Sunshine/sunshine/thread_safe.h
2021-05-18 13:36:12 +02:00

432 lines
8.4 KiB
C++

//
// Created by loki on 6/10/19.
//
#ifndef SUNSHINE_THREAD_SAFE_H
#define SUNSHINE_THREAD_SAFE_H
#include <atomic>
#include <condition_variable>
#include <functional>
#include <mutex>
#include <vector>
#include "utility.h"
namespace safe {
template<class T>
class event_t {
public:
using status_t = util::optional_t<T>;
template<class... Args>
void raise(Args &&...args) {
std::lock_guard lg { _lock };
if(!_continue) {
return;
}
if constexpr(std::is_same_v<std::optional<T>, status_t>) {
_status = std::make_optional<T>(std::forward<Args>(args)...);
}
else {
_status = status_t { std::forward<Args>(args)... };
}
_cv.notify_all();
}
// pop and view shoud not be used interchangebly
status_t pop() {
std::unique_lock ul { _lock };
if(!_continue) {
return util::false_v<status_t>;
}
while(!_status) {
_cv.wait(ul);
if(!_continue) {
return util::false_v<status_t>;
}
}
auto val = std::move(_status);
_status = util::false_v<status_t>;
return val;
}
// pop and view shoud not be used interchangebly
template<class Rep, class Period>
status_t pop(std::chrono::duration<Rep, Period> delay) {
std::unique_lock ul { _lock };
if(!_continue) {
return util::false_v<status_t>;
}
while(!_status) {
if(!_continue || _cv.wait_for(ul, delay) == std::cv_status::timeout) {
return util::false_v<status_t>;
}
}
auto val = std::move(_status);
_status = util::false_v<status_t>;
return val;
}
// pop and view shoud not be used interchangebly
const status_t &view() {
std::unique_lock ul { _lock };
if(!_continue) {
return util::false_v<status_t>;
}
while(!_status) {
_cv.wait(ul);
if(!_continue) {
return util::false_v<status_t>;
}
}
return _status;
}
bool peek() {
std::lock_guard lg { _lock };
return _continue && (bool)_status;
}
void stop() {
std::lock_guard lg { _lock };
_continue = false;
_cv.notify_all();
}
void reset() {
std::lock_guard lg { _lock };
_continue = true;
_status = util::false_v<status_t>;
}
[[nodiscard]] bool running() const {
return _continue;
}
private:
bool _continue { true };
status_t _status { util::false_v<status_t> };
std::condition_variable _cv;
std::mutex _lock;
};
template<class T>
class alarm_raw_t {
public:
using status_t = util::optional_t<T>;
alarm_raw_t() : _status { util::false_v<status_t> } {}
void ring(const status_t &status) {
std::lock_guard lg(_lock);
_status = status;
_cv.notify_one();
}
void ring(status_t &&status) {
std::lock_guard lg(_lock);
_status = std::move(status);
_cv.notify_one();
}
template<class Rep, class Period>
auto wait_for(const std::chrono::duration<Rep, Period> &rel_time) {
std::unique_lock ul(_lock);
return _cv.wait_for(ul, rel_time, [this]() { return (bool)status(); });
}
template<class Rep, class Period, class Pred>
auto wait_for(const std::chrono::duration<Rep, Period> &rel_time, Pred &&pred) {
std::unique_lock ul(_lock);
return _cv.wait_for(ul, rel_time, [this, &pred]() { return (bool)status() || pred(); });
}
template<class Rep, class Period>
auto wait_until(const std::chrono::duration<Rep, Period> &rel_time) {
std::unique_lock ul(_lock);
return _cv.wait_until(ul, rel_time, [this]() { return (bool)status(); });
}
template<class Rep, class Period, class Pred>
auto wait_until(const std::chrono::duration<Rep, Period> &rel_time, Pred &&pred) {
std::unique_lock ul(_lock);
return _cv.wait_until(ul, rel_time, [this, &pred]() { return (bool)status() || pred(); });
}
auto wait() {
std::unique_lock ul(_lock);
_cv.wait(ul, [this]() { return (bool)status(); });
}
template<class Pred>
auto wait(Pred &&pred) {
std::unique_lock ul(_lock);
_cv.wait(ul, [this, &pred]() { return (bool)status() || pred(); });
}
const status_t &status() const {
return _status;
}
status_t &status() {
return _status;
}
void reset() {
_status = status_t {};
}
private:
std::mutex _lock;
std::condition_variable _cv;
status_t _status;
};
template<class T>
using alarm_t = std::shared_ptr<alarm_raw_t<T>>;
template<class T>
alarm_t<T> make_alarm() {
return std::make_shared<alarm_raw_t<T>>();
}
template<class T>
class queue_t {
public:
using status_t = util::optional_t<T>;
queue_t(std::uint32_t max_elements) : _max_elements { max_elements } {}
template<class... Args>
void raise(Args &&...args) {
std::lock_guard ul { _lock };
if(!_continue) {
return;
}
if(_queue.size() == _max_elements) {
_queue.clear();
}
_queue.emplace_back(std::forward<Args>(args)...);
_cv.notify_all();
}
bool peek() {
std::lock_guard lg { _lock };
return _continue && !_queue.empty();
}
template<class Rep, class Period>
status_t pop(std::chrono::duration<Rep, Period> delay) {
std::unique_lock ul { _lock };
if(!_continue) {
return util::false_v<status_t>;
}
while(_queue.empty()) {
if(!_continue || _cv.wait_for(ul, delay) == std::cv_status::timeout) {
return util::false_v<status_t>;
}
}
auto val = std::move(_queue.front());
_queue.erase(std::begin(_queue));
return val;
}
status_t pop() {
std::unique_lock ul { _lock };
if(!_continue) {
return util::false_v<status_t>;
}
while(_queue.empty()) {
_cv.wait(ul);
if(!_continue) {
return util::false_v<status_t>;
}
}
auto val = std::move(_queue.front());
_queue.erase(std::begin(_queue));
return val;
}
std::vector<T> &unsafe() {
return _queue;
}
void stop() {
std::lock_guard lg { _lock };
_continue = false;
_cv.notify_all();
}
[[nodiscard]] bool running() const {
return _continue;
}
private:
bool _continue { true };
std::uint32_t _max_elements;
std::mutex _lock;
std::condition_variable _cv;
std::vector<T> _queue;
};
template<class T>
class shared_t {
public:
using element_type = T;
using construct_f = std::function<int(element_type &)>;
using destruct_f = std::function<void(element_type &)>;
struct ptr_t {
shared_t *owner;
ptr_t() : owner { nullptr } {}
explicit ptr_t(shared_t *owner) : owner { owner } {}
ptr_t(ptr_t &&ptr) noexcept : owner { ptr.owner } {
ptr.owner = nullptr;
}
ptr_t(const ptr_t &ptr) noexcept : owner { ptr.owner } {
if(!owner) {
return;
}
auto tmp = ptr.owner->ref();
tmp.owner = nullptr;
}
ptr_t &operator=(const ptr_t &ptr) noexcept {
if(!ptr.owner) {
release();
return *this;
}
return *this = std::move(*ptr.owner->ref());
}
ptr_t &operator=(ptr_t &&ptr) noexcept {
if(owner) {
release();
}
std::swap(owner, ptr.owner);
return *this;
}
~ptr_t() {
if(owner) {
release();
}
}
operator bool() const {
return owner != nullptr;
}
void release() {
std::lock_guard lg { owner->_lock };
if(!--owner->_count) {
owner->_destruct(*get());
(*this)->~element_type();
}
owner = nullptr;
}
element_type *get() const {
return reinterpret_cast<element_type *>(owner->_object_buf.data());
}
element_type *operator->() {
return reinterpret_cast<element_type *>(owner->_object_buf.data());
}
};
template<class FC, class FD>
shared_t(FC &&fc, FD &&fd) : _construct { std::forward<FC>(fc) }, _destruct { std::forward<FD>(fd) } {}
[[nodiscard]] ptr_t ref() {
std::lock_guard lg { _lock };
if(!_count) {
new(_object_buf.data()) element_type;
if(_construct(*reinterpret_cast<element_type *>(_object_buf.data()))) {
return ptr_t { nullptr };
}
}
++_count;
return ptr_t { this };
}
private:
construct_f _construct;
destruct_f _destruct;
std::array<std::uint8_t, sizeof(element_type)> _object_buf;
std::uint32_t _count;
std::mutex _lock;
};
template<class T, class F_Construct, class F_Destruct>
auto make_shared(F_Construct &&fc, F_Destruct &&fd) {
return shared_t<T> {
std::forward<F_Construct>(fc), std::forward<F_Destruct>(fd)
};
}
using signal_t = event_t<bool>;
} // namespace safe
#endif //SUNSHINE_THREAD_SAFE_H