rgbmap.h"
|
|
#include "render/task_delegate.h"
|
|
|
|
#include <limits>
|
|
|
|
namespace render {
|
|
|
|
// Creates a Bayer dither matrix.
|
|
template<int N>
|
|
class BayerMatrix {
|
|
static int D2[4];
|
|
|
|
int m_matrix[N*N];
|
|
|
|
public:
|
|
int maxValue() const { return N*N-1; }
|
|
|
|
BayerMatrix() {
|
|
int c = 0;
|
|
for (int i=0; i<N; ++i)
|
|
for (int j=0; j<N; ++j)
|
|
m_matrix[c++] = Dn(i, j, N);
|
|
}
|
|
|
|
int operator()(int i, int j) const {
|
|
return m_matrix[(i%N)*N + (j%N)];
|
|
}
|
|
|
|
int operator[](int i) const {
|
|
return m_matrix[i];
|
|
}
|
|
|
|
private:
|
|
int Dn(int i, int j, int n) const {
|
|
ASSERT(i >= 0 && i < n);
|
|
ASSERT(j >= 0 && j < n);
|
|
|
|
if (n == 2)
|
|
return D2[i*2 + j];
|
|
else
|
|
return
|
|
+ 4*Dn(i%(n/2), j%(n/2), n/2)
|
|
+ Dn(i/(n/2), j/(n/2), 2);
|
|
}
|
|
};
|
|
|
|
// Base 2x2 dither matrix, called D(2):
|
|
template<int N>
|
|
int BayerMatrix<N>::D2[4] = { 0, 2,
|
|
3, 1 };
|
|
|
|
class OrderedDither {
|
|
static int colorDistance(int r1, int g1, int b1, int a1,
|
|
int r2, int g2, int b2, int a2) {
|
|
// The factor for RGB components came from doc::rba_luma()
|
|
return int((r1-r2) * (r1-r2) * 21 + // 2126
|
|
(g1-g2) * (g1-g2) * 71 + // 7152
|
|
(b1-b2) * (b1-b2) * 7 + // 722
|
|
(a1-a2) * (a1-a2));
|
|
}
|
|
|
|
public:
|
|
OrderedDither(int transparentIndex = -1) : m_transparentIndex(transparentIndex) {
|
|
}
|
|
|
|
template<typename Matrix>
|
|
doc::color_t ditherRgbPixelToIndex(
|
|
const Matrix& matrix,
|
|
doc::color_t color,
|
|
int x, int y,
|
|
const doc::RgbMap* rgbmap,
|
|
const doc::Palette* palette) {
|
|
// Alpha=0, output transparent color
|
|
if (m_transparentIndex >= 0 &&
|
|
doc::rgba_geta(color) == 0)
|
|
return m_transparentIndex;
|
|
|
|
// Get the nearest color in the palette with the given RGB
|
|
// values.
|
|
int r = doc::rgba_getr(color);
|
|
int g = doc::rgba_getg(color);
|
|
int b = doc::rgba_getb(color);
|
|
int a = doc::rgba_geta(color);
|
|
doc::color_t nearest1idx =
|
|
(rgbmap ? rgbmap->mapColor(r, g, b, a):
|
|
palette->findBestfit(r, g, b, a, m_transparentIndex));
|
|
|
|
doc::color_t nearest1rgb = palette->getEntry(nearest1idx);
|
|
int r1 = doc::rgba_getr(nearest1rgb);
|
|
int g1 = doc::rgba_getg(nearest1rgb);
|
|
int b1 = doc::rgba_getb(nearest1rgb);
|
|
int a1 = doc::rgba_geta(nearest1rgb);
|
|
|
|
// Between the original color ('color' parameter) and 'nearest'
|
|
// index, we have an error (r1-r, g1-g, b1-b). Here we try to
|
|
// find the other nearest color with the same error but with
|
|
// different sign.
|
|
int r2 = r - (r1-r);
|
|
int g2 = g - (g1-g);
|
|
int b2 = b - (b1-b);
|
|
int a2 = a - (a1-a);
|
|
r2 = MID(0, r2, 255);
|
|
g2 = MID(0, g2, 255);
|
|
b2 = MID(0, b2, 255);
|
|
a2 = MID(0, a2, 255);
|
|
doc::color_t nearest2idx =
|
|
(rgbmap ? rgbmap->mapColor(r2, g2, b2, a2):
|
|
palette->findBestfit(r2, g2, b2, a2, m_transparentIndex));
|
|
|
|
// If both possible RGB colors use the same index, we cannot
|
|
// make any dither with these two colors.
|
|
if (nearest1idx == nearest2idx)
|
|
return nearest1idx;
|
|
|
|
doc::color_t nearest2rgb = palette->getEntry(nearest2idx);
|
|
r2 = doc::rgba_getr(nearest2rgb);
|
|
g2 = doc::rgba_getg(nearest2rgb);
|
|
b2 = doc::rgba_getb(nearest2rgb);
|
|
a2 = doc::rgba_geta(nearest2rgb);
|
|
|
|
// Here we calculate the distance between the original 'color'
|
|
// and 'nearest1rgb'. The maximum possible distance is given by
|
|
// the distance between 'nearest1rgb' and 'nearest2rgb'.
|
|
int d = colorDistance(r1, g1, b1, a1, r, g, b, a);
|
|
int D = colorDistance(r1, g1, b1, a1, r2, g2, b2, a2);
|
|
if (D == 0)
|
|
return nearest1idx;
|
|
|
|
// We convert the d/D factor to the matrix range to compare it
|
|
// with the threshold. If d > threshold, it means that we're
|
|
// closer to 'nearest2rgb' than to 'nearest1rgb'.
|
|
d = matrix.maxValue() * d / D;
|
|
int threshold = matrix(x, y);
|
|
|
|
return (d > threshold ? nearest2idx:
|
|
nearest1idx);
|
|
}
|
|
|
|
private:
|
|
int m_transparentIndex;
|
|
};
|
|
|
|
// New ordered dithering algorithm using the best match between two
|
|
// indexes to create a mix that can reproduce the original RGB
|
|
// color.
|
|
//
|
|
// TODO it's too slow for big color palettes:
|
|
// O(W*H*P) where P is the number of palette entries
|
|
//
|
|
// Some ideas from:
|
|
// http://bisqwit.iki.fi/story/howto/dither/jy/
|
|
//
|
|
class OrderedDither2 {
|
|
static int colorDistance(int r1, int g1, int b1, int a1,
|
|
int r2, int g2, int b2, int a2) {
|
|
int result = 0;
|
|
|
|
// The factor for RGB components came from doc::rba_luma()
|
|
if (a1 && a2) {
|
|
result += int(std::abs(r1-r2) * 2126 +
|
|
std::abs(g1-g2) * 7152 +
|
|
std::abs(b1-b2) * 722);
|
|
}
|
|
|
|
result += (std::abs(a1-a2) * 20000);
|
|
return result;
|
|
}
|
|
|
|
public:
|
|
OrderedDither2(int transparentIndex = -1) : m_transparentIndex(transparentIndex) {
|
|
}
|
|
|
|
template<typename Matrix>
|
|
doc::color_t ditherRgbPixelToIndex(
|
|
const Matrix& matrix,
|
|
doc::color_t color,
|
|
int x, int y,
|
|
const doc::RgbMap* rgbmap,
|
|
const doc::Palette* palette) {
|
|
// Alpha=0, output transparent color
|
|
if (m_transparentIndex >= 0 &&
|
|
doc::rgba_geta(color) == 0) {
|
|
return m_transparentIndex;
|
|
}
|
|
|
|
// Get RGBA values
|
|
const int r = doc::rgba_getr(color);
|
|
const int g = doc::rgba_getg(color);
|
|
const int b = doc::rgba_getb(color);
|
|
const int a = doc::rgba_geta(color);
|
|
|
|
// Find the best palette entry for the given color.
|
|
const int index =
|
|
(rgbmap ? rgbmap->mapColor(r, g, b, a):
|
|
palette->findBestfit(r, g, b, a, m_transparentIndex));
|
|
|
|
const doc::color_t color0 = palette->getEntry(index);
|
|
const int r0 = doc::rgba_getr(color0);
|
|
const int g0 = doc::rgba_getg(color0);
|
|
const int b0 = doc::rgba_getb(color0);
|
|
const int a0 = doc::rgba_geta(color0);
|
|
|
|
// Find the best combination between the found nearest index and
|
|
// an alternative palette color to create the original RGB color.
|
|
int bestMix = 0;
|
|
int altIndex = -1;
|
|
int closestDistance = std::numeric_limits<int>::max();
|
|
for (int i=0; i<palette->size(); ++i) {
|
|
if (i == m_transparentIndex)
|
|
continue;
|
|
|
|
const doc::color_t color1 = palette->getEntry(i);
|
|
const int r1 = doc::rgba_getr(color1);
|
|
const int g1 = doc::rgba_getg(color1);
|
|
const int b1 = doc::rgba_getb(color1);
|
|
const int a1 = doc::rgba_geta(color1);
|
|
|
|
// Find the best "mix factor" between both palette indexes to
|
|
// reproduce the original RGB color. A possible algorithm
|
|
// would be to iterate all possible mix factors from 0 to
|
|
// maxMixValue, but this is too slow, so we try to figure out
|
|
// a good mix factor using the RGB values of color0 and
|
|
// color1.
|
|
int maxMixValue = matrix.maxValue();
|
|
|
|
int mix = 0;
|
|
int div = 0;
|
|
// If Alpha=0, RGB values are not representative for this entry.
|
|
if (a && a0 && a1) {
|
|
if (r1-r0) mix += 2126 * maxMixValue * (r-r0) / (r1-r0), div += 2126;
|
|
if (g1-g0) mix += 7152 * maxMixValue * (g-g0) / (g1-g0), div += 7152;
|
|
if (b1-b0) mix += 722 * maxMixValue * (b-b0) / (b1-b0), div += 722;
|
|
}
|
|
if (a1-a0) mix += 20000 * maxMixValue * (a-a0) / (a1-a0), div += 20000;
|
|
if (mix) {
|
|
if (div)
|
|
mix /= div;
|
|
mix = MID(0, mix, maxMixValue);
|
|
}
|
|
|
|
const int rM = r0 + (r1-r0) * mix / maxMixValue;
|
|
const int gM = g0 + (g1-g0) * mix / maxMixValue;
|
|
const int bM = b0 + (b1-b0) * mix / maxMixValue;
|
|
const int aM = a0 + (a1-a0) * mix / maxMixValue;
|
|
const int d =
|
|
colorDistance(r, g, b, a, rM, gM, bM, aM)
|
|
// Don't use an alternative index if it's too far away from the first index
|
|
+ colorDistance(r0, g0, b0, a0, r1, g1, b1, a1) / 10;
|
|
|
|
if (closestDistance > d) {
|
|
closestDistance = d;
|
|
bestMix = mix;
|
|
altIndex = i;
|
|
}
|
|
}
|
|
|
|
// Using the bestMix factor the dithering matrix tells us if we
|
|
// should paint with altIndex or index in this x,y position.
|
|
if (altIndex >= 0 && matrix(x, y) < bestMix)
|
|
return altIndex;
|
|
else
|
|
return index;
|
|
}
|
|
|
|
private:
|
|
int m_transparentIndex;
|
|
};
|
|
|
|
template<typename Dithering,
|
|
typename Matrix>
|
|
void dither_rgb_image_to_indexed(Dithering& dithering,
|
|
const Matrix& matrix,
|
|
const doc::Image* srcImage,
|
|
doc::Image* dstImage,
|
|
int u, int v,
|
|
const doc::RgbMap* rgbmap,
|
|
const doc::Palette* palette,
|
|
TaskDelegate* delegate = nullptr) {
|
|
const doc::LockImageBits<doc::RgbTraits> srcBits(srcImage);
|
|
doc::LockImageBits<doc::IndexedTraits> dstBits(dstImage);
|
|
auto srcIt = srcBits.begin();
|
|
auto dstIt = dstBits.begin();
|
|
int w = srcImage->width();
|
|
int h = srcImage->height();
|
|
|
|
for (int y=0; y<h; ++y) {
|
|
for (int x=0; x<w; ++x, ++srcIt, ++dstIt) {
|
|
ASSERT(srcIt != srcBits.end());
|
|
ASSERT(dstIt != dstBits.end());
|
|
*dstIt = dithering.ditherRgbPixelToIndex(matrix, *srcIt, x+u, y+v, rgbmap, palette);
|
|
|
|
if (delegate) {
|
|
if (!delegate->continueTask())
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (delegate) {
|
|
delegate->notifyTaskProgress(
|
|
double(y+1) / double(h));
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace render
|
|
|
|
#endif
|