Sunshine/src/video.cpp

2911 lines
96 KiB
C++

/**
* @file src/video.cpp
* @brief todo
*/
#include <atomic>
#include <bitset>
#include <list>
#include <thread>
#include <boost/pointer_cast.hpp>
extern "C" {
#include <libavutil/imgutils.h>
#include <libavutil/mastering_display_metadata.h>
#include <libavutil/opt.h>
#include <libavutil/pixdesc.h>
#include <libswscale/swscale.h>
}
#include "cbs.h"
#include "config.h"
#include "input.h"
#include "main.h"
#include "nvenc/nvenc_base.h"
#include "platform/common.h"
#include "sync.h"
#include "video.h"
#ifdef _WIN32
extern "C" {
#include <libavutil/hwcontext_d3d11va.h>
}
#endif
using namespace std::literals;
namespace video {
void
free_ctx(AVCodecContext *ctx) {
avcodec_free_context(&ctx);
}
void
free_frame(AVFrame *frame) {
av_frame_free(&frame);
}
void
free_buffer(AVBufferRef *ref) {
av_buffer_unref(&ref);
}
using avcodec_ctx_t = util::safe_ptr<AVCodecContext, free_ctx>;
using avcodec_frame_t = util::safe_ptr<AVFrame, free_frame>;
using avcodec_buffer_t = util::safe_ptr<AVBufferRef, free_buffer>;
using sws_t = util::safe_ptr<SwsContext, sws_freeContext>;
using img_event_t = std::shared_ptr<safe::event_t<std::shared_ptr<platf::img_t>>>;
namespace nv {
enum class profile_h264_e : int {
baseline,
main,
high,
high_444p,
};
enum class profile_hevc_e : int {
main,
main_10,
rext,
};
} // namespace nv
namespace qsv {
enum class profile_h264_e : int {
baseline = 66,
main = 77,
high = 100,
};
enum class profile_hevc_e : int {
main = 1,
main_10 = 2,
};
} // namespace qsv
platf::mem_type_e
map_base_dev_type(AVHWDeviceType type);
platf::pix_fmt_e
map_pix_fmt(AVPixelFormat fmt);
util::Either<avcodec_buffer_t, int>
dxgi_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *);
util::Either<avcodec_buffer_t, int>
vaapi_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *);
util::Either<avcodec_buffer_t, int>
cuda_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *);
util::Either<avcodec_buffer_t, int>
vt_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *);
class avcodec_software_encode_device_t: public platf::avcodec_encode_device_t {
public:
int
convert(platf::img_t &img) override {
// If we need to add aspect ratio padding, we need to scale into an intermediate output buffer
bool requires_padding = (sw_frame->width != sws_output_frame->width || sw_frame->height != sws_output_frame->height);
// Setup the input frame using the caller's img_t
sws_input_frame->data[0] = img.data;
sws_input_frame->linesize[0] = img.row_pitch;
// Perform color conversion and scaling to the final size
auto status = sws_scale_frame(sws.get(), requires_padding ? sws_output_frame.get() : sw_frame.get(), sws_input_frame.get());
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Couldn't scale frame: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
// If we require aspect ratio padding, copy the output frame into the final padded frame
if (requires_padding) {
auto fmt_desc = av_pix_fmt_desc_get((AVPixelFormat) sws_output_frame->format);
auto planes = av_pix_fmt_count_planes((AVPixelFormat) sws_output_frame->format);
for (int plane = 0; plane < planes; plane++) {
auto shift_h = plane == 0 ? 0 : fmt_desc->log2_chroma_h;
auto shift_w = plane == 0 ? 0 : fmt_desc->log2_chroma_w;
auto offset = ((offsetW >> shift_w) * fmt_desc->comp[plane].step) + (offsetH >> shift_h) * sw_frame->linesize[plane];
// Copy line-by-line to preserve leading padding for each row
for (int line = 0; line < sws_output_frame->height >> shift_h; line++) {
memcpy(sw_frame->data[plane] + offset + (line * sw_frame->linesize[plane]),
sws_output_frame->data[plane] + (line * sws_output_frame->linesize[plane]),
(size_t) (sws_output_frame->width >> shift_w) * fmt_desc->comp[plane].step);
}
}
}
// If frame is not a software frame, it means we still need to transfer from main memory
// to vram memory
if (frame->hw_frames_ctx) {
auto status = av_hwframe_transfer_data(frame, sw_frame.get(), 0);
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Failed to transfer image data to hardware frame: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
}
return 0;
}
int
set_frame(AVFrame *frame, AVBufferRef *hw_frames_ctx) override {
this->frame = frame;
// If it's a hwframe, allocate buffers for hardware
if (hw_frames_ctx) {
hw_frame.reset(frame);
if (av_hwframe_get_buffer(hw_frames_ctx, frame, 0)) return -1;
}
else {
sw_frame.reset(frame);
}
return 0;
}
void
apply_colorspace() override {
auto avcodec_colorspace = avcodec_colorspace_from_sunshine_colorspace(colorspace);
sws_setColorspaceDetails(sws.get(),
sws_getCoefficients(SWS_CS_DEFAULT), 0,
sws_getCoefficients(avcodec_colorspace.software_format), avcodec_colorspace.range - 1,
0, 1 << 16, 1 << 16);
}
/**
* When preserving aspect ratio, ensure that padding is black
*/
void
prefill() {
auto frame = sw_frame ? sw_frame.get() : this->frame;
av_frame_get_buffer(frame, 0);
av_frame_make_writable(frame);
ptrdiff_t linesize[4] = { frame->linesize[0], frame->linesize[1], frame->linesize[2], frame->linesize[3] };
av_image_fill_black(frame->data, linesize, (AVPixelFormat) frame->format, frame->color_range, frame->width, frame->height);
}
int
init(int in_width, int in_height, AVFrame *frame, AVPixelFormat format, bool hardware) {
// If the device used is hardware, yet the image resides on main memory
if (hardware) {
sw_frame.reset(av_frame_alloc());
sw_frame->width = frame->width;
sw_frame->height = frame->height;
sw_frame->format = format;
}
else {
this->frame = frame;
}
// Fill aspect ratio padding in the destination frame
prefill();
auto out_width = frame->width;
auto out_height = frame->height;
// Ensure aspect ratio is maintained
auto scalar = std::fminf((float) out_width / in_width, (float) out_height / in_height);
out_width = in_width * scalar;
out_height = in_height * scalar;
sws_input_frame.reset(av_frame_alloc());
sws_input_frame->width = in_width;
sws_input_frame->height = in_height;
sws_input_frame->format = AV_PIX_FMT_BGR0;
sws_output_frame.reset(av_frame_alloc());
sws_output_frame->width = out_width;
sws_output_frame->height = out_height;
sws_output_frame->format = format;
// Result is always positive
offsetW = (frame->width - out_width) / 2;
offsetH = (frame->height - out_height) / 2;
sws.reset(sws_alloc_context());
if (!sws) {
return -1;
}
AVDictionary *options { nullptr };
av_dict_set_int(&options, "srcw", sws_input_frame->width, 0);
av_dict_set_int(&options, "srch", sws_input_frame->height, 0);
av_dict_set_int(&options, "src_format", sws_input_frame->format, 0);
av_dict_set_int(&options, "dstw", sws_output_frame->width, 0);
av_dict_set_int(&options, "dsth", sws_output_frame->height, 0);
av_dict_set_int(&options, "dst_format", sws_output_frame->format, 0);
av_dict_set_int(&options, "sws_flags", SWS_LANCZOS | SWS_ACCURATE_RND, 0);
av_dict_set_int(&options, "threads", config::video.min_threads, 0);
auto status = av_opt_set_dict(sws.get(), &options);
av_dict_free(&options);
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Failed to set SWS options: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
status = sws_init_context(sws.get(), nullptr, nullptr);
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Failed to initialize SWS: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
return 0;
}
// Store ownership when frame is hw_frame
avcodec_frame_t hw_frame;
avcodec_frame_t sw_frame;
avcodec_frame_t sws_input_frame;
avcodec_frame_t sws_output_frame;
sws_t sws;
// Offset of input image to output frame in pixels
int offsetW;
int offsetH;
};
enum flag_e : uint32_t {
DEFAULT = 0,
PARALLEL_ENCODING = 1 << 1,
H264_ONLY = 1 << 2, // When HEVC is too heavy
LIMITED_GOP_SIZE = 1 << 3, // Some encoders don't like it when you have an infinite GOP_SIZE. *cough* VAAPI *cough*
SINGLE_SLICE_ONLY = 1 << 4, // Never use multiple slices <-- Older intel iGPU's ruin it for everyone else :P
CBR_WITH_VBR = 1 << 5, // Use a VBR rate control mode to simulate CBR
RELAXED_COMPLIANCE = 1 << 6, // Use FF_COMPLIANCE_UNOFFICIAL compliance mode
NO_RC_BUF_LIMIT = 1 << 7, // Don't set rc_buffer_size
REF_FRAMES_INVALIDATION = 1 << 8, // Support reference frames invalidation
};
struct encoder_platform_formats_t {
virtual ~encoder_platform_formats_t() = default;
platf::mem_type_e dev_type;
platf::pix_fmt_e pix_fmt_8bit, pix_fmt_10bit;
};
struct encoder_platform_formats_avcodec: encoder_platform_formats_t {
using init_buffer_function_t = std::function<util::Either<avcodec_buffer_t, int>(platf::avcodec_encode_device_t *)>;
encoder_platform_formats_avcodec(
const AVHWDeviceType &avcodec_base_dev_type,
const AVHWDeviceType &avcodec_derived_dev_type,
const AVPixelFormat &avcodec_dev_pix_fmt,
const AVPixelFormat &avcodec_pix_fmt_8bit,
const AVPixelFormat &avcodec_pix_fmt_10bit,
const init_buffer_function_t &init_avcodec_hardware_input_buffer_function):
avcodec_base_dev_type { avcodec_base_dev_type },
avcodec_derived_dev_type { avcodec_derived_dev_type },
avcodec_dev_pix_fmt { avcodec_dev_pix_fmt },
avcodec_pix_fmt_8bit { avcodec_pix_fmt_8bit },
avcodec_pix_fmt_10bit { avcodec_pix_fmt_10bit },
init_avcodec_hardware_input_buffer { init_avcodec_hardware_input_buffer_function } {
dev_type = map_base_dev_type(avcodec_base_dev_type);
pix_fmt_8bit = map_pix_fmt(avcodec_pix_fmt_8bit);
pix_fmt_10bit = map_pix_fmt(avcodec_pix_fmt_10bit);
}
AVHWDeviceType avcodec_base_dev_type, avcodec_derived_dev_type;
AVPixelFormat avcodec_dev_pix_fmt;
AVPixelFormat avcodec_pix_fmt_8bit, avcodec_pix_fmt_10bit;
init_buffer_function_t init_avcodec_hardware_input_buffer;
};
struct encoder_platform_formats_nvenc: encoder_platform_formats_t {
encoder_platform_formats_nvenc(
const platf::mem_type_e &dev_type,
const platf::pix_fmt_e &pix_fmt_8bit,
const platf::pix_fmt_e &pix_fmt_10bit) {
encoder_platform_formats_t::dev_type = dev_type;
encoder_platform_formats_t::pix_fmt_8bit = pix_fmt_8bit;
encoder_platform_formats_t::pix_fmt_10bit = pix_fmt_10bit;
}
};
struct encoder_t {
std::string_view name;
enum flag_e {
PASSED, // Is supported
REF_FRAMES_RESTRICT, // Set maximum reference frames
CBR, // Some encoders don't support CBR, if not supported --> attempt constant quantatication parameter instead
DYNAMIC_RANGE, // hdr
VUI_PARAMETERS, // AMD encoder with VAAPI doesn't add VUI parameters to SPS
MAX_FLAGS
};
static std::string_view
from_flag(flag_e flag) {
#define _CONVERT(x) \
case flag_e::x: \
return #x##sv
switch (flag) {
_CONVERT(PASSED);
_CONVERT(REF_FRAMES_RESTRICT);
_CONVERT(CBR);
_CONVERT(DYNAMIC_RANGE);
_CONVERT(VUI_PARAMETERS);
_CONVERT(MAX_FLAGS);
}
#undef _CONVERT
return "unknown"sv;
}
struct option_t {
KITTY_DEFAULT_CONSTR_MOVE(option_t)
option_t(const option_t &) = default;
std::string name;
std::variant<int, int *, std::optional<int> *, std::function<int()>, std::string, std::string *> value;
option_t(std::string &&name, decltype(value) &&value):
name { std::move(name) }, value { std::move(value) } {}
};
const std::unique_ptr<const encoder_platform_formats_t> platform_formats;
struct {
std::vector<option_t> common_options;
std::vector<option_t> sdr_options;
std::vector<option_t> hdr_options;
std::vector<option_t> fallback_options;
std::optional<option_t> qp;
std::string name;
std::bitset<MAX_FLAGS> capabilities;
bool
operator[](flag_e flag) const {
return capabilities[(std::size_t) flag];
}
std::bitset<MAX_FLAGS>::reference
operator[](flag_e flag) {
return capabilities[(std::size_t) flag];
}
} av1, hevc, h264;
uint32_t flags;
};
struct encode_session_t {
virtual ~encode_session_t() = default;
virtual int
convert(platf::img_t &img) = 0;
virtual void
request_idr_frame() = 0;
virtual void
request_normal_frame() = 0;
virtual void
invalidate_ref_frames(int64_t first_frame, int64_t last_frame) = 0;
};
class avcodec_encode_session_t: public encode_session_t {
public:
avcodec_encode_session_t() = default;
avcodec_encode_session_t(avcodec_ctx_t &&avcodec_ctx, std::unique_ptr<platf::avcodec_encode_device_t> encode_device, int inject):
avcodec_ctx { std::move(avcodec_ctx) }, device { std::move(encode_device) }, inject { inject } {}
avcodec_encode_session_t(avcodec_encode_session_t &&other) noexcept = default;
~avcodec_encode_session_t() {
// Order matters here because the context relies on the hwdevice still being valid
avcodec_ctx.reset();
device.reset();
}
// Ensure objects are destroyed in the correct order
avcodec_encode_session_t &
operator=(avcodec_encode_session_t &&other) {
device = std::move(other.device);
avcodec_ctx = std::move(other.avcodec_ctx);
replacements = std::move(other.replacements);
sps = std::move(other.sps);
vps = std::move(other.vps);
inject = other.inject;
return *this;
}
int
convert(platf::img_t &img) override {
if (!device) return -1;
return device->convert(img);
}
void
request_idr_frame() override {
if (device && device->frame) {
auto &frame = device->frame;
frame->pict_type = AV_PICTURE_TYPE_I;
frame->flags |= AV_FRAME_FLAG_KEY;
}
}
void
request_normal_frame() override {
if (device && device->frame) {
auto &frame = device->frame;
frame->pict_type = AV_PICTURE_TYPE_NONE;
frame->flags &= ~AV_FRAME_FLAG_KEY;
}
}
void
invalidate_ref_frames(int64_t first_frame, int64_t last_frame) override {
BOOST_LOG(error) << "Encoder doesn't support reference frame invalidation";
request_idr_frame();
}
avcodec_ctx_t avcodec_ctx;
std::unique_ptr<platf::avcodec_encode_device_t> device;
std::vector<packet_raw_t::replace_t> replacements;
cbs::nal_t sps;
cbs::nal_t vps;
// inject sps/vps data into idr pictures
int inject;
};
class nvenc_encode_session_t: public encode_session_t {
public:
nvenc_encode_session_t(std::unique_ptr<platf::nvenc_encode_device_t> encode_device):
device(std::move(encode_device)) {
}
int
convert(platf::img_t &img) override {
if (!device) return -1;
return device->convert(img);
}
void
request_idr_frame() override {
force_idr = true;
}
void
request_normal_frame() override {
force_idr = false;
}
void
invalidate_ref_frames(int64_t first_frame, int64_t last_frame) override {
if (!device || !device->nvenc) return;
if (!device->nvenc->invalidate_ref_frames(first_frame, last_frame)) {
force_idr = true;
}
}
nvenc::nvenc_encoded_frame
encode_frame(uint64_t frame_index) {
if (!device || !device->nvenc) return {};
auto result = device->nvenc->encode_frame(frame_index, force_idr);
force_idr = false;
return result;
}
private:
std::unique_ptr<platf::nvenc_encode_device_t> device;
bool force_idr = false;
};
struct sync_session_ctx_t {
safe::signal_t *join_event;
safe::mail_raw_t::event_t<bool> shutdown_event;
safe::mail_raw_t::queue_t<packet_t> packets;
safe::mail_raw_t::event_t<bool> idr_events;
safe::mail_raw_t::event_t<hdr_info_t> hdr_events;
safe::mail_raw_t::event_t<input::touch_port_t> touch_port_events;
config_t config;
int frame_nr;
void *channel_data;
};
struct sync_session_t {
sync_session_ctx_t *ctx;
std::unique_ptr<encode_session_t> session;
};
using encode_session_ctx_queue_t = safe::queue_t<sync_session_ctx_t>;
using encode_e = platf::capture_e;
struct capture_ctx_t {
img_event_t images;
config_t config;
};
struct capture_thread_async_ctx_t {
std::shared_ptr<safe::queue_t<capture_ctx_t>> capture_ctx_queue;
std::thread capture_thread;
safe::signal_t reinit_event;
const encoder_t *encoder_p;
sync_util::sync_t<std::weak_ptr<platf::display_t>> display_wp;
};
struct capture_thread_sync_ctx_t {
encode_session_ctx_queue_t encode_session_ctx_queue { 30 };
};
int
start_capture_sync(capture_thread_sync_ctx_t &ctx);
void
end_capture_sync(capture_thread_sync_ctx_t &ctx);
int
start_capture_async(capture_thread_async_ctx_t &ctx);
void
end_capture_async(capture_thread_async_ctx_t &ctx);
// Keep a reference counter to ensure the capture thread only runs when other threads have a reference to the capture thread
auto capture_thread_async = safe::make_shared<capture_thread_async_ctx_t>(start_capture_async, end_capture_async);
auto capture_thread_sync = safe::make_shared<capture_thread_sync_ctx_t>(start_capture_sync, end_capture_sync);
#ifdef _WIN32
static encoder_t nvenc {
"nvenc"sv,
std::make_unique<encoder_platform_formats_nvenc>(
platf::mem_type_e::dxgi,
platf::pix_fmt_e::nv12, platf::pix_fmt_e::p010),
{
// Common options
{},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{},
std::nullopt, // QP
"av1_nvenc"s,
},
{
// Common options
{},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{},
std::nullopt, // QP
"hevc_nvenc"s,
},
{
// Common options
{},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{},
std::nullopt, // QP
"h264_nvenc"s,
},
PARALLEL_ENCODING | REF_FRAMES_INVALIDATION // flags
};
#elif !defined(__APPLE__)
static encoder_t nvenc {
"nvenc"sv,
std::make_unique<encoder_platform_formats_avcodec>(
#ifdef _WIN32
AV_HWDEVICE_TYPE_D3D11VA, AV_HWDEVICE_TYPE_NONE,
AV_PIX_FMT_D3D11,
#else
AV_HWDEVICE_TYPE_CUDA, AV_HWDEVICE_TYPE_NONE,
AV_PIX_FMT_CUDA,
#endif
AV_PIX_FMT_NV12, AV_PIX_FMT_P010,
#ifdef _WIN32
dxgi_init_avcodec_hardware_input_buffer
#else
cuda_init_avcodec_hardware_input_buffer
#endif
),
{
// Common options
{
{ "delay"s, 0 },
{ "forced-idr"s, 1 },
{ "zerolatency"s, 1 },
{ "preset"s, &config::video.nv_legacy.preset },
{ "tune"s, NV_ENC_TUNING_INFO_ULTRA_LOW_LATENCY },
{ "rc"s, NV_ENC_PARAMS_RC_CBR },
{ "multipass"s, &config::video.nv_legacy.multipass },
{ "aq"s, &config::video.nv_legacy.aq },
},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{},
std::nullopt,
"av1_nvenc"s,
},
{
// Common options
{
{ "delay"s, 0 },
{ "forced-idr"s, 1 },
{ "zerolatency"s, 1 },
{ "preset"s, &config::video.nv_legacy.preset },
{ "tune"s, NV_ENC_TUNING_INFO_ULTRA_LOW_LATENCY },
{ "rc"s, NV_ENC_PARAMS_RC_CBR },
{ "multipass"s, &config::video.nv_legacy.multipass },
{ "aq"s, &config::video.nv_legacy.aq },
},
// SDR-specific options
{
{ "profile"s, (int) nv::profile_hevc_e::main },
},
// HDR-specific options
{
{ "profile"s, (int) nv::profile_hevc_e::main_10 },
},
{}, // Fallback options
std::nullopt,
"hevc_nvenc"s,
},
{
{
{ "delay"s, 0 },
{ "forced-idr"s, 1 },
{ "zerolatency"s, 1 },
{ "preset"s, &config::video.nv_legacy.preset },
{ "tune"s, NV_ENC_TUNING_INFO_ULTRA_LOW_LATENCY },
{ "rc"s, NV_ENC_PARAMS_RC_CBR },
{ "coder"s, &config::video.nv_legacy.h264_coder },
{ "multipass"s, &config::video.nv_legacy.multipass },
{ "aq"s, &config::video.nv_legacy.aq },
},
// SDR-specific options
{
{ "profile"s, (int) nv::profile_h264_e::high },
},
{}, // HDR-specific options
{}, // Fallback options
std::make_optional<encoder_t::option_t>({ "qp"s, &config::video.qp }),
"h264_nvenc"s,
},
PARALLEL_ENCODING
};
#endif
#ifdef _WIN32
static encoder_t quicksync {
"quicksync"sv,
std::make_unique<encoder_platform_formats_avcodec>(
AV_HWDEVICE_TYPE_D3D11VA, AV_HWDEVICE_TYPE_QSV,
AV_PIX_FMT_QSV,
AV_PIX_FMT_NV12, AV_PIX_FMT_P010,
dxgi_init_avcodec_hardware_input_buffer),
{
// Common options
{
{ "preset"s, &config::video.qsv.qsv_preset },
{ "forced_idr"s, 1 },
{ "async_depth"s, 1 },
{ "low_delay_brc"s, 1 },
{ "low_power"s, 1 },
},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{},
std::make_optional<encoder_t::option_t>({ "qp"s, &config::video.qp }),
"av1_qsv"s,
},
{
// Common options
{
{ "preset"s, &config::video.qsv.qsv_preset },
{ "forced_idr"s, 1 },
{ "async_depth"s, 1 },
{ "low_delay_brc"s, 1 },
{ "low_power"s, 1 },
{ "recovery_point_sei"s, 0 },
{ "pic_timing_sei"s, 0 },
},
// SDR-specific options
{
{ "profile"s, (int) qsv::profile_hevc_e::main },
},
// HDR-specific options
{
{ "profile"s, (int) qsv::profile_hevc_e::main_10 },
},
// Fallback options
{},
std::make_optional<encoder_t::option_t>({ "qp"s, &config::video.qp }),
"hevc_qsv"s,
},
{
// Common options
{
{ "preset"s, &config::video.qsv.qsv_preset },
{ "cavlc"s, &config::video.qsv.qsv_cavlc },
{ "forced_idr"s, 1 },
{ "async_depth"s, 1 },
{ "low_delay_brc"s, 1 },
{ "low_power"s, 1 },
{ "recovery_point_sei"s, 0 },
{ "vcm"s, 1 },
{ "pic_timing_sei"s, 0 },
{ "max_dec_frame_buffering"s, 1 },
},
// SDR-specific options
{
{ "profile"s, (int) qsv::profile_h264_e::high },
},
// HDR-specific options
{},
// Fallback options
{
{ "low_power"s, 0 }, // Some old/low-end Intel GPUs don't support low power encoding
},
std::make_optional<encoder_t::option_t>({ "qp"s, &config::video.qp }),
"h264_qsv"s,
},
PARALLEL_ENCODING | CBR_WITH_VBR | RELAXED_COMPLIANCE | NO_RC_BUF_LIMIT
};
static encoder_t amdvce {
"amdvce"sv,
std::make_unique<encoder_platform_formats_avcodec>(
AV_HWDEVICE_TYPE_D3D11VA, AV_HWDEVICE_TYPE_NONE,
AV_PIX_FMT_D3D11,
AV_PIX_FMT_NV12, AV_PIX_FMT_P010,
dxgi_init_avcodec_hardware_input_buffer),
{
// Common options
{
{ "filler_data"s, false },
{ "log_to_dbg"s, []() { return config::sunshine.min_log_level < 2 ? 1 : 0; } },
{ "preencode"s, &config::video.amd.amd_preanalysis },
{ "quality"s, &config::video.amd.amd_quality_av1 },
{ "rc"s, &config::video.amd.amd_rc_av1 },
{ "usage"s, &config::video.amd.amd_usage_av1 },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::make_optional<encoder_t::option_t>({ "qp_p"s, &config::video.qp }),
"av1_amf"s,
},
{
// Common options
{
{ "filler_data"s, false },
{ "log_to_dbg"s, []() { return config::sunshine.min_log_level < 2 ? 1 : 0; } },
{ "gops_per_idr"s, 1 },
{ "header_insertion_mode"s, "idr"s },
{ "preencode"s, &config::video.amd.amd_preanalysis },
{ "qmax"s, 51 },
{ "qmin"s, 0 },
{ "quality"s, &config::video.amd.amd_quality_hevc },
{ "rc"s, &config::video.amd.amd_rc_hevc },
{ "usage"s, &config::video.amd.amd_usage_hevc },
{ "vbaq"s, &config::video.amd.amd_vbaq },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::make_optional<encoder_t::option_t>({ "qp_p"s, &config::video.qp }),
"hevc_amf"s,
},
{
// Common options
{
{ "filler_data"s, false },
{ "log_to_dbg"s, []() { return config::sunshine.min_log_level < 2 ? 1 : 0; } },
{ "preencode"s, &config::video.amd.amd_preanalysis },
{ "qmax"s, 51 },
{ "qmin"s, 0 },
{ "quality"s, &config::video.amd.amd_quality_h264 },
{ "rc"s, &config::video.amd.amd_rc_h264 },
{ "usage"s, &config::video.amd.amd_usage_h264 },
{ "vbaq"s, &config::video.amd.amd_vbaq },
},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{
{ "usage"s, 2 /* AMF_VIDEO_ENCODER_USAGE_LOW_LATENCY */ }, // Workaround for https://github.com/GPUOpen-LibrariesAndSDKs/AMF/issues/410
},
std::make_optional<encoder_t::option_t>({ "qp_p"s, &config::video.qp }),
"h264_amf"s,
},
PARALLEL_ENCODING
};
#endif
static encoder_t software {
"software"sv,
std::make_unique<encoder_platform_formats_avcodec>(
AV_HWDEVICE_TYPE_NONE, AV_HWDEVICE_TYPE_NONE,
AV_PIX_FMT_NONE,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P10,
nullptr),
{
// libsvtav1 takes different presets than libx264/libx265.
// We set an infinite GOP length, use a low delay prediction structure,
// force I frames to be key frames, and set max bitrate to default to work
// around a FFmpeg bug with CBR mode.
{
{ "svtav1-params"s, "keyint=-1:pred-struct=1:force-key-frames=1:mbr=0"s },
{ "preset"s, &config::video.sw.svtav1_preset },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::make_optional<encoder_t::option_t>("qp"s, &config::video.qp),
#ifdef ENABLE_BROKEN_AV1_ENCODER
// Due to bugs preventing on-demand IDR frames from working and very poor
// real-time encoding performance, we do not enable libsvtav1 by default.
// It is only suitable for testing AV1 until the IDR frame issue is fixed.
"libsvtav1"s,
#else
{},
#endif
},
{
// x265's Info SEI is so long that it causes the IDR picture data to be
// kicked to the 2nd packet in the frame, breaking Moonlight's parsing logic.
// It also looks like gop_size isn't passed on to x265, so we have to set
// 'keyint=-1' in the parameters ourselves.
{
{ "forced-idr"s, 1 },
{ "x265-params"s, "info=0:keyint=-1"s },
{ "preset"s, &config::video.sw.sw_preset },
{ "tune"s, &config::video.sw.sw_tune },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::make_optional<encoder_t::option_t>("qp"s, &config::video.qp),
"libx265"s,
},
{
// Common options
{
{ "preset"s, &config::video.sw.sw_preset },
{ "tune"s, &config::video.sw.sw_tune },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::make_optional<encoder_t::option_t>("qp"s, &config::video.qp),
"libx264"s,
},
H264_ONLY | PARALLEL_ENCODING
};
#ifdef __linux__
static encoder_t vaapi {
"vaapi"sv,
std::make_unique<encoder_platform_formats_avcodec>(
AV_HWDEVICE_TYPE_VAAPI, AV_HWDEVICE_TYPE_NONE,
AV_PIX_FMT_VAAPI,
AV_PIX_FMT_NV12, AV_PIX_FMT_P010,
vaapi_init_avcodec_hardware_input_buffer),
{
// Common options
{
{ "low_power"s, 1 },
{ "async_depth"s, 1 },
{ "idr_interval"s, std::numeric_limits<int>::max() },
},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{
{ "low_power"s, 0 }, // Not all VAAPI drivers expose LP entrypoints
},
std::make_optional<encoder_t::option_t>("qp"s, &config::video.qp),
"av1_vaapi"s,
},
{
// Common options
{
{ "low_power"s, 1 },
{ "async_depth"s, 1 },
{ "sei"s, 0 },
{ "idr_interval"s, std::numeric_limits<int>::max() },
},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{
{ "low_power"s, 0 }, // Not all VAAPI drivers expose LP entrypoints
},
std::make_optional<encoder_t::option_t>("qp"s, &config::video.qp),
"hevc_vaapi"s,
},
{
// Common options
{
{ "low_power"s, 1 },
{ "async_depth"s, 1 },
{ "sei"s, 0 },
{ "idr_interval"s, std::numeric_limits<int>::max() },
},
// SDR-specific options
{},
// HDR-specific options
{},
// Fallback options
{
{ "low_power"s, 0 }, // Not all VAAPI drivers expose LP entrypoints
},
std::make_optional<encoder_t::option_t>("qp"s, &config::video.qp),
"h264_vaapi"s,
},
LIMITED_GOP_SIZE | PARALLEL_ENCODING | SINGLE_SLICE_ONLY | NO_RC_BUF_LIMIT
};
#endif
#ifdef __APPLE__
static encoder_t videotoolbox {
"videotoolbox"sv,
std::make_unique<encoder_platform_formats_avcodec>(
AV_HWDEVICE_TYPE_VIDEOTOOLBOX, AV_HWDEVICE_TYPE_NONE,
AV_PIX_FMT_VIDEOTOOLBOX,
AV_PIX_FMT_NV12, AV_PIX_FMT_P010,
vt_init_avcodec_hardware_input_buffer),
{
// Common options
{
{ "allow_sw"s, &config::video.vt.vt_allow_sw },
{ "require_sw"s, &config::video.vt.vt_require_sw },
{ "realtime"s, &config::video.vt.vt_realtime },
{ "prio_speed"s, 1 },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::nullopt,
"av1_videotoolbox"s,
},
{
// Common options
{
{ "allow_sw"s, &config::video.vt.vt_allow_sw },
{ "require_sw"s, &config::video.vt.vt_require_sw },
{ "realtime"s, &config::video.vt.vt_realtime },
{ "prio_speed"s, 1 },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::nullopt,
"hevc_videotoolbox"s,
},
{
// Common options
{
{ "allow_sw"s, &config::video.vt.vt_allow_sw },
{ "require_sw"s, &config::video.vt.vt_require_sw },
{ "realtime"s, &config::video.vt.vt_realtime },
{ "prio_speed"s, 1 },
},
{}, // SDR-specific options
{}, // HDR-specific options
{}, // Fallback options
std::nullopt,
"h264_videotoolbox"s,
},
DEFAULT
};
#endif
static const std::vector<encoder_t *> encoders {
#ifndef __APPLE__
&nvenc,
#endif
#ifdef _WIN32
&quicksync,
&amdvce,
#endif
#ifdef __linux__
&vaapi,
#endif
#ifdef __APPLE__
&videotoolbox,
#endif
&software
};
static encoder_t *chosen_encoder;
int active_hevc_mode;
int active_av1_mode;
bool last_encoder_probe_supported_ref_frames_invalidation = false;
void
reset_display(std::shared_ptr<platf::display_t> &disp, const platf::mem_type_e &type, const std::string &display_name, const config_t &config) {
// We try this twice, in case we still get an error on reinitialization
for (int x = 0; x < 2; ++x) {
disp.reset();
disp = platf::display(type, display_name, config);
if (disp) {
break;
}
// The capture code depends on us to sleep between failures
std::this_thread::sleep_for(200ms);
}
}
/**
* @brief Updates the list of display names before or during a stream.
* @details This will attempt to keep `current_display_index` pointing at the same display.
* @param dev_type The encoder device type used for display lookup.
* @param display_names The list of display names to repopulate.
* @param current_display_index The current display index or -1 if not yet known.
*/
void
refresh_displays(platf::mem_type_e dev_type, std::vector<std::string> &display_names, int &current_display_index) {
std::string current_display_name;
// If we have a current display index, let's start with that
if (current_display_index >= 0 && current_display_index < display_names.size()) {
current_display_name = display_names.at(current_display_index);
}
// Refresh the display names
auto old_display_names = std::move(display_names);
display_names = platf::display_names(dev_type);
// If we now have no displays, let's put the old display array back and fail
if (display_names.empty() && !old_display_names.empty()) {
BOOST_LOG(error) << "No displays were found after reenumeration!"sv;
display_names = std::move(old_display_names);
return;
}
else if (display_names.empty()) {
display_names.emplace_back(config::video.output_name);
}
// We now have a new display name list, so reset the index back to 0
current_display_index = 0;
// If we had a name previously, let's try to find it in the new list
if (!current_display_name.empty()) {
for (int x = 0; x < display_names.size(); ++x) {
if (display_names[x] == current_display_name) {
current_display_index = x;
return;
}
}
// The old display was removed, so we'll start back at the first display again
BOOST_LOG(warning) << "Previous active display ["sv << current_display_name << "] is no longer present"sv;
}
else {
for (int x = 0; x < display_names.size(); ++x) {
if (display_names[x] == config::video.output_name) {
current_display_index = x;
return;
}
}
}
}
void
captureThread(
std::shared_ptr<safe::queue_t<capture_ctx_t>> capture_ctx_queue,
sync_util::sync_t<std::weak_ptr<platf::display_t>> &display_wp,
safe::signal_t &reinit_event,
const encoder_t &encoder) {
std::vector<capture_ctx_t> capture_ctxs;
auto fg = util::fail_guard([&]() {
capture_ctx_queue->stop();
// Stop all sessions listening to this thread
for (auto &capture_ctx : capture_ctxs) {
capture_ctx.images->stop();
}
for (auto &capture_ctx : capture_ctx_queue->unsafe()) {
capture_ctx.images->stop();
}
});
auto switch_display_event = mail::man->event<int>(mail::switch_display);
// Wait for the initial capture context or a request to stop the queue
auto initial_capture_ctx = capture_ctx_queue->pop();
if (!initial_capture_ctx) {
return;
}
capture_ctxs.emplace_back(std::move(*initial_capture_ctx));
// Get all the monitor names now, rather than at boot, to
// get the most up-to-date list available monitors
std::vector<std::string> display_names;
int display_p = -1;
refresh_displays(encoder.platform_formats->dev_type, display_names, display_p);
auto disp = platf::display(encoder.platform_formats->dev_type, display_names[display_p], capture_ctxs.front().config);
if (!disp) {
return;
}
display_wp = disp;
constexpr auto capture_buffer_size = 12;
std::list<std::shared_ptr<platf::img_t>> imgs(capture_buffer_size);
std::vector<std::optional<std::chrono::steady_clock::time_point>> imgs_used_timestamps;
const std::chrono::seconds trim_timeot = 3s;
auto trim_imgs = [&]() {
// count allocated and used within current pool
size_t allocated_count = 0;
size_t used_count = 0;
for (const auto &img : imgs) {
if (img) {
allocated_count += 1;
if (img.use_count() > 1) {
used_count += 1;
}
}
}
// remember the timestamp of currently used count
const auto now = std::chrono::steady_clock::now();
if (imgs_used_timestamps.size() <= used_count) {
imgs_used_timestamps.resize(used_count + 1);
}
imgs_used_timestamps[used_count] = now;
// decide whether to trim allocated unused above the currently used count
// based on last used timestamp and universal timeout
size_t trim_target = used_count;
for (size_t i = used_count; i < imgs_used_timestamps.size(); i++) {
if (imgs_used_timestamps[i] && now - *imgs_used_timestamps[i] < trim_timeot) {
trim_target = i;
}
}
// trim allocated unused above the newly decided trim target
if (allocated_count > trim_target) {
size_t to_trim = allocated_count - trim_target;
// prioritize trimming least recently used
for (auto it = imgs.rbegin(); it != imgs.rend(); it++) {
auto &img = *it;
if (img && img.use_count() == 1) {
img.reset();
to_trim -= 1;
if (to_trim == 0) break;
}
}
// forget timestamps that no longer relevant
imgs_used_timestamps.resize(trim_target + 1);
}
};
auto pull_free_image_callback = [&](std::shared_ptr<platf::img_t> &img_out) -> bool {
img_out.reset();
while (capture_ctx_queue->running()) {
// pick first allocated but unused
for (auto it = imgs.begin(); it != imgs.end(); it++) {
if (*it && it->use_count() == 1) {
img_out = *it;
if (it != imgs.begin()) {
// move image to the front of the list to prioritize its reusal
imgs.erase(it);
imgs.push_front(img_out);
}
break;
}
}
// otherwise pick first unallocated
if (!img_out) {
for (auto it = imgs.begin(); it != imgs.end(); it++) {
if (!*it) {
// allocate image
*it = disp->alloc_img();
img_out = *it;
if (it != imgs.begin()) {
// move image to the front of the list to prioritize its reusal
imgs.erase(it);
imgs.push_front(img_out);
}
break;
}
}
}
if (img_out) {
// trim allocated but unused portion of the pool based on timeouts
trim_imgs();
img_out->frame_timestamp.reset();
return true;
}
else {
// sleep and retry if image pool is full
std::this_thread::sleep_for(1ms);
}
}
return false;
};
// Capture takes place on this thread
platf::adjust_thread_priority(platf::thread_priority_e::critical);
while (capture_ctx_queue->running()) {
bool artificial_reinit = false;
auto push_captured_image_callback = [&](std::shared_ptr<platf::img_t> &&img, bool frame_captured) -> bool {
KITTY_WHILE_LOOP(auto capture_ctx = std::begin(capture_ctxs), capture_ctx != std::end(capture_ctxs), {
if (!capture_ctx->images->running()) {
capture_ctx = capture_ctxs.erase(capture_ctx);
continue;
}
if (frame_captured) {
capture_ctx->images->raise(img);
}
++capture_ctx;
})
if (!capture_ctx_queue->running()) {
return false;
}
while (capture_ctx_queue->peek()) {
capture_ctxs.emplace_back(std::move(*capture_ctx_queue->pop()));
}
if (switch_display_event->peek()) {
artificial_reinit = true;
return false;
}
return true;
};
auto status = disp->capture(push_captured_image_callback, pull_free_image_callback, &display_cursor);
if (artificial_reinit && status != platf::capture_e::error) {
status = platf::capture_e::reinit;
artificial_reinit = false;
}
switch (status) {
case platf::capture_e::reinit: {
reinit_event.raise(true);
// Some classes of images contain references to the display --> display won't delete unless img is deleted
for (auto &img : imgs) {
img.reset();
}
// display_wp is modified in this thread only
// Wait for the other shared_ptr's of display to be destroyed.
// New displays will only be created in this thread.
while (display_wp->use_count() != 1) {
// Free images that weren't consumed by the encoders. These can reference the display and prevent
// the ref count from reaching 1. We do this here rather than on the encoder thread to avoid race
// conditions where the encoding loop might free a good frame after reinitializing if we capture
// a new frame here before the encoder has finished reinitializing.
KITTY_WHILE_LOOP(auto capture_ctx = std::begin(capture_ctxs), capture_ctx != std::end(capture_ctxs), {
if (!capture_ctx->images->running()) {
capture_ctx = capture_ctxs.erase(capture_ctx);
continue;
}
while (capture_ctx->images->peek()) {
capture_ctx->images->pop();
}
++capture_ctx;
});
std::this_thread::sleep_for(20ms);
}
while (capture_ctx_queue->running()) {
// Release the display before reenumerating displays, since some capture backends
// only support a single display session per device/application.
disp.reset();
// Refresh display names since a display removal might have caused the reinitialization
refresh_displays(encoder.platform_formats->dev_type, display_names, display_p);
// Process any pending display switch with the new list of displays
if (switch_display_event->peek()) {
display_p = std::clamp(*switch_display_event->pop(), 0, (int) display_names.size() - 1);
}
// reset_display() will sleep between retries
reset_display(disp, encoder.platform_formats->dev_type, display_names[display_p], capture_ctxs.front().config);
if (disp) {
break;
}
}
if (!disp) {
return;
}
display_wp = disp;
reinit_event.reset();
continue;
}
case platf::capture_e::error:
case platf::capture_e::ok:
case platf::capture_e::timeout:
case platf::capture_e::interrupted:
return;
default:
BOOST_LOG(error) << "Unrecognized capture status ["sv << (int) status << ']';
return;
}
}
}
int
encode_avcodec(int64_t frame_nr, avcodec_encode_session_t &session, safe::mail_raw_t::queue_t<packet_t> &packets, void *channel_data, std::optional<std::chrono::steady_clock::time_point> frame_timestamp) {
auto &frame = session.device->frame;
frame->pts = frame_nr;
auto &ctx = session.avcodec_ctx;
auto &sps = session.sps;
auto &vps = session.vps;
// send the frame to the encoder
auto ret = avcodec_send_frame(ctx.get(), frame);
if (ret < 0) {
char err_str[AV_ERROR_MAX_STRING_SIZE] { 0 };
BOOST_LOG(error) << "Could not send a frame for encoding: "sv << av_make_error_string(err_str, AV_ERROR_MAX_STRING_SIZE, ret);
return -1;
}
while (ret >= 0) {
auto packet = std::make_unique<packet_raw_avcodec>();
auto av_packet = packet.get()->av_packet;
ret = avcodec_receive_packet(ctx.get(), av_packet);
if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
return 0;
}
else if (ret < 0) {
return ret;
}
if ((frame->flags & AV_FRAME_FLAG_KEY) && !(av_packet->flags & AV_PKT_FLAG_KEY)) {
BOOST_LOG(error) << "Encoder did not produce IDR frame when requested!"sv;
}
if (session.inject) {
if (session.inject == 1) {
auto h264 = cbs::make_sps_h264(ctx.get(), av_packet);
sps = std::move(h264.sps);
}
else {
auto hevc = cbs::make_sps_hevc(ctx.get(), av_packet);
sps = std::move(hevc.sps);
vps = std::move(hevc.vps);
session.replacements.emplace_back(
std::string_view((char *) std::begin(vps.old), vps.old.size()),
std::string_view((char *) std::begin(vps._new), vps._new.size()));
}
session.inject = 0;
session.replacements.emplace_back(
std::string_view((char *) std::begin(sps.old), sps.old.size()),
std::string_view((char *) std::begin(sps._new), sps._new.size()));
}
if (av_packet && av_packet->pts == frame_nr) {
packet->frame_timestamp = frame_timestamp;
}
packet->replacements = &session.replacements;
packet->channel_data = channel_data;
packets->raise(std::move(packet));
}
return 0;
}
int
encode_nvenc(int64_t frame_nr, nvenc_encode_session_t &session, safe::mail_raw_t::queue_t<packet_t> &packets, void *channel_data, std::optional<std::chrono::steady_clock::time_point> frame_timestamp) {
auto encoded_frame = session.encode_frame(frame_nr);
if (encoded_frame.data.empty()) {
BOOST_LOG(error) << "NvENC returned empty packet";
return -1;
}
if (frame_nr != encoded_frame.frame_index) {
BOOST_LOG(error) << "NvENC frame index mismatch " << frame_nr << " " << encoded_frame.frame_index;
}
auto packet = std::make_unique<packet_raw_generic>(std::move(encoded_frame.data), encoded_frame.frame_index, encoded_frame.idr);
packet->channel_data = channel_data;
packet->after_ref_frame_invalidation = encoded_frame.after_ref_frame_invalidation;
packet->frame_timestamp = frame_timestamp;
packets->raise(std::move(packet));
return 0;
}
int
encode(int64_t frame_nr, encode_session_t &session, safe::mail_raw_t::queue_t<packet_t> &packets, void *channel_data, std::optional<std::chrono::steady_clock::time_point> frame_timestamp) {
if (auto avcodec_session = dynamic_cast<avcodec_encode_session_t *>(&session)) {
return encode_avcodec(frame_nr, *avcodec_session, packets, channel_data, frame_timestamp);
}
else if (auto nvenc_session = dynamic_cast<nvenc_encode_session_t *>(&session)) {
return encode_nvenc(frame_nr, *nvenc_session, packets, channel_data, frame_timestamp);
}
return -1;
}
std::unique_ptr<avcodec_encode_session_t>
make_avcodec_encode_session(platf::display_t *disp, const encoder_t &encoder, const config_t &config, int width, int height, std::unique_ptr<platf::avcodec_encode_device_t> encode_device) {
auto platform_formats = dynamic_cast<const encoder_platform_formats_avcodec *>(encoder.platform_formats.get());
if (!platform_formats) {
return nullptr;
}
bool hardware = platform_formats->avcodec_base_dev_type != AV_HWDEVICE_TYPE_NONE;
auto &video_format = config.videoFormat == 0 ? encoder.h264 :
config.videoFormat == 1 ? encoder.hevc :
encoder.av1;
if (!video_format[encoder_t::PASSED] || !disp->is_codec_supported(video_format.name, config)) {
BOOST_LOG(error) << encoder.name << ": "sv << video_format.name << " mode not supported"sv;
return nullptr;
}
if (config.dynamicRange && !video_format[encoder_t::DYNAMIC_RANGE]) {
BOOST_LOG(error) << video_format.name << ": dynamic range not supported"sv;
return nullptr;
}
auto codec = avcodec_find_encoder_by_name(video_format.name.c_str());
if (!codec) {
BOOST_LOG(error) << "Couldn't open ["sv << video_format.name << ']';
return nullptr;
}
auto colorspace = encode_device->colorspace;
auto sw_fmt = (colorspace.bit_depth == 10) ? platform_formats->avcodec_pix_fmt_10bit : platform_formats->avcodec_pix_fmt_8bit;
// Allow up to 1 retry to apply the set of fallback options.
//
// Note: If we later end up needing multiple sets of
// fallback options, we may need to allow more retries
// to try applying each set.
avcodec_ctx_t ctx;
for (int retries = 0; retries < 2; retries++) {
ctx.reset(avcodec_alloc_context3(codec));
ctx->width = config.width;
ctx->height = config.height;
ctx->time_base = AVRational { 1, config.framerate };
ctx->framerate = AVRational { config.framerate, 1 };
switch (config.videoFormat) {
case 0:
ctx->profile = FF_PROFILE_H264_HIGH;
break;
case 1:
ctx->profile = config.dynamicRange ? FF_PROFILE_HEVC_MAIN_10 : FF_PROFILE_HEVC_MAIN;
break;
case 2:
// AV1 supports both 8 and 10 bit encoding with the same Main profile
ctx->profile = FF_PROFILE_AV1_MAIN;
break;
}
// B-frames delay decoder output, so never use them
ctx->max_b_frames = 0;
// Use an infinite GOP length since I-frames are generated on demand
ctx->gop_size = encoder.flags & LIMITED_GOP_SIZE ?
std::numeric_limits<std::int16_t>::max() :
std::numeric_limits<int>::max();
ctx->keyint_min = std::numeric_limits<int>::max();
// Some client decoders have limits on the number of reference frames
if (config.numRefFrames) {
if (video_format[encoder_t::REF_FRAMES_RESTRICT]) {
ctx->refs = config.numRefFrames;
}
else {
BOOST_LOG(warning) << "Client requested reference frame limit, but encoder doesn't support it!"sv;
}
}
ctx->flags |= (AV_CODEC_FLAG_CLOSED_GOP | AV_CODEC_FLAG_LOW_DELAY);
ctx->flags2 |= AV_CODEC_FLAG2_FAST;
auto avcodec_colorspace = avcodec_colorspace_from_sunshine_colorspace(colorspace);
ctx->color_range = avcodec_colorspace.range;
ctx->color_primaries = avcodec_colorspace.primaries;
ctx->color_trc = avcodec_colorspace.transfer_function;
ctx->colorspace = avcodec_colorspace.matrix;
// Used by cbs::make_sps_hevc
ctx->sw_pix_fmt = sw_fmt;
if (hardware) {
avcodec_buffer_t encoding_stream_context;
ctx->pix_fmt = platform_formats->avcodec_dev_pix_fmt;
// Create the base hwdevice context
auto buf_or_error = platform_formats->init_avcodec_hardware_input_buffer(encode_device.get());
if (buf_or_error.has_right()) {
return nullptr;
}
encoding_stream_context = std::move(buf_or_error.left());
// If this encoder requires derivation from the base, derive the desired type
if (platform_formats->avcodec_derived_dev_type != AV_HWDEVICE_TYPE_NONE) {
avcodec_buffer_t derived_context;
// Allow the hwdevice to prepare for this type of context to be derived
if (encode_device->prepare_to_derive_context(platform_formats->avcodec_derived_dev_type)) {
return nullptr;
}
auto err = av_hwdevice_ctx_create_derived(&derived_context, platform_formats->avcodec_derived_dev_type, encoding_stream_context.get(), 0);
if (err) {
char err_str[AV_ERROR_MAX_STRING_SIZE] { 0 };
BOOST_LOG(error) << "Failed to derive device context: "sv << av_make_error_string(err_str, AV_ERROR_MAX_STRING_SIZE, err);
return nullptr;
}
encoding_stream_context = std::move(derived_context);
}
// Initialize avcodec hardware frames
{
avcodec_buffer_t frame_ref { av_hwframe_ctx_alloc(encoding_stream_context.get()) };
auto frame_ctx = (AVHWFramesContext *) frame_ref->data;
frame_ctx->format = ctx->pix_fmt;
frame_ctx->sw_format = sw_fmt;
frame_ctx->height = ctx->height;
frame_ctx->width = ctx->width;
frame_ctx->initial_pool_size = 0;
// Allow the hwdevice to modify hwframe context parameters
encode_device->init_hwframes(frame_ctx);
if (auto err = av_hwframe_ctx_init(frame_ref.get()); err < 0) {
return nullptr;
}
ctx->hw_frames_ctx = av_buffer_ref(frame_ref.get());
}
ctx->slices = config.slicesPerFrame;
}
else /* software */ {
ctx->pix_fmt = sw_fmt;
// Clients will request for the fewest slices per frame to get the
// most efficient encode, but we may want to provide more slices than
// requested to ensure we have enough parallelism for good performance.
ctx->slices = std::max(config.slicesPerFrame, config::video.min_threads);
}
if (encoder.flags & SINGLE_SLICE_ONLY) {
ctx->slices = 1;
}
ctx->thread_type = FF_THREAD_SLICE;
ctx->thread_count = ctx->slices;
AVDictionary *options { nullptr };
auto handle_option = [&options](const encoder_t::option_t &option) {
std::visit(
util::overloaded {
[&](int v) { av_dict_set_int(&options, option.name.c_str(), v, 0); },
[&](int *v) { av_dict_set_int(&options, option.name.c_str(), *v, 0); },
[&](std::optional<int> *v) { if(*v) av_dict_set_int(&options, option.name.c_str(), **v, 0); },
[&](std::function<int()> v) { av_dict_set_int(&options, option.name.c_str(), v(), 0); },
[&](const std::string &v) { av_dict_set(&options, option.name.c_str(), v.c_str(), 0); },
[&](std::string *v) { if(!v->empty()) av_dict_set(&options, option.name.c_str(), v->c_str(), 0); } },
option.value);
};
// Apply common options, then format-specific overrides
for (auto &option : video_format.common_options) {
handle_option(option);
}
for (auto &option : (config.dynamicRange ? video_format.hdr_options : video_format.sdr_options)) {
handle_option(option);
}
if (retries > 0) {
for (auto &option : video_format.fallback_options) {
handle_option(option);
}
}
if (video_format[encoder_t::CBR]) {
auto bitrate = config.bitrate * 1000;
ctx->rc_max_rate = bitrate;
ctx->bit_rate = bitrate;
if (encoder.flags & CBR_WITH_VBR) {
// Ensure rc_max_bitrate != bit_rate to force VBR mode
ctx->bit_rate--;
}
else {
ctx->rc_min_rate = bitrate;
}
if (encoder.flags & RELAXED_COMPLIANCE) {
ctx->strict_std_compliance = FF_COMPLIANCE_UNOFFICIAL;
}
if (!(encoder.flags & NO_RC_BUF_LIMIT)) {
if (!hardware && (ctx->slices > 1 || config.videoFormat == 1)) {
// Use a larger rc_buffer_size for software encoding when slices are enabled,
// because libx264 can severely degrade quality if the buffer is too small.
// libx265 encounters this issue more frequently, so always scale the
// buffer by 1.5x for software HEVC encoding.
ctx->rc_buffer_size = bitrate / ((config.framerate * 10) / 15);
}
else {
ctx->rc_buffer_size = bitrate / config.framerate;
#ifndef __APPLE__
if (encoder.name == "nvenc" && config::video.nv_legacy.vbv_percentage_increase > 0) {
ctx->rc_buffer_size += ctx->rc_buffer_size * config::video.nv_legacy.vbv_percentage_increase / 100;
}
#endif
}
}
}
else if (video_format.qp) {
handle_option(*video_format.qp);
}
else {
BOOST_LOG(error) << "Couldn't set video quality: encoder "sv << encoder.name << " doesn't support qp"sv;
return nullptr;
}
if (auto status = avcodec_open2(ctx.get(), codec, &options)) {
char err_str[AV_ERROR_MAX_STRING_SIZE] { 0 };
if (!video_format.fallback_options.empty() && retries == 0) {
BOOST_LOG(info)
<< "Retrying with fallback configuration options for ["sv << video_format.name << "] after error: "sv
<< av_make_error_string(err_str, AV_ERROR_MAX_STRING_SIZE, status);
continue;
}
else {
BOOST_LOG(error)
<< "Could not open codec ["sv
<< video_format.name << "]: "sv
<< av_make_error_string(err_str, AV_ERROR_MAX_STRING_SIZE, status);
return nullptr;
}
}
// Successfully opened the codec
break;
}
avcodec_frame_t frame { av_frame_alloc() };
frame->format = ctx->pix_fmt;
frame->width = ctx->width;
frame->height = ctx->height;
frame->color_range = ctx->color_range;
frame->color_primaries = ctx->color_primaries;
frame->color_trc = ctx->color_trc;
frame->colorspace = ctx->colorspace;
frame->chroma_location = ctx->chroma_sample_location;
// Attach HDR metadata to the AVFrame
if (colorspace_is_hdr(colorspace)) {
SS_HDR_METADATA hdr_metadata;
if (disp->get_hdr_metadata(hdr_metadata)) {
auto mdm = av_mastering_display_metadata_create_side_data(frame.get());
mdm->display_primaries[0][0] = av_make_q(hdr_metadata.displayPrimaries[0].x, 50000);
mdm->display_primaries[0][1] = av_make_q(hdr_metadata.displayPrimaries[0].y, 50000);
mdm->display_primaries[1][0] = av_make_q(hdr_metadata.displayPrimaries[1].x, 50000);
mdm->display_primaries[1][1] = av_make_q(hdr_metadata.displayPrimaries[1].y, 50000);
mdm->display_primaries[2][0] = av_make_q(hdr_metadata.displayPrimaries[2].x, 50000);
mdm->display_primaries[2][1] = av_make_q(hdr_metadata.displayPrimaries[2].y, 50000);
mdm->white_point[0] = av_make_q(hdr_metadata.whitePoint.x, 50000);
mdm->white_point[1] = av_make_q(hdr_metadata.whitePoint.y, 50000);
mdm->min_luminance = av_make_q(hdr_metadata.minDisplayLuminance, 10000);
mdm->max_luminance = av_make_q(hdr_metadata.maxDisplayLuminance, 1);
mdm->has_luminance = hdr_metadata.maxDisplayLuminance != 0 ? 1 : 0;
mdm->has_primaries = hdr_metadata.displayPrimaries[0].x != 0 ? 1 : 0;
if (hdr_metadata.maxContentLightLevel != 0 || hdr_metadata.maxFrameAverageLightLevel != 0) {
auto clm = av_content_light_metadata_create_side_data(frame.get());
clm->MaxCLL = hdr_metadata.maxContentLightLevel;
clm->MaxFALL = hdr_metadata.maxFrameAverageLightLevel;
}
}
else {
BOOST_LOG(error) << "Couldn't get display hdr metadata when colorspace selection indicates it should have one";
}
}
std::unique_ptr<platf::avcodec_encode_device_t> encode_device_final;
if (!encode_device->data) {
auto software_encode_device = std::make_unique<avcodec_software_encode_device_t>();
if (software_encode_device->init(width, height, frame.get(), sw_fmt, hardware)) {
return nullptr;
}
software_encode_device->colorspace = colorspace;
encode_device_final = std::move(software_encode_device);
}
else {
encode_device_final = std::move(encode_device);
}
if (encode_device_final->set_frame(frame.release(), ctx->hw_frames_ctx)) {
return nullptr;
}
encode_device_final->apply_colorspace();
auto session = std::make_unique<avcodec_encode_session_t>(
std::move(ctx),
std::move(encode_device_final),
// 0 ==> don't inject, 1 ==> inject for h264, 2 ==> inject for hevc
config.videoFormat <= 1 ? (1 - (int) video_format[encoder_t::VUI_PARAMETERS]) * (1 + config.videoFormat) : 0);
return session;
}
std::unique_ptr<nvenc_encode_session_t>
make_nvenc_encode_session(const config_t &client_config, std::unique_ptr<platf::nvenc_encode_device_t> encode_device) {
if (!encode_device->init_encoder(client_config, encode_device->colorspace)) {
return nullptr;
}
return std::make_unique<nvenc_encode_session_t>(std::move(encode_device));
}
std::unique_ptr<encode_session_t>
make_encode_session(platf::display_t *disp, const encoder_t &encoder, const config_t &config, int width, int height, std::unique_ptr<platf::encode_device_t> encode_device) {
if (encode_device) {
switch (encode_device->colorspace.colorspace) {
case colorspace_e::bt2020:
BOOST_LOG(info) << "HDR color coding [Rec. 2020 + SMPTE 2084 PQ]"sv;
break;
case colorspace_e::rec601:
BOOST_LOG(info) << "SDR color coding [Rec. 601]"sv;
break;
case colorspace_e::rec709:
BOOST_LOG(info) << "SDR color coding [Rec. 709]"sv;
break;
case colorspace_e::bt2020sdr:
BOOST_LOG(info) << "SDR color coding [Rec. 2020]"sv;
break;
}
BOOST_LOG(info) << "Color depth: " << encode_device->colorspace.bit_depth << "-bit";
BOOST_LOG(info) << "Color range: ["sv << (encode_device->colorspace.full_range ? "JPEG"sv : "MPEG"sv) << ']';
}
if (dynamic_cast<platf::avcodec_encode_device_t *>(encode_device.get())) {
auto avcodec_encode_device = boost::dynamic_pointer_cast<platf::avcodec_encode_device_t>(std::move(encode_device));
return make_avcodec_encode_session(disp, encoder, config, width, height, std::move(avcodec_encode_device));
}
else if (dynamic_cast<platf::nvenc_encode_device_t *>(encode_device.get())) {
auto nvenc_encode_device = boost::dynamic_pointer_cast<platf::nvenc_encode_device_t>(std::move(encode_device));
return make_nvenc_encode_session(config, std::move(nvenc_encode_device));
}
return nullptr;
}
void
encode_run(
int &frame_nr, // Store progress of the frame number
safe::mail_t mail,
img_event_t images,
config_t config,
std::shared_ptr<platf::display_t> disp,
std::unique_ptr<platf::encode_device_t> encode_device,
safe::signal_t &reinit_event,
const encoder_t &encoder,
void *channel_data) {
auto session = make_encode_session(disp.get(), encoder, config, disp->width, disp->height, std::move(encode_device));
if (!session) {
return;
}
auto shutdown_event = mail->event<bool>(mail::shutdown);
auto packets = mail::man->queue<packet_t>(mail::video_packets);
auto idr_events = mail->event<bool>(mail::idr);
auto invalidate_ref_frames_events = mail->event<std::pair<int64_t, int64_t>>(mail::invalidate_ref_frames);
{
// Load a dummy image into the AVFrame to ensure we have something to encode
// even if we timeout waiting on the first frame. This is a relatively large
// allocation which can be freed immediately after convert(), so we do this
// in a separate scope.
auto dummy_img = disp->alloc_img();
if (!dummy_img || disp->dummy_img(dummy_img.get()) || session->convert(*dummy_img)) {
return;
}
}
while (true) {
if (shutdown_event->peek() || reinit_event.peek() || !images->running()) {
break;
}
bool requested_idr_frame = false;
while (invalidate_ref_frames_events->peek()) {
if (auto frames = invalidate_ref_frames_events->pop(0ms)) {
session->invalidate_ref_frames(frames->first, frames->second);
}
}
if (idr_events->peek()) {
requested_idr_frame = true;
idr_events->pop();
}
if (requested_idr_frame) {
session->request_idr_frame();
}
std::optional<std::chrono::steady_clock::time_point> frame_timestamp;
// Encode at a minimum of 10 FPS to avoid image quality issues with static content
if (!requested_idr_frame || images->peek()) {
if (auto img = images->pop(100ms)) {
frame_timestamp = img->frame_timestamp;
if (session->convert(*img)) {
BOOST_LOG(error) << "Could not convert image"sv;
return;
}
}
else if (!images->running()) {
break;
}
}
if (encode(frame_nr++, *session, packets, channel_data, frame_timestamp)) {
BOOST_LOG(error) << "Could not encode video packet"sv;
return;
}
session->request_normal_frame();
}
}
input::touch_port_t
make_port(platf::display_t *display, const config_t &config) {
float wd = display->width;
float hd = display->height;
float wt = config.width;
float ht = config.height;
auto scalar = std::fminf(wt / wd, ht / hd);
auto w2 = scalar * wd;
auto h2 = scalar * hd;
auto offsetX = (config.width - w2) * 0.5f;
auto offsetY = (config.height - h2) * 0.5f;
return input::touch_port_t {
{
display->offset_x,
display->offset_y,
config.width,
config.height,
},
display->env_width,
display->env_height,
offsetX,
offsetY,
1.0f / scalar,
};
}
std::unique_ptr<platf::encode_device_t>
make_encode_device(platf::display_t &disp, const encoder_t &encoder, const config_t &config) {
std::unique_ptr<platf::encode_device_t> result;
auto colorspace = colorspace_from_client_config(config, disp.is_hdr());
auto pix_fmt = (colorspace.bit_depth == 10) ? encoder.platform_formats->pix_fmt_10bit : encoder.platform_formats->pix_fmt_8bit;
if (dynamic_cast<const encoder_platform_formats_avcodec *>(encoder.platform_formats.get())) {
result = disp.make_avcodec_encode_device(pix_fmt);
}
else if (dynamic_cast<const encoder_platform_formats_nvenc *>(encoder.platform_formats.get())) {
result = disp.make_nvenc_encode_device(pix_fmt);
}
if (result) {
result->colorspace = colorspace;
}
return result;
}
std::optional<sync_session_t>
make_synced_session(platf::display_t *disp, const encoder_t &encoder, platf::img_t &img, sync_session_ctx_t &ctx) {
sync_session_t encode_session;
encode_session.ctx = &ctx;
auto encode_device = make_encode_device(*disp, encoder, ctx.config);
if (!encode_device) {
return std::nullopt;
}
// absolute mouse coordinates require that the dimensions of the screen are known
ctx.touch_port_events->raise(make_port(disp, ctx.config));
// Update client with our current HDR display state
hdr_info_t hdr_info = std::make_unique<hdr_info_raw_t>(false);
if (colorspace_is_hdr(encode_device->colorspace)) {
if (disp->get_hdr_metadata(hdr_info->metadata)) {
hdr_info->enabled = true;
}
else {
BOOST_LOG(error) << "Couldn't get display hdr metadata when colorspace selection indicates it should have one";
}
}
ctx.hdr_events->raise(std::move(hdr_info));
auto session = make_encode_session(disp, encoder, ctx.config, img.width, img.height, std::move(encode_device));
if (!session) {
return std::nullopt;
}
// Load the initial image to prepare for encoding
if (session->convert(img)) {
BOOST_LOG(error) << "Could not convert initial image"sv;
return std::nullopt;
}
encode_session.session = std::move(session);
return encode_session;
}
encode_e
encode_run_sync(
std::vector<std::unique_ptr<sync_session_ctx_t>> &synced_session_ctxs,
encode_session_ctx_queue_t &encode_session_ctx_queue,
std::vector<std::string> &display_names,
int &display_p) {
const auto &encoder = *chosen_encoder;
std::shared_ptr<platf::display_t> disp;
auto switch_display_event = mail::man->event<int>(mail::switch_display);
if (synced_session_ctxs.empty()) {
auto ctx = encode_session_ctx_queue.pop();
if (!ctx) {
return encode_e::ok;
}
synced_session_ctxs.emplace_back(std::make_unique<sync_session_ctx_t>(std::move(*ctx)));
}
while (encode_session_ctx_queue.running()) {
// Refresh display names since a display removal might have caused the reinitialization
refresh_displays(encoder.platform_formats->dev_type, display_names, display_p);
// Process any pending display switch with the new list of displays
if (switch_display_event->peek()) {
display_p = std::clamp(*switch_display_event->pop(), 0, (int) display_names.size() - 1);
}
// reset_display() will sleep between retries
reset_display(disp, encoder.platform_formats->dev_type, display_names[display_p], synced_session_ctxs.front()->config);
if (disp) {
break;
}
}
if (!disp) {
return encode_e::error;
}
auto img = disp->alloc_img();
if (!img || disp->dummy_img(img.get())) {
return encode_e::error;
}
std::vector<sync_session_t> synced_sessions;
for (auto &ctx : synced_session_ctxs) {
auto synced_session = make_synced_session(disp.get(), encoder, *img, *ctx);
if (!synced_session) {
return encode_e::error;
}
synced_sessions.emplace_back(std::move(*synced_session));
}
auto ec = platf::capture_e::ok;
while (encode_session_ctx_queue.running()) {
auto push_captured_image_callback = [&](std::shared_ptr<platf::img_t> &&img, bool frame_captured) -> bool {
while (encode_session_ctx_queue.peek()) {
auto encode_session_ctx = encode_session_ctx_queue.pop();
if (!encode_session_ctx) {
return false;
}
synced_session_ctxs.emplace_back(std::make_unique<sync_session_ctx_t>(std::move(*encode_session_ctx)));
auto encode_session = make_synced_session(disp.get(), encoder, *img, *synced_session_ctxs.back());
if (!encode_session) {
ec = platf::capture_e::error;
return false;
}
synced_sessions.emplace_back(std::move(*encode_session));
}
KITTY_WHILE_LOOP(auto pos = std::begin(synced_sessions), pos != std::end(synced_sessions), {
auto ctx = pos->ctx;
if (ctx->shutdown_event->peek()) {
// Let waiting thread know it can delete shutdown_event
ctx->join_event->raise(true);
pos = synced_sessions.erase(pos);
synced_session_ctxs.erase(std::find_if(std::begin(synced_session_ctxs), std::end(synced_session_ctxs), [&ctx_p = ctx](auto &ctx) {
return ctx.get() == ctx_p;
}));
if (synced_sessions.empty()) {
return false;
}
continue;
}
if (ctx->idr_events->peek()) {
pos->session->request_idr_frame();
ctx->idr_events->pop();
}
if (frame_captured && pos->session->convert(*img)) {
BOOST_LOG(error) << "Could not convert image"sv;
ctx->shutdown_event->raise(true);
continue;
}
std::optional<std::chrono::steady_clock::time_point> frame_timestamp;
if (img) {
frame_timestamp = img->frame_timestamp;
}
if (encode(ctx->frame_nr++, *pos->session, ctx->packets, ctx->channel_data, frame_timestamp)) {
BOOST_LOG(error) << "Could not encode video packet"sv;
ctx->shutdown_event->raise(true);
continue;
}
pos->session->request_normal_frame();
++pos;
})
if (switch_display_event->peek()) {
ec = platf::capture_e::reinit;
return false;
}
return true;
};
auto pull_free_image_callback = [&img](std::shared_ptr<platf::img_t> &img_out) -> bool {
img_out = img;
img_out->frame_timestamp.reset();
return true;
};
auto status = disp->capture(push_captured_image_callback, pull_free_image_callback, &display_cursor);
switch (status) {
case platf::capture_e::reinit:
case platf::capture_e::error:
case platf::capture_e::ok:
case platf::capture_e::timeout:
case platf::capture_e::interrupted:
return ec != platf::capture_e::ok ? ec : status;
}
}
return encode_e::ok;
}
void
captureThreadSync() {
auto ref = capture_thread_sync.ref();
std::vector<std::unique_ptr<sync_session_ctx_t>> synced_session_ctxs;
auto &ctx = ref->encode_session_ctx_queue;
auto lg = util::fail_guard([&]() {
ctx.stop();
for (auto &ctx : synced_session_ctxs) {
ctx->shutdown_event->raise(true);
ctx->join_event->raise(true);
}
for (auto &ctx : ctx.unsafe()) {
ctx.shutdown_event->raise(true);
ctx.join_event->raise(true);
}
});
// Encoding and capture takes place on this thread
platf::adjust_thread_priority(platf::thread_priority_e::high);
std::vector<std::string> display_names;
int display_p = -1;
while (encode_run_sync(synced_session_ctxs, ctx, display_names, display_p) == encode_e::reinit) {}
}
void
capture_async(
safe::mail_t mail,
config_t &config,
void *channel_data) {
auto shutdown_event = mail->event<bool>(mail::shutdown);
auto images = std::make_shared<img_event_t::element_type>();
auto lg = util::fail_guard([&]() {
images->stop();
shutdown_event->raise(true);
});
auto ref = capture_thread_async.ref();
if (!ref) {
return;
}
ref->capture_ctx_queue->raise(capture_ctx_t { images, config });
if (!ref->capture_ctx_queue->running()) {
return;
}
int frame_nr = 1;
auto touch_port_event = mail->event<input::touch_port_t>(mail::touch_port);
auto hdr_event = mail->event<hdr_info_t>(mail::hdr);
// Encoding takes place on this thread
platf::adjust_thread_priority(platf::thread_priority_e::high);
while (!shutdown_event->peek() && images->running()) {
// Wait for the main capture event when the display is being reinitialized
if (ref->reinit_event.peek()) {
std::this_thread::sleep_for(20ms);
continue;
}
// Wait for the display to be ready
std::shared_ptr<platf::display_t> display;
{
auto lg = ref->display_wp.lock();
if (ref->display_wp->expired()) {
continue;
}
display = ref->display_wp->lock();
}
auto &encoder = *chosen_encoder;
auto encode_device = make_encode_device(*display, encoder, config);
if (!encode_device) {
return;
}
// absolute mouse coordinates require that the dimensions of the screen are known
touch_port_event->raise(make_port(display.get(), config));
// Update client with our current HDR display state
hdr_info_t hdr_info = std::make_unique<hdr_info_raw_t>(false);
if (colorspace_is_hdr(encode_device->colorspace)) {
if (display->get_hdr_metadata(hdr_info->metadata)) {
hdr_info->enabled = true;
}
else {
BOOST_LOG(error) << "Couldn't get display hdr metadata when colorspace selection indicates it should have one";
}
}
hdr_event->raise(std::move(hdr_info));
encode_run(
frame_nr,
mail, images,
config, display,
std::move(encode_device),
ref->reinit_event, *ref->encoder_p,
channel_data);
}
}
void
capture(
safe::mail_t mail,
config_t config,
void *channel_data) {
auto idr_events = mail->event<bool>(mail::idr);
idr_events->raise(true);
if (chosen_encoder->flags & PARALLEL_ENCODING) {
capture_async(std::move(mail), config, channel_data);
}
else {
safe::signal_t join_event;
auto ref = capture_thread_sync.ref();
ref->encode_session_ctx_queue.raise(sync_session_ctx_t {
&join_event,
mail->event<bool>(mail::shutdown),
mail::man->queue<packet_t>(mail::video_packets),
std::move(idr_events),
mail->event<hdr_info_t>(mail::hdr),
mail->event<input::touch_port_t>(mail::touch_port),
config,
1,
channel_data,
});
// Wait for join signal
join_event.view();
}
}
enum validate_flag_e {
VUI_PARAMS = 0x01,
};
int
validate_config(std::shared_ptr<platf::display_t> &disp, const encoder_t &encoder, const config_t &config) {
reset_display(disp, encoder.platform_formats->dev_type, config::video.output_name, config);
if (!disp) {
return -1;
}
auto encode_device = make_encode_device(*disp, encoder, config);
if (!encode_device) {
return -1;
}
auto session = make_encode_session(disp.get(), encoder, config, disp->width, disp->height, std::move(encode_device));
if (!session) {
return -1;
}
{
// Image buffers are large, so we use a separate scope to free it immediately after convert()
auto img = disp->alloc_img();
if (!img || disp->dummy_img(img.get()) || session->convert(*img)) {
return -1;
}
}
session->request_idr_frame();
auto packets = mail::man->queue<packet_t>(mail::video_packets);
while (!packets->peek()) {
if (encode(1, *session, packets, nullptr, {})) {
return -1;
}
}
auto packet = packets->pop();
if (!packet->is_idr()) {
BOOST_LOG(error) << "First packet type is not an IDR frame"sv;
return -1;
}
int flag = 0;
// This check only applies for H.264 and HEVC
if (config.videoFormat <= 1) {
if (auto packet_avcodec = dynamic_cast<packet_raw_avcodec *>(packet.get())) {
if (cbs::validate_sps(packet_avcodec->av_packet, config.videoFormat ? AV_CODEC_ID_H265 : AV_CODEC_ID_H264)) {
flag |= VUI_PARAMS;
}
}
else {
// Don't check it for non-avcodec encoders.
flag |= VUI_PARAMS;
}
}
return flag;
}
bool
validate_encoder(encoder_t &encoder, bool expect_failure) {
std::shared_ptr<platf::display_t> disp;
BOOST_LOG(info) << "Trying encoder ["sv << encoder.name << ']';
auto fg = util::fail_guard([&]() {
BOOST_LOG(info) << "Encoder ["sv << encoder.name << "] failed"sv;
});
auto test_hevc = active_hevc_mode >= 2 || (active_hevc_mode == 0 && !(encoder.flags & H264_ONLY));
auto test_av1 = active_av1_mode >= 2 || (active_av1_mode == 0 && !(encoder.flags & H264_ONLY));
encoder.h264.capabilities.set();
encoder.hevc.capabilities.set();
encoder.av1.capabilities.set();
// First, test encoder viability
config_t config_max_ref_frames { 1920, 1080, 60, 1000, 1, 1, 1, 0, 0 };
config_t config_autoselect { 1920, 1080, 60, 1000, 1, 0, 1, 0, 0 };
// If the encoder isn't supported at all (not even H.264), bail early
reset_display(disp, encoder.platform_formats->dev_type, config::video.output_name, config_autoselect);
if (!disp) {
return false;
}
if (!disp->is_codec_supported(encoder.h264.name, config_autoselect)) {
fg.disable();
BOOST_LOG(info) << "Encoder ["sv << encoder.name << "] is not supported on this GPU"sv;
return false;
}
retry:
// If we're expecting failure, use the autoselect ref config first since that will always succeed
// if the encoder is available.
auto max_ref_frames_h264 = expect_failure ? -1 : validate_config(disp, encoder, config_max_ref_frames);
auto autoselect_h264 = max_ref_frames_h264 >= 0 ? max_ref_frames_h264 : validate_config(disp, encoder, config_autoselect);
if (autoselect_h264 < 0) {
if (encoder.h264.qp && encoder.h264[encoder_t::CBR]) {
// It's possible the encoder isn't accepting Constant Bit Rate. Turn off CBR and make another attempt
encoder.h264.capabilities.set();
encoder.h264[encoder_t::CBR] = false;
goto retry;
}
return false;
}
else if (expect_failure) {
// We expected failure, but actually succeeded. Do the max_ref_frames probe we skipped.
max_ref_frames_h264 = validate_config(disp, encoder, config_max_ref_frames);
}
std::vector<std::pair<validate_flag_e, encoder_t::flag_e>> packet_deficiencies {
{ VUI_PARAMS, encoder_t::VUI_PARAMETERS },
};
for (auto [validate_flag, encoder_flag] : packet_deficiencies) {
encoder.h264[encoder_flag] = (max_ref_frames_h264 & validate_flag && autoselect_h264 & validate_flag);
}
encoder.h264[encoder_t::REF_FRAMES_RESTRICT] = max_ref_frames_h264 >= 0;
encoder.h264[encoder_t::PASSED] = true;
if (test_hevc) {
config_max_ref_frames.videoFormat = 1;
config_autoselect.videoFormat = 1;
if (disp->is_codec_supported(encoder.hevc.name, config_autoselect)) {
retry_hevc:
auto max_ref_frames_hevc = validate_config(disp, encoder, config_max_ref_frames);
auto autoselect_hevc = max_ref_frames_hevc >= 0 ? max_ref_frames_hevc : validate_config(disp, encoder, config_autoselect);
if (autoselect_hevc < 0 && encoder.hevc.qp && encoder.hevc[encoder_t::CBR]) {
// It's possible the encoder isn't accepting Constant Bit Rate. Turn off CBR and make another attempt
encoder.hevc.capabilities.set();
encoder.hevc[encoder_t::CBR] = false;
goto retry_hevc;
}
for (auto [validate_flag, encoder_flag] : packet_deficiencies) {
encoder.hevc[encoder_flag] = (max_ref_frames_hevc & validate_flag && autoselect_hevc & validate_flag);
}
encoder.hevc[encoder_t::REF_FRAMES_RESTRICT] = max_ref_frames_hevc >= 0;
encoder.hevc[encoder_t::PASSED] = max_ref_frames_hevc >= 0 || autoselect_hevc >= 0;
}
else {
BOOST_LOG(info) << "Encoder ["sv << encoder.hevc.name << "] is not supported on this GPU"sv;
encoder.hevc.capabilities.reset();
}
}
else {
// Clear all cap bits for HEVC if we didn't probe it
encoder.hevc.capabilities.reset();
}
if (test_av1) {
config_max_ref_frames.videoFormat = 2;
config_autoselect.videoFormat = 2;
if (disp->is_codec_supported(encoder.av1.name, config_autoselect)) {
retry_av1:
auto max_ref_frames_av1 = validate_config(disp, encoder, config_max_ref_frames);
auto autoselect_av1 = max_ref_frames_av1 >= 0 ? max_ref_frames_av1 : validate_config(disp, encoder, config_autoselect);
if (autoselect_av1 < 0 && encoder.av1.qp && encoder.av1[encoder_t::CBR]) {
// It's possible the encoder isn't accepting Constant Bit Rate. Turn off CBR and make another attempt
encoder.av1.capabilities.set();
encoder.av1[encoder_t::CBR] = false;
goto retry_av1;
}
for (auto [validate_flag, encoder_flag] : packet_deficiencies) {
encoder.av1[encoder_flag] = (max_ref_frames_av1 & validate_flag && autoselect_av1 & validate_flag);
}
encoder.av1[encoder_t::REF_FRAMES_RESTRICT] = max_ref_frames_av1 >= 0;
encoder.av1[encoder_t::PASSED] = max_ref_frames_av1 >= 0 || autoselect_av1 >= 0;
}
else {
BOOST_LOG(info) << "Encoder ["sv << encoder.av1.name << "] is not supported on this GPU"sv;
encoder.av1.capabilities.reset();
}
}
else {
// Clear all cap bits for AV1 if we didn't probe it
encoder.av1.capabilities.reset();
}
std::vector<std::pair<encoder_t::flag_e, config_t>> configs {
{ encoder_t::DYNAMIC_RANGE, { 1920, 1080, 60, 1000, 1, 0, 3, 1, 1 } },
};
for (auto &[flag, config] : configs) {
auto h264 = config;
auto hevc = config;
auto av1 = config;
h264.videoFormat = 0;
hevc.videoFormat = 1;
av1.videoFormat = 2;
// HDR is not supported with H.264. Don't bother even trying it.
encoder.h264[flag] = flag != encoder_t::DYNAMIC_RANGE && validate_config(disp, encoder, h264) >= 0;
if (encoder.hevc[encoder_t::PASSED]) {
encoder.hevc[flag] = validate_config(disp, encoder, hevc) >= 0;
}
if (encoder.av1[encoder_t::PASSED]) {
encoder.av1[flag] = validate_config(disp, encoder, av1) >= 0;
}
}
encoder.h264[encoder_t::VUI_PARAMETERS] = encoder.h264[encoder_t::VUI_PARAMETERS] && !config::sunshine.flags[config::flag::FORCE_VIDEO_HEADER_REPLACE];
encoder.hevc[encoder_t::VUI_PARAMETERS] = encoder.hevc[encoder_t::VUI_PARAMETERS] && !config::sunshine.flags[config::flag::FORCE_VIDEO_HEADER_REPLACE];
if (!encoder.h264[encoder_t::VUI_PARAMETERS]) {
BOOST_LOG(warning) << encoder.name << ": h264 missing sps->vui parameters"sv;
}
if (encoder.hevc[encoder_t::PASSED] && !encoder.hevc[encoder_t::VUI_PARAMETERS]) {
BOOST_LOG(warning) << encoder.name << ": hevc missing sps->vui parameters"sv;
}
fg.disable();
return true;
}
/**
* This is called once at startup and each time a stream is launched to
* ensure the best encoder is selected. Encoder availability can change
* at runtime due to all sorts of things from driver updates to eGPUs.
*
* This is only safe to call when there is no client actively streaming.
*/
int
probe_encoders() {
auto encoder_list = encoders;
// Restart encoder selection
auto previous_encoder = chosen_encoder;
chosen_encoder = nullptr;
active_hevc_mode = config::video.hevc_mode;
active_av1_mode = config::video.av1_mode;
last_encoder_probe_supported_ref_frames_invalidation = false;
auto adjust_encoder_constraints = [&](encoder_t *encoder) {
// If we can't satisfy both the encoder and codec requirement, prefer the encoder over codec support
if (active_hevc_mode == 3 && !encoder->hevc[encoder_t::DYNAMIC_RANGE]) {
BOOST_LOG(warning) << "Encoder ["sv << encoder->name << "] does not support HEVC Main10 on this system"sv;
active_hevc_mode = 0;
}
else if (active_hevc_mode == 2 && !encoder->hevc[encoder_t::PASSED]) {
BOOST_LOG(warning) << "Encoder ["sv << encoder->name << "] does not support HEVC on this system"sv;
active_hevc_mode = 0;
}
if (active_av1_mode == 3 && !encoder->av1[encoder_t::DYNAMIC_RANGE]) {
BOOST_LOG(warning) << "Encoder ["sv << encoder->name << "] does not support AV1 Main10 on this system"sv;
active_av1_mode = 0;
}
else if (active_av1_mode == 2 && !encoder->av1[encoder_t::PASSED]) {
BOOST_LOG(warning) << "Encoder ["sv << encoder->name << "] does not support AV1 on this system"sv;
active_av1_mode = 0;
}
};
if (!config::video.encoder.empty()) {
// If there is a specific encoder specified, use it if it passes validation
KITTY_WHILE_LOOP(auto pos = std::begin(encoder_list), pos != std::end(encoder_list), {
auto encoder = *pos;
if (encoder->name == config::video.encoder) {
// Remove the encoder from the list entirely if it fails validation
if (!validate_encoder(*encoder, previous_encoder && previous_encoder != encoder)) {
pos = encoder_list.erase(pos);
break;
}
// We will return an encoder here even if it fails one of the codec requirements specified by the user
adjust_encoder_constraints(encoder);
chosen_encoder = encoder;
break;
}
pos++;
});
if (chosen_encoder == nullptr) {
BOOST_LOG(error) << "Couldn't find any working encoder matching ["sv << config::video.encoder << ']';
}
}
BOOST_LOG(info) << "// Testing for available encoders, this may generate errors. You can safely ignore those errors. //"sv;
// If we haven't found an encoder yet, but we want one with specific codec support, search for that now.
if (chosen_encoder == nullptr && (active_hevc_mode >= 2 || active_av1_mode >= 2)) {
KITTY_WHILE_LOOP(auto pos = std::begin(encoder_list), pos != std::end(encoder_list), {
auto encoder = *pos;
// Remove the encoder from the list entirely if it fails validation
if (!validate_encoder(*encoder, previous_encoder && previous_encoder != encoder)) {
pos = encoder_list.erase(pos);
continue;
}
// Skip it if it doesn't support the specified codec at all
if ((active_hevc_mode >= 2 && !encoder->hevc[encoder_t::PASSED]) ||
(active_av1_mode >= 2 && !encoder->av1[encoder_t::PASSED])) {
pos++;
continue;
}
// Skip it if it doesn't support HDR on the specified codec
if ((active_hevc_mode == 3 && !encoder->hevc[encoder_t::DYNAMIC_RANGE]) ||
(active_av1_mode == 3 && !encoder->av1[encoder_t::DYNAMIC_RANGE])) {
pos++;
continue;
}
chosen_encoder = encoder;
break;
});
if (chosen_encoder == nullptr) {
BOOST_LOG(error) << "Couldn't find any working encoder that meets HEVC/AV1 requirements"sv;
}
}
// If no encoder was specified or the specified encoder was unusable, keep trying
// the remaining encoders until we find one that passes validation.
if (chosen_encoder == nullptr) {
KITTY_WHILE_LOOP(auto pos = std::begin(encoder_list), pos != std::end(encoder_list), {
auto encoder = *pos;
// If we've used a previous encoder and it's not this one, we expect this encoder to
// fail to validate. It will use a slightly different order of checks to more quickly
// eliminate failing encoders.
if (!validate_encoder(*encoder, previous_encoder && previous_encoder != encoder)) {
pos = encoder_list.erase(pos);
continue;
}
// We will return an encoder here even if it fails one of the codec requirements specified by the user
adjust_encoder_constraints(encoder);
chosen_encoder = encoder;
break;
});
}
if (chosen_encoder == nullptr) {
BOOST_LOG(fatal) << "Couldn't find any working encoder"sv;
return -1;
}
BOOST_LOG(info);
BOOST_LOG(info) << "// Ignore any errors mentioned above, they are not relevant. //"sv;
BOOST_LOG(info);
auto &encoder = *chosen_encoder;
last_encoder_probe_supported_ref_frames_invalidation = (encoder.flags & REF_FRAMES_INVALIDATION);
BOOST_LOG(debug) << "------ h264 ------"sv;
for (int x = 0; x < encoder_t::MAX_FLAGS; ++x) {
auto flag = (encoder_t::flag_e) x;
BOOST_LOG(debug) << encoder_t::from_flag(flag) << (encoder.h264[flag] ? ": supported"sv : ": unsupported"sv);
}
BOOST_LOG(debug) << "-------------------"sv;
BOOST_LOG(info) << "Found H.264 encoder: "sv << encoder.h264.name << " ["sv << encoder.name << ']';
if (encoder.hevc[encoder_t::PASSED]) {
BOOST_LOG(debug) << "------ hevc ------"sv;
for (int x = 0; x < encoder_t::MAX_FLAGS; ++x) {
auto flag = (encoder_t::flag_e) x;
BOOST_LOG(debug) << encoder_t::from_flag(flag) << (encoder.hevc[flag] ? ": supported"sv : ": unsupported"sv);
}
BOOST_LOG(debug) << "-------------------"sv;
BOOST_LOG(info) << "Found HEVC encoder: "sv << encoder.hevc.name << " ["sv << encoder.name << ']';
}
if (encoder.av1[encoder_t::PASSED]) {
BOOST_LOG(debug) << "------ av1 ------"sv;
for (int x = 0; x < encoder_t::MAX_FLAGS; ++x) {
auto flag = (encoder_t::flag_e) x;
BOOST_LOG(debug) << encoder_t::from_flag(flag) << (encoder.av1[flag] ? ": supported"sv : ": unsupported"sv);
}
BOOST_LOG(debug) << "-------------------"sv;
BOOST_LOG(info) << "Found AV1 encoder: "sv << encoder.av1.name << " ["sv << encoder.name << ']';
}
if (active_hevc_mode == 0) {
active_hevc_mode = encoder.hevc[encoder_t::PASSED] ? (encoder.hevc[encoder_t::DYNAMIC_RANGE] ? 3 : 2) : 1;
}
if (active_av1_mode == 0) {
active_av1_mode = encoder.av1[encoder_t::PASSED] ? (encoder.av1[encoder_t::DYNAMIC_RANGE] ? 3 : 2) : 1;
}
return 0;
}
// Linux only declaration
typedef int (*vaapi_init_avcodec_hardware_input_buffer_fn)(platf::avcodec_encode_device_t *encode_device, AVBufferRef **hw_device_buf);
util::Either<avcodec_buffer_t, int>
vaapi_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *encode_device) {
avcodec_buffer_t hw_device_buf;
// If an egl hwdevice
if (encode_device->data) {
if (((vaapi_init_avcodec_hardware_input_buffer_fn) encode_device->data)(encode_device, &hw_device_buf)) {
return -1;
}
return hw_device_buf;
}
auto render_device = config::video.adapter_name.empty() ? nullptr : config::video.adapter_name.c_str();
auto status = av_hwdevice_ctx_create(&hw_device_buf, AV_HWDEVICE_TYPE_VAAPI, render_device, nullptr, 0);
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Failed to create a VAAPI device: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
return hw_device_buf;
}
util::Either<avcodec_buffer_t, int>
cuda_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *encode_device) {
avcodec_buffer_t hw_device_buf;
auto status = av_hwdevice_ctx_create(&hw_device_buf, AV_HWDEVICE_TYPE_CUDA, nullptr, nullptr, 1 /* AV_CUDA_USE_PRIMARY_CONTEXT */);
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Failed to create a CUDA device: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
return hw_device_buf;
}
util::Either<avcodec_buffer_t, int>
vt_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *encode_device) {
avcodec_buffer_t hw_device_buf;
auto status = av_hwdevice_ctx_create(&hw_device_buf, AV_HWDEVICE_TYPE_VIDEOTOOLBOX, nullptr, nullptr, 0);
if (status < 0) {
char string[AV_ERROR_MAX_STRING_SIZE];
BOOST_LOG(error) << "Failed to create a VideoToolbox device: "sv << av_make_error_string(string, AV_ERROR_MAX_STRING_SIZE, status);
return -1;
}
return hw_device_buf;
}
#ifdef _WIN32
}
void
do_nothing(void *) {}
namespace video {
util::Either<avcodec_buffer_t, int>
dxgi_init_avcodec_hardware_input_buffer(platf::avcodec_encode_device_t *encode_device) {
avcodec_buffer_t ctx_buf { av_hwdevice_ctx_alloc(AV_HWDEVICE_TYPE_D3D11VA) };
auto ctx = (AVD3D11VADeviceContext *) ((AVHWDeviceContext *) ctx_buf->data)->hwctx;
std::fill_n((std::uint8_t *) ctx, sizeof(AVD3D11VADeviceContext), 0);
auto device = (ID3D11Device *) encode_device->data;
device->AddRef();
ctx->device = device;
ctx->lock_ctx = (void *) 1;
ctx->lock = do_nothing;
ctx->unlock = do_nothing;
auto err = av_hwdevice_ctx_init(ctx_buf.get());
if (err) {
char err_str[AV_ERROR_MAX_STRING_SIZE] { 0 };
BOOST_LOG(error) << "Failed to create FFMpeg hardware device context: "sv << av_make_error_string(err_str, AV_ERROR_MAX_STRING_SIZE, err);
return err;
}
return ctx_buf;
}
#endif
int
start_capture_async(capture_thread_async_ctx_t &capture_thread_ctx) {
capture_thread_ctx.encoder_p = chosen_encoder;
capture_thread_ctx.reinit_event.reset();
capture_thread_ctx.capture_ctx_queue = std::make_shared<safe::queue_t<capture_ctx_t>>(30);
capture_thread_ctx.capture_thread = std::thread {
captureThread,
capture_thread_ctx.capture_ctx_queue,
std::ref(capture_thread_ctx.display_wp),
std::ref(capture_thread_ctx.reinit_event),
std::ref(*capture_thread_ctx.encoder_p)
};
return 0;
}
void
end_capture_async(capture_thread_async_ctx_t &capture_thread_ctx) {
capture_thread_ctx.capture_ctx_queue->stop();
capture_thread_ctx.capture_thread.join();
}
int
start_capture_sync(capture_thread_sync_ctx_t &ctx) {
std::thread { &captureThreadSync }.detach();
return 0;
}
void
end_capture_sync(capture_thread_sync_ctx_t &ctx) {}
platf::mem_type_e
map_base_dev_type(AVHWDeviceType type) {
switch (type) {
case AV_HWDEVICE_TYPE_D3D11VA:
return platf::mem_type_e::dxgi;
case AV_HWDEVICE_TYPE_VAAPI:
return platf::mem_type_e::vaapi;
case AV_HWDEVICE_TYPE_CUDA:
return platf::mem_type_e::cuda;
case AV_HWDEVICE_TYPE_NONE:
return platf::mem_type_e::system;
case AV_HWDEVICE_TYPE_VIDEOTOOLBOX:
return platf::mem_type_e::videotoolbox;
default:
return platf::mem_type_e::unknown;
}
return platf::mem_type_e::unknown;
}
platf::pix_fmt_e
map_pix_fmt(AVPixelFormat fmt) {
switch (fmt) {
case AV_PIX_FMT_YUV420P10:
return platf::pix_fmt_e::yuv420p10;
case AV_PIX_FMT_YUV420P:
return platf::pix_fmt_e::yuv420p;
case AV_PIX_FMT_NV12:
return platf::pix_fmt_e::nv12;
case AV_PIX_FMT_P010:
return platf::pix_fmt_e::p010;
default:
return platf::pix_fmt_e::unknown;
}
return platf::pix_fmt_e::unknown;
}
} // namespace video