mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-26 03:35:28 +00:00
update
This commit is contained in:
parent
e38d316d57
commit
babee6e1d0
16
README.md
16
README.md
@ -9,7 +9,7 @@ Please note research is ongoing, and the neural network works ONLY with color im
|
||||
|
||||
- Python 2
|
||||
- TensorFlow 1.5
|
||||
- PIL
|
||||
- Pillow
|
||||
|
||||
# Model
|
||||
Link coming soon
|
||||
@ -18,9 +18,19 @@ Link coming soon
|
||||
|
||||
## I. Decensoring hentai
|
||||
|
||||
The decensorship process is fairly involved. A UI will eventually be released to streamline the process.
|
||||
The decensorship process is fairly involved. A user interface will eventually be released to streamline the process.
|
||||
|
||||
Crop 128 x 128 size images containing the censored regions from your images and save them as new images. For each 128 x 128 image, color the
|
||||
Using image editing software like Photoshop or GIMP, crop 128 x 128 size images containing the censored regions from your images and save them as new ".png" images. For each 128 x 128 cropped image, color the censored regions [tbd].
|
||||
|
||||
Move the cropped images to []. Run the command
|
||||
|
||||
```
|
||||
$ python decensor.py
|
||||
```
|
||||
|
||||
Decensored images will be saved to the "output" directory.
|
||||
|
||||
Paste the decensored images back into the original image.
|
||||
|
||||
## II. Prepare the training data
|
||||
|
||||
|
95
src/decensor.py
Normal file
95
src/decensor.py
Normal file
@ -0,0 +1,95 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import cv2
|
||||
import tqdm
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
sys.path.append('..')
|
||||
from model import Model
|
||||
|
||||
IMAGE_SIZE = 128
|
||||
LOCAL_SIZE = 64
|
||||
HOLE_MIN = 24
|
||||
HOLE_MAX = 48
|
||||
BATCH_SIZE = 16
|
||||
|
||||
test_npy = './lfw.npy'
|
||||
|
||||
def test():
|
||||
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
|
||||
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
|
||||
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
|
||||
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
|
||||
is_training = tf.placeholder(tf.bool, [])
|
||||
|
||||
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
|
||||
sess = tf.Session()
|
||||
init_op = tf.global_variables_initializer()
|
||||
sess.run(init_op)
|
||||
|
||||
saver = tf.train.Saver()
|
||||
saver.restore(sess, '../saved_models/latest')
|
||||
|
||||
x_test = np.load(test_npy)
|
||||
np.random.shuffle(x_test)
|
||||
x_test = np.array([a / 127.5 - 1 for a in x_test])
|
||||
|
||||
step_num = int(len(x_test) / BATCH_SIZE)
|
||||
|
||||
cnt = 0
|
||||
for i in tqdm.tqdm(range(step_num)):
|
||||
x_batch = x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
|
||||
_, mask_batch = get_points()
|
||||
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
|
||||
for i in range(BATCH_SIZE):
|
||||
cnt += 1
|
||||
raw = x_batch[i]
|
||||
raw = np.array((raw + 1) * 127.5, dtype=np.uint8)
|
||||
masked = raw * (1 - mask_batch[i]) + np.ones_like(raw) * mask_batch[i] * 255
|
||||
img = completion[i]
|
||||
img = np.array((img + 1) * 127.5, dtype=np.uint8)
|
||||
dst = './output/{}.jpg'.format("{0:06d}".format(cnt))
|
||||
output_image([['Input', masked], ['Output', img], ['Ground Truth', raw]], dst)
|
||||
|
||||
|
||||
def get_points():
|
||||
points = []
|
||||
mask = []
|
||||
for i in range(BATCH_SIZE):
|
||||
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2)
|
||||
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE
|
||||
points.append([x1, y1, x2, y2])
|
||||
|
||||
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2)
|
||||
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w)
|
||||
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h)
|
||||
p2 = p1 + w
|
||||
q2 = q1 + h
|
||||
|
||||
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
|
||||
m[q1:q2 + 1, p1:p2 + 1] = 1
|
||||
mask.append(m)
|
||||
|
||||
return np.array(points), np.array(mask)
|
||||
|
||||
|
||||
def output_image(images, dst):
|
||||
fig = plt.figure()
|
||||
for i, image in enumerate(images):
|
||||
text, img = image
|
||||
fig.add_subplot(1, 3, i + 1)
|
||||
plt.imshow(img)
|
||||
plt.tick_params(labelbottom='off')
|
||||
plt.tick_params(labelleft='off')
|
||||
plt.gca().get_xaxis().set_ticks_position('none')
|
||||
plt.gca().get_yaxis().set_ticks_position('none')
|
||||
plt.xlabel(text)
|
||||
plt.savefig(dst)
|
||||
plt.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
|
Loading…
x
Reference in New Issue
Block a user