mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-26 03:35:28 +00:00
update
This commit is contained in:
parent
babee6e1d0
commit
2d3f171a85
17
README.md
17
README.md
@ -22,25 +22,30 @@ The decensorship process is fairly involved. A user interface will eventually be
|
||||
|
||||
Using image editing software like Photoshop or GIMP, crop 128 x 128 size images containing the censored regions from your images and save them as new ".png" images. For each 128 x 128 cropped image, color the censored regions [tbd].
|
||||
|
||||
Move the cropped images to []. Run the command
|
||||
Move the cropped images to []. Decensor the images by running
|
||||
|
||||
```
|
||||
$ python decensor.py
|
||||
```
|
||||
|
||||
Decensored images will be saved to the "output" directory.
|
||||
Decensored images will be saved to the "output" directory. Paste the decensored images back into the original image.
|
||||
|
||||
Paste the decensored images back into the original image.
|
||||
## II. Train the pretrained model
|
||||
|
||||
## II. Prepare the training data
|
||||
|
||||
Put the images for training the "data/images" directory and convert images to npy format.
|
||||
Put the your custom dataset for training the "data/images" directory and convert images to npy format.
|
||||
|
||||
```
|
||||
$ cd data
|
||||
$ python to_npy.py
|
||||
```
|
||||
|
||||
Train pretrained model on your custom dataset.
|
||||
|
||||
```
|
||||
$ cd src
|
||||
$ python train.py
|
||||
```
|
||||
|
||||
The dataset will not be released. I do not want to risk trouble for distributing copyrighted pornographic material.
|
||||
|
||||
# To do
|
||||
|
Loading…
x
Reference in New Issue
Block a user