Sunshine/sunshine/platform/windows/audio.cpp
2021-05-22 19:51:01 +02:00

989 lines
29 KiB
C++

//
// Created by loki on 1/12/20.
//
#include <audioclient.h>
#include <mmdeviceapi.h>
#include <roapi.h>
#include <codecvt>
#include <synchapi.h>
#define INITGUID
#include <propkeydef.h>
#undef INITGUID
#include "sunshine/config.h"
#include "sunshine/main.h"
#include "sunshine/platform/common.h"
// Must be the last included file
// clang-format off
#include "PolicyConfig.h"
// clang-format on
DEFINE_PROPERTYKEY(PKEY_Device_DeviceDesc, 0xa45c254e, 0xdf1c, 0x4efd, 0x80, 0x20, 0x67, 0xd1, 0x46, 0xa8, 0x50, 0xe0, 2); // DEVPROP_TYPE_STRING
DEFINE_PROPERTYKEY(PKEY_Device_FriendlyName, 0xa45c254e, 0xdf1c, 0x4efd, 0x80, 0x20, 0x67, 0xd1, 0x46, 0xa8, 0x50, 0xe0, 14); // DEVPROP_TYPE_STRING
DEFINE_PROPERTYKEY(PKEY_DeviceInterface_FriendlyName, 0x026e516e, 0xb814, 0x414b, 0x83, 0xcd, 0x85, 0x6d, 0x6f, 0xef, 0x48, 0x22, 2);
const CLSID CLSID_MMDeviceEnumerator = __uuidof(MMDeviceEnumerator);
const IID IID_IMMDeviceEnumerator = __uuidof(IMMDeviceEnumerator);
const IID IID_IAudioClient = __uuidof(IAudioClient);
const IID IID_IAudioCaptureClient = __uuidof(IAudioCaptureClient);
using namespace std::literals;
namespace platf::audio {
constexpr auto SAMPLE_RATE = 48000;
template<class T>
void Release(T *p) {
p->Release();
}
template<class T>
void co_task_free(T *p) {
CoTaskMemFree((LPVOID)p);
}
using device_enum_t = util::safe_ptr<IMMDeviceEnumerator, Release<IMMDeviceEnumerator>>;
using device_t = util::safe_ptr<IMMDevice, Release<IMMDevice>>;
using collection_t = util::safe_ptr<IMMDeviceCollection, Release<IMMDeviceCollection>>;
using audio_client_t = util::safe_ptr<IAudioClient, Release<IAudioClient>>;
using audio_capture_t = util::safe_ptr<IAudioCaptureClient, Release<IAudioCaptureClient>>;
using wave_format_t = util::safe_ptr<WAVEFORMATEX, co_task_free<WAVEFORMATEX>>;
using wstring_t = util::safe_ptr<WCHAR, co_task_free<WCHAR>>;
using handle_t = util::safe_ptr_v2<void, BOOL, CloseHandle>;
using policy_t = util::safe_ptr<IPolicyConfig, Release<IPolicyConfig>>;
using prop_t = util::safe_ptr<IPropertyStore, Release<IPropertyStore>>;
class co_init_t : public deinit_t {
public:
co_init_t() {
CoInitializeEx(nullptr, COINIT_MULTITHREADED | COINIT_SPEED_OVER_MEMORY);
}
~co_init_t() override {
CoUninitialize();
}
};
class prop_var_t {
public:
prop_var_t() {
PropVariantInit(&prop);
}
~prop_var_t() {
PropVariantClear(&prop);
}
PROPVARIANT prop;
};
class audio_pipe_t {
public:
static constexpr auto stereo = 2;
static constexpr auto channels51 = 6;
static constexpr auto channels71 = 8;
using samples_t = std::vector<std::int16_t>;
using buf_t = util::buffer_t<std::int16_t>;
virtual void to_stereo(samples_t &out, const buf_t &in) = 0;
virtual void to_51(samples_t &out, const buf_t &in) = 0;
virtual void to_71(samples_t &out, const buf_t &in) = 0;
};
class mono_t : public audio_pipe_t {
public:
void to_stereo(samples_t &out, const buf_t &in) override {
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end;) {
*sample_out_p++ = *sample_in_pos * 7 / 10;
*sample_out_p++ = *sample_in_pos++ * 7 / 10;
}
}
void to_51(samples_t &out, const buf_t &in) override {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += channels51) {
int left = *sample_in_pos++;
auto fl = (left * 7 / 10);
sample_out_p[FRONT_LEFT] = fl;
sample_out_p[FRONT_RIGHT] = fl;
sample_out_p[FRONT_CENTER] = fl * 6;
sample_out_p[LOW_FREQUENCY] = fl / 10;
sample_out_p[BACK_LEFT] = left * 4 / 10;
sample_out_p[BACK_RIGHT] = left * 4 / 10;
}
}
void to_71(samples_t &out, const buf_t &in) override {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += channels71) {
int left = *sample_in_pos++;
auto fl = (left * 7 / 10);
sample_out_p[FRONT_LEFT] = fl;
sample_out_p[FRONT_RIGHT] = fl;
sample_out_p[FRONT_CENTER] = fl * 6;
sample_out_p[LOW_FREQUENCY] = fl / 10;
sample_out_p[BACK_LEFT] = left * 4 / 10;
sample_out_p[BACK_RIGHT] = left * 4 / 10;
sample_out_p[SIDE_LEFT] = left * 5 / 10;
sample_out_p[SIDE_RIGHT] = left * 5 / 10;
}
}
};
class stereo_t : public audio_pipe_t {
public:
void to_stereo(samples_t &out, const buf_t &in) override {
std::copy_n(std::begin(in), out.size(), std::begin(out));
}
void to_51(samples_t &out, const buf_t &in) override {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += channels51) {
int left = sample_in_pos[speaker::FRONT_LEFT];
int right = sample_in_pos[speaker::FRONT_RIGHT];
sample_in_pos += 2;
auto fl = (left * 7 / 10);
auto fr = (right * 7 / 10);
auto mix = (fl + fr) / 2;
sample_out_p[FRONT_LEFT] = fl;
sample_out_p[FRONT_RIGHT] = fr;
sample_out_p[FRONT_CENTER] = mix;
sample_out_p[LOW_FREQUENCY] = mix / 2;
sample_out_p[BACK_LEFT] = left * 4 / 10;
sample_out_p[BACK_RIGHT] = right * 4 / 10;
}
}
void to_71(samples_t &out, const buf_t &in) override {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += channels71) {
int left = sample_in_pos[speaker::FRONT_LEFT];
int right = sample_in_pos[speaker::FRONT_RIGHT];
sample_in_pos += 2;
auto fl = (left * 7 / 10);
auto fr = (right * 7 / 10);
auto mix = (fl + fr) / 2;
sample_out_p[FRONT_LEFT] = fl;
sample_out_p[FRONT_RIGHT] = fr;
sample_out_p[FRONT_CENTER] = mix;
sample_out_p[LOW_FREQUENCY] = mix / 2;
sample_out_p[BACK_LEFT] = left * 4 / 10;
sample_out_p[BACK_RIGHT] = right * 4 / 10;
sample_out_p[SIDE_LEFT] = left * 5 / 10;
sample_out_p[SIDE_RIGHT] = right * 5 / 10;
}
}
};
class surr51_t : public audio_pipe_t {
public:
void to_stereo(samples_t &out, const buf_t &in) {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += stereo) {
int left {}, right {};
left += sample_in_pos[FRONT_LEFT];
left += sample_in_pos[FRONT_CENTER] * 9 / 10;
left += sample_in_pos[LOW_FREQUENCY] * 3 / 10;
left += sample_in_pos[BACK_LEFT] * 7 / 10;
left += sample_in_pos[BACK_RIGHT] * 3 / 10;
right += sample_in_pos[FRONT_RIGHT];
right += sample_in_pos[FRONT_CENTER] * 9 / 10;
right += sample_in_pos[LOW_FREQUENCY] * 3 / 10;
right += sample_in_pos[BACK_LEFT] * 3 / 10;
right += sample_in_pos[BACK_RIGHT] * 7 / 10;
sample_out_p[0] = left;
sample_out_p[1] = right;
sample_in_pos += channels51;
}
}
void to_51(samples_t &out, const buf_t &in) override {
std::copy_n(std::begin(in), out.size(), std::begin(out));
}
void to_71(samples_t &out, const buf_t &in) override {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += channels71) {
int fl = sample_in_pos[FRONT_LEFT];
int fr = sample_in_pos[FRONT_RIGHT];
int bl = sample_in_pos[BACK_LEFT];
int br = sample_in_pos[BACK_RIGHT];
auto mix_l = (fl + bl) / 2;
auto mix_r = (bl + br) / 2;
sample_out_p[FRONT_LEFT] = fl;
sample_out_p[FRONT_RIGHT] = fr;
sample_out_p[FRONT_CENTER] = sample_in_pos[FRONT_CENTER];
sample_out_p[LOW_FREQUENCY] = sample_in_pos[LOW_FREQUENCY];
sample_out_p[BACK_LEFT] = bl;
sample_out_p[BACK_RIGHT] = br;
sample_out_p[SIDE_LEFT] = mix_l;
sample_out_p[SIDE_RIGHT] = mix_r;
sample_in_pos += channels51;
}
}
};
class surr71_t : public audio_pipe_t {
public:
void to_stereo(samples_t &out, const buf_t &in) {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += stereo) {
int left {}, right {};
left += sample_in_pos[FRONT_LEFT];
left += sample_in_pos[FRONT_CENTER] * 9 / 10;
left += sample_in_pos[LOW_FREQUENCY] * 3 / 10;
left += sample_in_pos[BACK_LEFT] * 7 / 10;
left += sample_in_pos[BACK_RIGHT] * 3 / 10;
left += sample_in_pos[SIDE_LEFT];
right += sample_in_pos[FRONT_RIGHT];
right += sample_in_pos[FRONT_CENTER] * 9 / 10;
right += sample_in_pos[LOW_FREQUENCY] * 3 / 10;
right += sample_in_pos[BACK_LEFT] * 3 / 10;
right += sample_in_pos[BACK_RIGHT] * 7 / 10;
right += sample_in_pos[SIDE_RIGHT];
sample_out_p[0] = left;
sample_out_p[1] = right;
sample_in_pos += channels71;
}
}
void to_51(samples_t &out, const buf_t &in) override {
using namespace speaker;
auto sample_in_pos = std::begin(in);
auto sample_end = std::begin(out) + out.size();
for(auto sample_out_p = std::begin(out); sample_out_p != sample_end; sample_out_p += channels51) {
auto sl = (int)sample_out_p[SIDE_LEFT] * 3 / 10;
auto sr = (int)sample_out_p[SIDE_RIGHT] * 3 / 10;
sample_out_p[FRONT_LEFT] = sample_in_pos[FRONT_LEFT] + sl;
sample_out_p[FRONT_RIGHT] = sample_in_pos[FRONT_RIGHT] + sr;
sample_out_p[FRONT_CENTER] = sample_in_pos[FRONT_CENTER];
sample_out_p[LOW_FREQUENCY] = sample_in_pos[LOW_FREQUENCY];
sample_out_p[BACK_LEFT] = sample_in_pos[BACK_LEFT] + sl;
sample_out_p[BACK_RIGHT] = sample_in_pos[BACK_RIGHT] + sr;
sample_in_pos += channels71;
}
}
void to_71(samples_t &out, const buf_t &in) override {
std::copy_n(std::begin(in), out.size(), std::begin(out));
}
};
static std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>, wchar_t> converter;
struct format_t {
enum type_e : int {
none,
mono,
stereo,
surr51,
surr71,
} type;
std::string_view name;
int channels;
int channel_mask;
} formats[] {
{
format_t::mono,
"Mono"sv,
1,
SPEAKER_FRONT_CENTER,
},
{
format_t::stereo,
"Stereo"sv,
2,
SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT,
},
{
format_t::surr51,
"Surround 5.1"sv,
6,
SPEAKER_FRONT_LEFT |
SPEAKER_FRONT_RIGHT |
SPEAKER_FRONT_CENTER |
SPEAKER_LOW_FREQUENCY |
SPEAKER_BACK_LEFT |
SPEAKER_BACK_RIGHT,
},
{
format_t::surr71,
"Surround 7.1"sv,
8,
SPEAKER_FRONT_LEFT |
SPEAKER_FRONT_RIGHT |
SPEAKER_FRONT_CENTER |
SPEAKER_LOW_FREQUENCY |
SPEAKER_BACK_LEFT |
SPEAKER_BACK_RIGHT |
SPEAKER_SIDE_LEFT |
SPEAKER_SIDE_RIGHT,
},
};
static format_t surround_51_side_speakers {
format_t::surr51,
"Surround 5.1"sv,
6,
SPEAKER_FRONT_LEFT |
SPEAKER_FRONT_RIGHT |
SPEAKER_FRONT_CENTER |
SPEAKER_LOW_FREQUENCY |
SPEAKER_SIDE_LEFT |
SPEAKER_SIDE_RIGHT,
};
void set_wave_format(audio::wave_format_t &wave_format, const format_t &format) {
wave_format->nChannels = format.channels;
wave_format->nBlockAlign = wave_format->nChannels * wave_format->wBitsPerSample / 8;
wave_format->nAvgBytesPerSec = wave_format->nSamplesPerSec * wave_format->nBlockAlign;
if(wave_format->wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
((PWAVEFORMATEXTENSIBLE)wave_format.get())->dwChannelMask = format.channel_mask;
}
}
int init_wave_format(audio::wave_format_t &wave_format, DWORD sample_rate) {
wave_format->wBitsPerSample = 16;
wave_format->nSamplesPerSec = sample_rate;
switch(wave_format->wFormatTag) {
case WAVE_FORMAT_PCM:
break;
case WAVE_FORMAT_IEEE_FLOAT:
break;
case WAVE_FORMAT_EXTENSIBLE: {
auto wave_ex = (PWAVEFORMATEXTENSIBLE)wave_format.get();
if(IsEqualGUID(KSDATAFORMAT_SUBTYPE_IEEE_FLOAT, wave_ex->SubFormat)) {
wave_ex->Samples.wValidBitsPerSample = 16;
wave_ex->SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
break;
}
BOOST_LOG(error) << "Unsupported Sub Format for WAVE_FORMAT_EXTENSIBLE: [0x"sv << util::hex(wave_ex->SubFormat).to_string_view() << ']';
}
default:
BOOST_LOG(error) << "Unsupported Wave Format: [0x"sv << util::hex(wave_format->wFormatTag).to_string_view() << ']';
return -1;
};
return 0;
}
audio_client_t make_audio_client(device_t &device, const format_t &format, int sample_rate) {
audio_client_t audio_client;
auto status = device->Activate(
IID_IAudioClient,
CLSCTX_ALL,
nullptr,
(void **)&audio_client);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't activate Device: [0x"sv << util::hex(status).to_string_view() << ']';
return nullptr;
}
wave_format_t wave_format;
status = audio_client->GetMixFormat(&wave_format);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't acquire Wave Format [0x"sv << util::hex(status).to_string_view() << ']';
return nullptr;
}
if(init_wave_format(wave_format, sample_rate)) {
return nullptr;
}
set_wave_format(wave_format, format);
status = audio_client->Initialize(
AUDCLNT_SHAREMODE_SHARED,
AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_EVENTCALLBACK,
0, 0,
wave_format.get(),
nullptr);
if(status) {
BOOST_LOG(debug) << "Couldn't initialize audio client for ["sv << format.name << "]: [0x"sv << util::hex(status).to_string_view() << ']';
return nullptr;
}
return audio_client;
}
const wchar_t *no_null(const wchar_t *str) {
return str ? str : L"Unknown";
}
format_t::type_e validate_device(device_t &device, int sample_rate) {
for(const auto &format : formats) {
// Ensure WaveFromat is compatible
auto audio_client = make_audio_client(device, format, sample_rate);
BOOST_LOG(debug) << format.name << ": "sv << (!audio_client ? "unsupported"sv : "supported"sv);
if(audio_client) {
return format.type;
}
}
return format_t::none;
}
device_t default_device(device_enum_t &device_enum) {
device_t device;
HRESULT status;
status = device_enum->GetDefaultAudioEndpoint(
eRender,
eConsole,
&device);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't create audio Device [0x"sv << util::hex(status).to_string_view() << ']';
return nullptr;
}
return device;
}
class mic_wasapi_t : public mic_t {
public:
capture_e sample(std::vector<std::int16_t> &sample_out) override {
auto sample_size = sample_out.size() / channels_out * channels_in;
while(sample_buf_pos - std::begin(sample_buf) < sample_size) {
//FIXME: Use IAudioClient3 instead of IAudioClient, that would allows for adjusting the latency of the audio samples
auto capture_result = _fill_buffer();
if(capture_result != capture_e::ok) {
return capture_result;
}
}
switch(channels_out) {
case 2:
pipe->to_stereo(sample_out, sample_buf);
break;
case 6:
pipe->to_51(sample_out, sample_buf);
break;
case 8:
pipe->to_71(sample_out, sample_buf);
break;
default:
BOOST_LOG(error) << "converting to ["sv << channels_out << "] channels is not supported"sv;
return capture_e::error;
}
// The excess samples should be in front of the queue
std::move(&sample_buf[sample_size], sample_buf_pos, std::begin(sample_buf));
sample_buf_pos -= sample_size;
return capture_e::ok;
}
int init(std::uint32_t sample_rate, std::uint32_t frame_size, std::uint32_t channels_out) {
audio_event.reset(CreateEventA(nullptr, FALSE, FALSE, nullptr));
if(!audio_event) {
BOOST_LOG(error) << "Couldn't create Event handle"sv;
return -1;
}
HRESULT status;
status = CoCreateInstance(
CLSID_MMDeviceEnumerator,
nullptr,
CLSCTX_ALL,
IID_IMMDeviceEnumerator,
(void **)&device_enum);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't create Device Enumerator [0x"sv << util::hex(status).to_string_view() << ']';
return -1;
}
auto device = default_device(device_enum);
if(!device) {
return -1;
}
for(auto &format : formats) {
BOOST_LOG(debug) << "Trying audio format ["sv << format.name << ']';
audio_client = make_audio_client(device, format, sample_rate);
if(audio_client) {
BOOST_LOG(debug) << "Found audio format ["sv << format.name << ']';
channels_in = format.channels;
this->channels_out = channels_out;
switch(channels_in) {
case 1:
pipe = std::make_unique<mono_t>();
break;
case 2:
pipe = std::make_unique<stereo_t>();
break;
case 6:
pipe = std::make_unique<surr51_t>();
break;
case 8:
pipe = std::make_unique<surr71_t>();
break;
default:
BOOST_LOG(error) << "converting from ["sv << channels_in << "] channels is not supported"sv;
return -1;
}
break;
}
}
if(!audio_client) {
BOOST_LOG(error) << "Couldn't find supported format for audio"sv;
return -1;
}
REFERENCE_TIME default_latency;
audio_client->GetDevicePeriod(&default_latency, nullptr);
default_latency_ms = default_latency / 1000;
std::uint32_t frames;
status = audio_client->GetBufferSize(&frames);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't acquire the number of audio frames [0x"sv << util::hex(status).to_string_view() << ']';
return -1;
}
// *2 --> needs to fit double
sample_buf = util::buffer_t<std::int16_t> { std::max(frames, frame_size) * 2 * channels_in };
sample_buf_pos = std::begin(sample_buf);
status = audio_client->GetService(IID_IAudioCaptureClient, (void **)&audio_capture);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't initialize audio capture client [0x"sv << util::hex(status).to_string_view() << ']';
return -1;
}
status = audio_client->SetEventHandle(audio_event.get());
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't set event handle [0x"sv << util::hex(status).to_string_view() << ']';
return -1;
}
status = audio_client->Start();
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't start recording [0x"sv << util::hex(status).to_string_view() << ']';
return -1;
}
return 0;
}
~mic_wasapi_t() override {
if(audio_client) {
audio_client->Stop();
}
}
private:
capture_e _fill_buffer() {
HRESULT status;
// Total number of samples
struct sample_aligned_t {
std::uint32_t uninitialized;
std::int16_t *samples;
} sample_aligned;
// number of samples / number of channels
struct block_aligned_t {
std::uint32_t audio_sample_size;
} block_aligned;
status = WaitForSingleObjectEx(audio_event.get(), default_latency_ms, FALSE);
switch(status) {
case WAIT_OBJECT_0:
break;
case WAIT_TIMEOUT:
return capture_e::timeout;
default:
BOOST_LOG(error) << "Couldn't wait for audio event: [0x"sv << util::hex(status).to_string_view() << ']';
return capture_e::error;
}
std::uint32_t packet_size {};
for(
status = audio_capture->GetNextPacketSize(&packet_size);
SUCCEEDED(status) && packet_size > 0;
status = audio_capture->GetNextPacketSize(&packet_size)) {
DWORD buffer_flags;
status = audio_capture->GetBuffer(
(BYTE **)&sample_aligned.samples,
&block_aligned.audio_sample_size,
&buffer_flags,
nullptr, nullptr);
switch(status) {
case S_OK:
break;
case AUDCLNT_E_DEVICE_INVALIDATED:
return capture_e::reinit;
default:
BOOST_LOG(error) << "Couldn't capture audio [0x"sv << util::hex(status).to_string_view() << ']';
return capture_e::error;
}
sample_aligned.uninitialized = std::end(sample_buf) - sample_buf_pos;
auto n = std::min(sample_aligned.uninitialized, block_aligned.audio_sample_size * channels_in);
if(buffer_flags & AUDCLNT_BUFFERFLAGS_SILENT) {
std::fill_n(sample_buf_pos, n, 0);
}
else {
std::copy_n(sample_aligned.samples, n, sample_buf_pos);
}
sample_buf_pos += n;
audio_capture->ReleaseBuffer(block_aligned.audio_sample_size);
}
if(status == AUDCLNT_E_DEVICE_INVALIDATED) {
return capture_e::reinit;
}
if(FAILED(status)) {
return capture_e::error;
}
return capture_e::ok;
}
public:
handle_t audio_event;
device_enum_t device_enum;
device_t device;
audio_client_t audio_client;
audio_capture_t audio_capture;
REFERENCE_TIME default_latency_ms;
util::buffer_t<std::int16_t> sample_buf;
std::int16_t *sample_buf_pos;
// out --> our audio output
int channels_out;
// in --> our wasapi input
int channels_in;
std::unique_ptr<audio_pipe_t> pipe;
};
class audio_control_t : public ::platf::audio_control_t {
public:
std::optional<sink_t> sink_info() override {
auto virtual_adapter_name = L"Steam Streaming Speakers"sv;
sink_t sink;
audio::device_enum_t device_enum;
auto status = CoCreateInstance(
CLSID_MMDeviceEnumerator,
nullptr,
CLSCTX_ALL,
IID_IMMDeviceEnumerator,
(void **)&device_enum);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't create Device Enumerator: [0x"sv << util::hex(status).to_string_view() << ']';
return std::nullopt;
}
auto device = default_device(device_enum);
if(!device) {
return std::nullopt;
}
audio::wstring_t wstring;
device->GetId(&wstring);
sink.host = converter.to_bytes(wstring.get());
collection_t collection;
status = device_enum->EnumAudioEndpoints(eRender, DEVICE_STATE_ACTIVE, &collection);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't enumerate: [0x"sv << util::hex(status).to_string_view() << ']';
return std::nullopt;
}
UINT count;
collection->GetCount(&count);
std::string virtual_device_id = config::audio.virtual_sink;
for(auto x = 0; x < count; ++x) {
audio::device_t device;
collection->Item(x, &device);
auto type = validate_device(device, SAMPLE_RATE);
if(type == format_t::none) {
continue;
}
audio::wstring_t wstring;
device->GetId(&wstring);
audio::prop_t prop;
device->OpenPropertyStore(STGM_READ, &prop);
prop_var_t adapter_friendly_name;
prop_var_t device_friendly_name;
prop_var_t device_desc;
prop->GetValue(PKEY_Device_FriendlyName, &device_friendly_name.prop);
prop->GetValue(PKEY_DeviceInterface_FriendlyName, &adapter_friendly_name.prop);
prop->GetValue(PKEY_Device_DeviceDesc, &device_desc.prop);
auto adapter_name = no_null((LPWSTR)adapter_friendly_name.prop.pszVal);
BOOST_LOG(verbose)
<< L"===== Device ====="sv << std::endl
<< L"Device ID : "sv << wstring.get() << std::endl
<< L"Device name : "sv << no_null((LPWSTR)device_friendly_name.prop.pszVal) << std::endl
<< L"Adapter name : "sv << adapter_name << std::endl
<< L"Device description : "sv << no_null((LPWSTR)device_desc.prop.pszVal) << std::endl
<< std::endl;
if(virtual_device_id.empty() && adapter_name == virtual_adapter_name) {
virtual_device_id = converter.to_bytes(wstring.get());
}
}
if(!virtual_device_id.empty()) {
sink.null = std::make_optional(sink_t::null_t {
"virtual-"s.append(formats[format_t::stereo - 1].name) + virtual_device_id,
"virtual-"s.append(formats[format_t::surr51 - 1].name) + virtual_device_id,
"virtual-"s.append(formats[format_t::surr71 - 1].name) + virtual_device_id,
});
}
return sink;
}
std::unique_ptr<mic_t> microphone(const std::uint8_t *mapping, int channels, std::uint32_t sample_rate, std::uint32_t frame_size) override {
auto mic = std::make_unique<mic_wasapi_t>();
if(mic->init(sample_rate, frame_size, channels)) {
return nullptr;
}
return mic;
}
/**
* If the requested sink is a virtual sink, meaning no speakers attached to
* the host, then we can seamlessly set the format to stereo and surround sound.
*
* Any virtual sink detected will be prefixed by:
* virtual-(format name)
* If it doesn't contain that prefix, then the format will not be changed
*/
std::optional<std::wstring> set_format(const std::string &sink) {
std::string_view sv { sink.c_str(), sink.size() };
format_t::type_e type = format_t::none;
// sink format:
// [virtual-(format name)]device_id
auto prefix = "virtual-"sv;
if(sv.find(prefix) == 0) {
sv = sv.substr(prefix.size(), sv.size() - prefix.size());
for(auto &format : formats) {
auto &name = format.name;
if(sv.find(name) == 0) {
type = format.type;
sv = sv.substr(name.size(), sv.size() - name.size());
break;
}
}
}
auto wstring_device_id = converter.from_bytes(sv.data());
if(type == format_t::none) {
// wstring_device_id does not contain virtual-(format name)
// It's a simple deviceId, just pass it back
return std::make_optional(std::move(wstring_device_id));
}
wave_format_t wave_format;
auto status = policy->GetMixFormat(wstring_device_id.c_str(), &wave_format);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't acquire Wave Format [0x"sv << util::hex(status).to_string_view() << ']';
return std::nullopt;
}
if(init_wave_format(wave_format, SAMPLE_RATE)) {
return std::nullopt;
}
set_wave_format(wave_format, formats[(int)type - 1]);
WAVEFORMATEXTENSIBLE p {};
status = policy->SetDeviceFormat(wstring_device_id.c_str(), wave_format.get(), (WAVEFORMATEX *)&p);
// Surround 5.1 might contain side-{left, right} instead of speaker in the back
// Try again with different speaker mask.
if(status == 0x88890008 && type == format_t::surr51) {
set_wave_format(wave_format, surround_51_side_speakers);
status = policy->SetDeviceFormat(wstring_device_id.c_str(), wave_format.get(), (WAVEFORMATEX *)&p);
}
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't set Wave Format [0x"sv << util::hex(status).to_string_view() << ']';
return std::nullopt;
}
return std::make_optional(std::move(wstring_device_id));
}
int set_sink(const std::string &sink) override {
auto wstring_device_id = set_format(sink);
if(!wstring_device_id) {
return -1;
}
int failure {};
for(int x = 0; x < (int)ERole_enum_count; ++x) {
auto status = policy->SetDefaultEndpoint(wstring_device_id->c_str(), (ERole)x);
if(status) {
BOOST_LOG(warning) << "Couldn't set ["sv << sink << "] to role ["sv << x << ']';
++failure;
}
}
return failure;
}
int init() {
auto status = CoCreateInstance(
CLSID_CPolicyConfigClient,
nullptr,
CLSCTX_ALL,
IID_IPolicyConfig,
(void **)&policy);
if(FAILED(status)) {
BOOST_LOG(error) << "Couldn't create audio policy config: [0x"sv << util::hex(status).to_string_view() << ']';
return -1;
}
return 0;
}
~audio_control_t() override {}
policy_t policy;
};
} // namespace platf::audio
namespace platf {
// It's not big enough to justify it's own source file :/
namespace dxgi {
int init();
}
std::unique_ptr<audio_control_t> audio_control() {
auto control = std::make_unique<audio::audio_control_t>();
if(control->init()) {
return nullptr;
}
return control;
}
std::unique_ptr<deinit_t> init() {
if(dxgi::init()) {
return nullptr;
}
return std::make_unique<platf::audio::co_init_t>();
}
} // namespace platf