Sunshine/sunshine/video.cpp

408 lines
11 KiB
C++

//
// Created by loki on 6/6/19.
//
#include <atomic>
#include <thread>
extern "C" {
#include <libswscale/swscale.h>
}
#include "platform/common.h"
#include "thread_pool.h"
#include "config.h"
#include "video.h"
#include "main.h"
namespace video {
using namespace std::literals;
void free_ctx(AVCodecContext *ctx) {
avcodec_free_context(&ctx);
}
void free_frame(AVFrame *frame) {
av_frame_free(&frame);
}
void free_packet(AVPacket *packet) {
av_packet_free(&packet);
}
using ctx_t = util::safe_ptr<AVCodecContext, free_ctx>;
using frame_t = util::safe_ptr<AVFrame, free_frame>;
using sws_t = util::safe_ptr<SwsContext, sws_freeContext>;
using img_event_t = std::shared_ptr<safe::event_t<std::shared_ptr<platf::img_t>>>;
struct capture_ctx_t {
img_event_t images;
std::chrono::nanoseconds delay;
};
struct capture_thread_ctx_t {
std::shared_ptr<safe::queue_t<capture_ctx_t>> capture_ctx_queue;
std::thread capture_thread;
};
[[nodiscard]] auto open_codec(ctx_t &ctx, AVCodec *codec, AVDictionary **options) {
avcodec_open2(ctx.get(), codec, options);
return util::fail_guard([&]() {
avcodec_close(ctx.get());
});
}
int capture_display(platf::img_t *img, std::unique_ptr<platf::display_t> &disp) {
auto status = disp->snapshot(img, display_cursor);
switch (status) {
case platf::capture_e::reinit: {
// We try this twice, in case we still get an error on reinitialization
for(int x = 0; x < 2; ++x) {
disp.reset();
disp = platf::display();
if(disp) {
break;
}
std::this_thread::sleep_for(200ms);
}
if(!disp) {
return -1;
}
return 0;
}
case platf::capture_e::error:
return -1;
case platf::capture_e::timeout:
return 0;
case platf::capture_e::ok:
return 1;
default:
BOOST_LOG(error) << "Unrecognized capture status ["sv << (int)status << ']';
return -1;
}
}
void captureThread(std::shared_ptr<safe::queue_t<capture_ctx_t>> capture_ctx_queue) {
std::vector<capture_ctx_t> capture_ctxs;
auto fg = util::fail_guard([&]() {
capture_ctx_queue->stop();
// Stop all sessions listening to this thread
for(auto &capture_ctx : capture_ctxs) {
capture_ctx.images->stop();
}
for(auto &capture_ctx : capture_ctx_queue->unsafe()) {
capture_ctx.images->stop();
}
});
std::chrono::nanoseconds delay = 1s;
auto disp = platf::display();
while(capture_ctx_queue->running()) {
while(capture_ctx_queue->peek()) {
capture_ctxs.emplace_back(std::move(*capture_ctx_queue->pop()));
delay = std::min(delay, capture_ctxs.back().delay);
}
std::shared_ptr<platf::img_t> img = disp->alloc_img();
auto result = capture_display(img.get(), disp);
if(result < 0) {
return;
}
if(!result) {
continue;
}
KITTY_WHILE_LOOP(auto capture_ctx = std::begin(capture_ctxs), capture_ctx != std::end(capture_ctxs), {
if(!capture_ctx->images->running()) {
auto tmp_delay = capture_ctx->delay;
capture_ctx = capture_ctxs.erase(capture_ctx);
if(tmp_delay == delay) {
delay = std::min_element(std::begin(capture_ctxs), std::end(capture_ctxs), [](const auto &l, const auto &r) {
return l.delay < r.delay;
})->delay;
}
continue;
}
capture_ctx->images->raise(img);
++capture_ctx;
})
}
}
void encode(int64_t frame, ctx_t &ctx, sws_t &sws, frame_t &yuv_frame, platf::img_t &img, packet_queue_t &packets, void *channel_data) {
av_frame_make_writable(yuv_frame.get());
const int linesizes[2] {
img.row_pitch, 0
};
auto data = img.data;
int ret = sws_scale(sws.get(), (uint8_t*const*)&data, linesizes, 0, img.height, yuv_frame->data, yuv_frame->linesize);
if(ret <= 0) {
exit(1);
}
yuv_frame->pts = frame;
/* send the frame to the encoder */
ret = avcodec_send_frame(ctx.get(), yuv_frame.get());
if (ret < 0) {
BOOST_LOG(fatal) << "Could not send a frame for encoding"sv;
log_flush();
std::abort();
}
while (ret >= 0) {
auto packet = std::make_unique<packet_t::element_type>(nullptr);
ret = avcodec_receive_packet(ctx.get(), packet.get());
if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
return;
}
else if (ret < 0) {
BOOST_LOG(fatal) << "Could not encode video packet"sv;
log_flush();
std::abort();
}
packet->channel_data = channel_data;
packets->raise(std::move(packet));
}
}
int start_capture(capture_thread_ctx_t &capture_thread_ctx) {
capture_thread_ctx.capture_ctx_queue = std::make_shared<safe::queue_t<capture_ctx_t>>();
capture_thread_ctx.capture_thread = std::thread {
captureThread, capture_thread_ctx.capture_ctx_queue
};
return 0;
}
void end_capture(capture_thread_ctx_t &capture_thread_ctx) {
capture_thread_ctx.capture_ctx_queue->stop();
capture_thread_ctx.capture_thread.join();
}
void capture(
safe::signal_t *shutdown_event,
packet_queue_t packets,
idr_event_t idr_events,
config_t config,
void *channel_data) {
int framerate = config.framerate;
auto images = std::make_shared<img_event_t::element_type>();
// Keep a reference counter to ensure the capture thread only runs when other threads have a reference to the capture thread
static auto capture_thread = safe::make_shared<capture_thread_ctx_t>(start_capture, end_capture);
auto ref = capture_thread.ref();
if(!ref) {
return;
}
auto delay = std::chrono::floor<std::chrono::nanoseconds>(1s) / framerate;
ref->capture_ctx_queue->raise(capture_ctx_t {
images, delay
});
if(!ref->capture_ctx_queue->running()) {
return;
}
AVCodec *codec;
if(config.videoFormat == 0) {
codec = avcodec_find_encoder(AV_CODEC_ID_H264);
}
else {
codec = avcodec_find_encoder(AV_CODEC_ID_HEVC);
}
ctx_t ctx{avcodec_alloc_context3(codec)};
frame_t yuv_frame{av_frame_alloc()};
ctx->width = config.width;
ctx->height = config.height;
ctx->time_base = AVRational{1, framerate};
ctx->framerate = AVRational{framerate, 1};
if(config.videoFormat == 0) {
ctx->profile = FF_PROFILE_H264_HIGH;
}
else if(config.dynamicRange == 0) {
ctx->profile = FF_PROFILE_HEVC_MAIN;
}
else {
ctx->profile = FF_PROFILE_HEVC_MAIN_10;
}
if(config.dynamicRange == 0) {
ctx->pix_fmt = AV_PIX_FMT_YUV420P;
}
else {
ctx->pix_fmt = AV_PIX_FMT_YUV420P10;
}
ctx->color_range = (config.encoderCscMode & 0x1) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
int swsColorSpace;
switch (config.encoderCscMode >> 1) {
case 0:
default:
// Rec. 601
ctx->color_primaries = AVCOL_PRI_SMPTE170M;
ctx->color_trc = AVCOL_TRC_SMPTE170M;
ctx->colorspace = AVCOL_SPC_SMPTE170M;
swsColorSpace = SWS_CS_SMPTE170M;
break;
case 1:
// Rec. 709
ctx->color_primaries = AVCOL_PRI_BT709;
ctx->color_trc = AVCOL_TRC_BT709;
ctx->colorspace = AVCOL_SPC_BT709;
swsColorSpace = SWS_CS_ITU709;
break;
case 2:
// Rec. 2020
ctx->color_primaries = AVCOL_PRI_BT2020;
ctx->color_trc = AVCOL_TRC_BT2020_10;
ctx->colorspace = AVCOL_SPC_BT2020_NCL;
swsColorSpace = SWS_CS_BT2020;
break;
}
// B-frames delay decoder output, so never use them
ctx->max_b_frames = 0;
// Use an infinite GOP length since I-frames are generated on demand
ctx->gop_size = std::numeric_limits<int>::max();
ctx->keyint_min = ctx->gop_size;
// Some client decoders have limits on the number of reference frames
ctx->refs = config.numRefFrames;
// Clients will request for the fewest slices per frame to get the
// most efficient encode, but we may want to provide more slices than
// requested to ensure we have enough parallelism for good performance.
ctx->slices = std::max(config.slicesPerFrame, config::video.min_threads);
ctx->thread_type = FF_THREAD_SLICE;
ctx->thread_count = ctx->slices;
AVDictionary *options {nullptr};
av_dict_set(&options, "preset", config::video.preset.c_str(), 0);
av_dict_set(&options, "tune", config::video.tune.c_str(), 0);
if(config.bitrate > 500) {
config.bitrate *= 1000;
ctx->rc_max_rate = config.bitrate;
ctx->rc_buffer_size = config.bitrate / 100;
ctx->bit_rate = config.bitrate;
ctx->rc_min_rate = config.bitrate;
}
else if(config::video.crf != 0) {
av_dict_set_int(&options, "crf", config::video.crf, 0);
}
else {
av_dict_set_int(&options, "qp", config::video.qp, 0);
}
if(config.videoFormat == 1) {
// x265's Info SEI is so long that it causes the IDR picture data to be
// kicked to the 2nd packet in the frame, breaking Moonlight's parsing logic.
// It also looks like gop_size isn't passed on to x265, so we have to set
// 'keyint=-1' in the parameters ourselves.
av_dict_set(&options, "x265-params", "info=0:keyint=-1", 0);
}
ctx->flags |= (AV_CODEC_FLAG_CLOSED_GOP | AV_CODEC_FLAG_LOW_DELAY);
ctx->flags2 |= AV_CODEC_FLAG2_FAST;
auto lg = open_codec(ctx, codec, &options);
yuv_frame->format = ctx->pix_fmt;
yuv_frame->width = ctx->width;
yuv_frame->height = ctx->height;
av_frame_get_buffer(yuv_frame.get(), 0);
int64_t frame = 1;
int64_t key_frame = 1;
auto img_width = 0;
auto img_height = 0;
// Initiate scaling context with correct height and width
sws_t sws;
auto next_frame = std::chrono::steady_clock::now();
while(true) {
if(shutdown_event->peek()) {
break;
}
std::this_thread::sleep_until(next_frame);
next_frame += delay;
auto img = images->pop();
if(!img) {
break;
}
auto new_width = img->width;
auto new_height = img->height;
if(img_width != new_width || img_height != new_height) {
img_width = new_width;
img_height = new_height;
sws.reset(
sws_getContext(
img_width, img_height, AV_PIX_FMT_BGR0,
ctx->width, ctx->height, ctx->pix_fmt,
SWS_LANCZOS | SWS_ACCURATE_RND,
nullptr, nullptr, nullptr));
sws_setColorspaceDetails(sws.get(), sws_getCoefficients(SWS_CS_DEFAULT), 0,
sws_getCoefficients(swsColorSpace), config.encoderCscMode & 0x1,
0, 1 << 16, 1 << 16);
}
if(idr_events->peek()) {
yuv_frame->pict_type = AV_PICTURE_TYPE_I;
auto event = idr_events->pop();
TUPLE_2D_REF(_, end, *event);
frame = end;
key_frame = end + config.framerate;
}
else if(frame == key_frame) {
yuv_frame->pict_type = AV_PICTURE_TYPE_I;
}
encode(frame++, ctx, sws, yuv_frame, *img, packets, channel_data);
yuv_frame->pict_type = AV_PICTURE_TYPE_NONE;
}
images->stop();
}
}