// Aseprite Render Library // Copyright (c) 2001-2017 David Capello // // This file is released under the terms of the MIT license. // Read LICENSE.txt for more information. #ifndef RENDER_ORDERED_DITHER_H_INCLUDED #define RENDER_ORDERED_DITHER_H_INCLUDED #pragma once #include "doc/color.h" #include "doc/image_impl.h" #include "doc/palette.h" #include "doc/rgbmap.h" #include "render/task_delegate.h" #include namespace render { // Creates a Bayer dither matrix. template class BayerMatrix { static int D2[4]; int m_matrix[N*N]; public: int maxValue() const { return N*N-1; } BayerMatrix() { int c = 0; for (int i=0; i= 0 && i < n); ASSERT(j >= 0 && j < n); if (n == 2) return D2[i*2 + j]; else return + 4*Dn(i%(n/2), j%(n/2), n/2) + Dn(i/(n/2), j/(n/2), 2); } }; // Base 2x2 dither matrix, called D(2): template int BayerMatrix::D2[4] = { 0, 2, 3, 1 }; class OrderedDither { static int colorDistance(int r1, int g1, int b1, int a1, int r2, int g2, int b2, int a2) { // The factor for RGB components came from doc::rba_luma() return int((r1-r2) * (r1-r2) * 21 + // 2126 (g1-g2) * (g1-g2) * 71 + // 7152 (b1-b2) * (b1-b2) * 7 + // 722 (a1-a2) * (a1-a2)); } public: OrderedDither(int transparentIndex = -1) : m_transparentIndex(transparentIndex) { } template doc::color_t ditherRgbPixelToIndex( const Matrix& matrix, doc::color_t color, int x, int y, const doc::RgbMap* rgbmap, const doc::Palette* palette) { // Alpha=0, output transparent color if (m_transparentIndex >= 0 && doc::rgba_geta(color) == 0) return m_transparentIndex; // Get the nearest color in the palette with the given RGB // values. int r = doc::rgba_getr(color); int g = doc::rgba_getg(color); int b = doc::rgba_getb(color); int a = doc::rgba_geta(color); doc::color_t nearest1idx = (rgbmap ? rgbmap->mapColor(r, g, b, a): palette->findBestfit(r, g, b, a, m_transparentIndex)); doc::color_t nearest1rgb = palette->getEntry(nearest1idx); int r1 = doc::rgba_getr(nearest1rgb); int g1 = doc::rgba_getg(nearest1rgb); int b1 = doc::rgba_getb(nearest1rgb); int a1 = doc::rgba_geta(nearest1rgb); // Between the original color ('color' parameter) and 'nearest' // index, we have an error (r1-r, g1-g, b1-b). Here we try to // find the other nearest color with the same error but with // different sign. int r2 = r - (r1-r); int g2 = g - (g1-g); int b2 = b - (b1-b); int a2 = a - (a1-a); r2 = MID(0, r2, 255); g2 = MID(0, g2, 255); b2 = MID(0, b2, 255); a2 = MID(0, a2, 255); doc::color_t nearest2idx = (rgbmap ? rgbmap->mapColor(r2, g2, b2, a2): palette->findBestfit(r2, g2, b2, a2, m_transparentIndex)); // If both possible RGB colors use the same index, we cannot // make any dither with these two colors. if (nearest1idx == nearest2idx) return nearest1idx; doc::color_t nearest2rgb = palette->getEntry(nearest2idx); r2 = doc::rgba_getr(nearest2rgb); g2 = doc::rgba_getg(nearest2rgb); b2 = doc::rgba_getb(nearest2rgb); a2 = doc::rgba_geta(nearest2rgb); // Here we calculate the distance between the original 'color' // and 'nearest1rgb'. The maximum possible distance is given by // the distance between 'nearest1rgb' and 'nearest2rgb'. int d = colorDistance(r1, g1, b1, a1, r, g, b, a); int D = colorDistance(r1, g1, b1, a1, r2, g2, b2, a2); if (D == 0) return nearest1idx; // We convert the d/D factor to the matrix range to compare it // with the threshold. If d > threshold, it means that we're // closer to 'nearest2rgb' than to 'nearest1rgb'. d = matrix.maxValue() * d / D; int threshold = matrix(x, y); return (d > threshold ? nearest2idx: nearest1idx); } private: int m_transparentIndex; }; // New ordered dithering algorithm using the best match between two // indexes to create a mix that can reproduce the original RGB // color. // // TODO it's too slow for big color palettes: // O(W*H*P) where P is the number of palette entries // // Some ideas from: // http://bisqwit.iki.fi/story/howto/dither/jy/ // class OrderedDither2 { static int colorDistance(int r1, int g1, int b1, int a1, int r2, int g2, int b2, int a2) { int result = 0; // The factor for RGB components came from doc::rba_luma() if (a1 && a2) { result += int(std::abs(r1-r2) * 2126 + std::abs(g1-g2) * 7152 + std::abs(b1-b2) * 722); } result += (std::abs(a1-a2) * 20000); return result; } public: OrderedDither2(int transparentIndex = -1) : m_transparentIndex(transparentIndex) { } template doc::color_t ditherRgbPixelToIndex( const Matrix& matrix, doc::color_t color, int x, int y, const doc::RgbMap* rgbmap, const doc::Palette* palette) { // Alpha=0, output transparent color if (m_transparentIndex >= 0 && doc::rgba_geta(color) == 0) { return m_transparentIndex; } // Get RGBA values const int r = doc::rgba_getr(color); const int g = doc::rgba_getg(color); const int b = doc::rgba_getb(color); const int a = doc::rgba_geta(color); // Find the best palette entry for the given color. const int index = (rgbmap ? rgbmap->mapColor(r, g, b, a): palette->findBestfit(r, g, b, a, m_transparentIndex)); const doc::color_t color0 = palette->getEntry(index); const int r0 = doc::rgba_getr(color0); const int g0 = doc::rgba_getg(color0); const int b0 = doc::rgba_getb(color0); const int a0 = doc::rgba_geta(color0); // Find the best combination between the found nearest index and // an alternative palette color to create the original RGB color. int bestMix = 0; int altIndex = -1; int closestDistance = std::numeric_limits::max(); for (int i=0; isize(); ++i) { if (i == m_transparentIndex) continue; const doc::color_t color1 = palette->getEntry(i); const int r1 = doc::rgba_getr(color1); const int g1 = doc::rgba_getg(color1); const int b1 = doc::rgba_getb(color1); const int a1 = doc::rgba_geta(color1); // Find the best "mix factor" between both palette indexes to // reproduce the original RGB color. A possible algorithm // would be to iterate all possible mix factors from 0 to // maxMixValue, but this is too slow, so we try to figure out // a good mix factor using the RGB values of color0 and // color1. int maxMixValue = matrix.maxValue(); int mix = 0; int div = 0; // If Alpha=0, RGB values are not representative for this entry. if (a && a0 && a1) { if (r1-r0) mix += 2126 * maxMixValue * (r-r0) / (r1-r0), div += 2126; if (g1-g0) mix += 7152 * maxMixValue * (g-g0) / (g1-g0), div += 7152; if (b1-b0) mix += 722 * maxMixValue * (b-b0) / (b1-b0), div += 722; } if (a1-a0) mix += 20000 * maxMixValue * (a-a0) / (a1-a0), div += 20000; if (mix) { if (div) mix /= div; mix = MID(0, mix, maxMixValue); } const int rM = r0 + (r1-r0) * mix / maxMixValue; const int gM = g0 + (g1-g0) * mix / maxMixValue; const int bM = b0 + (b1-b0) * mix / maxMixValue; const int aM = a0 + (a1-a0) * mix / maxMixValue; const int d = colorDistance(r, g, b, a, rM, gM, bM, aM) // Don't use an alternative index if it's too far away from the first index + colorDistance(r0, g0, b0, a0, r1, g1, b1, a1) / 10; if (closestDistance > d) { closestDistance = d; bestMix = mix; altIndex = i; } } // Using the bestMix factor the dithering matrix tells us if we // should paint with altIndex or index in this x,y position. if (altIndex >= 0 && matrix(x, y) < bestMix) return altIndex; else return index; } private: int m_transparentIndex; }; template void dither_rgb_image_to_indexed(Dithering& dithering, const Matrix& matrix, const doc::Image* srcImage, doc::Image* dstImage, int u, int v, const doc::RgbMap* rgbmap, const doc::Palette* palette, TaskDelegate* delegate = nullptr) { const doc::LockImageBits srcBits(srcImage); doc::LockImageBits dstBits(dstImage); auto srcIt = srcBits.begin(); auto dstIt = dstBits.begin(); int w = srcImage->width(); int h = srcImage->height(); for (int y=0; ycontinueTask()) return; } } if (delegate) { delegate->notifyTaskProgress( double(y+1) / double(h)); } } } } // namespace render #endif