mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2024-09-15 00:55:33 +00:00
core: hle: kernel: KPageTable: Improve Un/MapPhysicalMemory.
- Improves the implementations of MapPhysicalMemory and UnmapPhysicalMemory to more closely reflect latest HOS.
This commit is contained in:
parent
83a84f1c2d
commit
1a16d055df
@ -10,11 +10,65 @@ PageTable::PageTable() = default;
|
||||
|
||||
PageTable::~PageTable() noexcept = default;
|
||||
|
||||
void PageTable::Resize(size_t address_space_width_in_bits, size_t page_size_in_bits) {
|
||||
const size_t num_page_table_entries{1ULL << (address_space_width_in_bits - page_size_in_bits)};
|
||||
bool PageTable::BeginTraversal(TraversalEntry* out_entry, TraversalContext* out_context,
|
||||
u64 address) const {
|
||||
// Setup invalid defaults.
|
||||
out_entry->phys_addr = 0;
|
||||
out_entry->block_size = page_size;
|
||||
out_context->next_page = 0;
|
||||
|
||||
// Validate that we can read the actual entry.
|
||||
const auto page = address / page_size;
|
||||
if (page >= backing_addr.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Validate that the entry is mapped.
|
||||
const auto phys_addr = backing_addr[page];
|
||||
if (phys_addr == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Populate the results.
|
||||
out_entry->phys_addr = phys_addr + address;
|
||||
out_context->next_page = page + 1;
|
||||
out_context->next_offset = address + page_size;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PageTable::ContinueTraversal(TraversalEntry* out_entry, TraversalContext* context) const {
|
||||
// Setup invalid defaults.
|
||||
out_entry->phys_addr = 0;
|
||||
out_entry->block_size = page_size;
|
||||
|
||||
// Validate that we can read the actual entry.
|
||||
const auto page = context->next_page;
|
||||
if (page >= backing_addr.size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Validate that the entry is mapped.
|
||||
const auto phys_addr = backing_addr[page];
|
||||
if (phys_addr == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Populate the results.
|
||||
out_entry->phys_addr = phys_addr + context->next_offset;
|
||||
context->next_page = page + 1;
|
||||
context->next_offset += page_size;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void PageTable::Resize(std::size_t address_space_width_in_bits, std::size_t page_size_in_bits) {
|
||||
const std::size_t num_page_table_entries{1ULL
|
||||
<< (address_space_width_in_bits - page_size_in_bits)};
|
||||
pointers.resize(num_page_table_entries);
|
||||
backing_addr.resize(num_page_table_entries);
|
||||
current_address_space_width_in_bits = address_space_width_in_bits;
|
||||
page_size = 1ULL << page_size_in_bits;
|
||||
}
|
||||
|
||||
} // namespace Common
|
||||
|
@ -27,6 +27,16 @@ enum class PageType : u8 {
|
||||
* mimics the way a real CPU page table works.
|
||||
*/
|
||||
struct PageTable {
|
||||
struct TraversalEntry {
|
||||
u64 phys_addr{};
|
||||
std::size_t block_size{};
|
||||
};
|
||||
|
||||
struct TraversalContext {
|
||||
u64 next_page{};
|
||||
u64 next_offset{};
|
||||
};
|
||||
|
||||
/// Number of bits reserved for attribute tagging.
|
||||
/// This can be at most the guaranteed alignment of the pointers in the page table.
|
||||
static constexpr int ATTRIBUTE_BITS = 2;
|
||||
@ -89,6 +99,10 @@ struct PageTable {
|
||||
PageTable(PageTable&&) noexcept = default;
|
||||
PageTable& operator=(PageTable&&) noexcept = default;
|
||||
|
||||
bool BeginTraversal(TraversalEntry* out_entry, TraversalContext* out_context,
|
||||
u64 address) const;
|
||||
bool ContinueTraversal(TraversalEntry* out_entry, TraversalContext* context) const;
|
||||
|
||||
/**
|
||||
* Resizes the page table to be able to accommodate enough pages within
|
||||
* a given address space.
|
||||
@ -96,9 +110,9 @@ struct PageTable {
|
||||
* @param address_space_width_in_bits The address size width in bits.
|
||||
* @param page_size_in_bits The page size in bits.
|
||||
*/
|
||||
void Resize(size_t address_space_width_in_bits, size_t page_size_in_bits);
|
||||
void Resize(std::size_t address_space_width_in_bits, std::size_t page_size_in_bits);
|
||||
|
||||
size_t GetAddressSpaceBits() const {
|
||||
std::size_t GetAddressSpaceBits() const {
|
||||
return current_address_space_width_in_bits;
|
||||
}
|
||||
|
||||
@ -110,9 +124,11 @@ struct PageTable {
|
||||
|
||||
VirtualBuffer<u64> backing_addr;
|
||||
|
||||
size_t current_address_space_width_in_bits;
|
||||
std::size_t current_address_space_width_in_bits{};
|
||||
|
||||
u8* fastmem_arena;
|
||||
u8* fastmem_arena{};
|
||||
|
||||
std::size_t page_size{};
|
||||
};
|
||||
|
||||
} // namespace Common
|
||||
|
@ -400,148 +400,473 @@ ResultCode KPageTable::UnmapProcessMemory(VAddr dst_addr, std::size_t size,
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
||||
ResultCode KPageTable::MapPhysicalMemory(VAddr addr, std::size_t size) {
|
||||
ResultCode KPageTable::MapPhysicalMemory(VAddr address, std::size_t size) {
|
||||
// Lock the physical memory lock.
|
||||
KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
|
||||
|
||||
// Lock the table.
|
||||
KScopedLightLock lk(general_lock);
|
||||
// Calculate the last address for convenience.
|
||||
const VAddr last_address = address + size - 1;
|
||||
|
||||
std::size_t mapped_size{};
|
||||
const VAddr end_addr{addr + size};
|
||||
// Define iteration variables.
|
||||
VAddr cur_address;
|
||||
std::size_t mapped_size;
|
||||
|
||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
||||
if (info.state != KMemoryState::Free) {
|
||||
mapped_size += GetSizeInRange(info, addr, end_addr);
|
||||
}
|
||||
});
|
||||
// The entire mapping process can be retried.
|
||||
while (true) {
|
||||
// Check if the memory is already mapped.
|
||||
{
|
||||
// Lock the table.
|
||||
KScopedLightLock lk(general_lock);
|
||||
|
||||
if (mapped_size == size) {
|
||||
return ResultSuccess;
|
||||
}
|
||||
// Iterate over the memory.
|
||||
cur_address = address;
|
||||
mapped_size = 0;
|
||||
|
||||
const std::size_t remaining_size{size - mapped_size};
|
||||
const std::size_t remaining_pages{remaining_size / PageSize};
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
while (true) {
|
||||
// Check that the iterator is valid.
|
||||
ASSERT(it != block_manager->end());
|
||||
|
||||
// Reserve the memory from the process resource limit.
|
||||
KScopedResourceReservation memory_reservation(
|
||||
system.Kernel().CurrentProcess()->GetResourceLimit(), LimitableResource::PhysicalMemory,
|
||||
remaining_size);
|
||||
if (!memory_reservation.Succeeded()) {
|
||||
LOG_ERROR(Kernel, "Could not reserve remaining {:X} bytes", remaining_size);
|
||||
return ResultLimitReached;
|
||||
}
|
||||
// Get the memory info.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
KPageLinkedList page_linked_list;
|
||||
// Check if we're done.
|
||||
if (last_address <= info.GetLastAddress()) {
|
||||
if (info.GetState() != KMemoryState::Free) {
|
||||
mapped_size += (last_address + 1 - cur_address);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
CASCADE_CODE(system.Kernel().MemoryManager().Allocate(page_linked_list, remaining_pages,
|
||||
memory_pool, allocation_option));
|
||||
// Track the memory if it's mapped.
|
||||
if (info.GetState() != KMemoryState::Free) {
|
||||
mapped_size += VAddr(info.GetEndAddress()) - cur_address;
|
||||
}
|
||||
|
||||
// We succeeded, so commit the memory reservation.
|
||||
memory_reservation.Commit();
|
||||
|
||||
// Map the memory.
|
||||
auto node{page_linked_list.Nodes().begin()};
|
||||
PAddr map_addr{node->GetAddress()};
|
||||
std::size_t src_num_pages{node->GetNumPages()};
|
||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
||||
if (info.state != KMemoryState::Free) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::size_t dst_num_pages{GetSizeInRange(info, addr, end_addr) / PageSize};
|
||||
VAddr dst_addr{GetAddressInRange(info, addr)};
|
||||
|
||||
while (dst_num_pages) {
|
||||
if (!src_num_pages) {
|
||||
node = std::next(node);
|
||||
map_addr = node->GetAddress();
|
||||
src_num_pages = node->GetNumPages();
|
||||
// Advance.
|
||||
cur_address = info.GetEndAddress();
|
||||
++it;
|
||||
}
|
||||
|
||||
const std::size_t num_pages{std::min(src_num_pages, dst_num_pages)};
|
||||
Operate(dst_addr, num_pages, KMemoryPermission::UserReadWrite, OperationType::Map,
|
||||
map_addr);
|
||||
|
||||
dst_addr += num_pages * PageSize;
|
||||
map_addr += num_pages * PageSize;
|
||||
src_num_pages -= num_pages;
|
||||
dst_num_pages -= num_pages;
|
||||
// If the size mapped is the size requested, we've nothing to do.
|
||||
R_SUCCEED_IF(size == mapped_size);
|
||||
}
|
||||
});
|
||||
|
||||
mapped_physical_memory_size += remaining_size;
|
||||
// Allocate and map the memory.
|
||||
{
|
||||
// Reserve the memory from the process resource limit.
|
||||
KScopedResourceReservation memory_reservation(
|
||||
system.Kernel().CurrentProcess()->GetResourceLimit(),
|
||||
LimitableResource::PhysicalMemory, size - mapped_size);
|
||||
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
|
||||
|
||||
const std::size_t num_pages{size / PageSize};
|
||||
block_manager->Update(addr, num_pages, KMemoryState::Free, KMemoryPermission::None,
|
||||
KMemoryAttribute::None, KMemoryState::Normal,
|
||||
KMemoryPermission::UserReadWrite, KMemoryAttribute::None);
|
||||
// Allocate pages for the new memory.
|
||||
KPageLinkedList page_linked_list;
|
||||
R_TRY(system.Kernel().MemoryManager().Allocate(
|
||||
page_linked_list, (size - mapped_size) / PageSize, memory_pool, allocation_option));
|
||||
|
||||
return ResultSuccess;
|
||||
// Map the memory.
|
||||
{
|
||||
// Lock the table.
|
||||
KScopedLightLock lk(general_lock);
|
||||
|
||||
size_t num_allocator_blocks = 0;
|
||||
|
||||
// Verify that nobody has mapped memory since we first checked.
|
||||
{
|
||||
// Iterate over the memory.
|
||||
size_t checked_mapped_size = 0;
|
||||
cur_address = address;
|
||||
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
while (true) {
|
||||
// Check that the iterator is valid.
|
||||
ASSERT(it != block_manager->end());
|
||||
|
||||
// Get the memory info.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
const bool is_free = info.GetState() == KMemoryState::Free;
|
||||
if (is_free) {
|
||||
if (info.GetAddress() < address) {
|
||||
++num_allocator_blocks;
|
||||
}
|
||||
if (last_address < info.GetLastAddress()) {
|
||||
++num_allocator_blocks;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we're done.
|
||||
if (last_address <= info.GetLastAddress()) {
|
||||
if (!is_free) {
|
||||
checked_mapped_size += (last_address + 1 - cur_address);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// Track the memory if it's mapped.
|
||||
if (!is_free) {
|
||||
checked_mapped_size += VAddr(info.GetEndAddress()) - cur_address;
|
||||
}
|
||||
|
||||
// Advance.
|
||||
cur_address = info.GetEndAddress();
|
||||
++it;
|
||||
}
|
||||
|
||||
// If the size now isn't what it was before, somebody mapped or unmapped
|
||||
// concurrently. If this happened, retry.
|
||||
if (mapped_size != checked_mapped_size) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Reset the current tracking address, and make sure we clean up on failure.
|
||||
cur_address = address;
|
||||
auto unmap_guard = detail::ScopeExit([&] {
|
||||
if (cur_address > address) {
|
||||
const VAddr last_unmap_address = cur_address - 1;
|
||||
|
||||
// Iterate, unmapping the pages.
|
||||
cur_address = address;
|
||||
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
while (true) {
|
||||
// Check that the iterator is valid.
|
||||
ASSERT(it != block_manager->end());
|
||||
|
||||
// Get the memory info.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
// If the memory state is free, we mapped it and need to unmap it.
|
||||
if (info.GetState() == KMemoryState::Free) {
|
||||
// Determine the range to unmap.
|
||||
const size_t cur_pages =
|
||||
std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||
last_unmap_address + 1 - cur_address) /
|
||||
PageSize;
|
||||
|
||||
// Unmap.
|
||||
ASSERT(Operate(cur_address, cur_pages, KMemoryPermission::None,
|
||||
OperationType::Unmap)
|
||||
.IsSuccess());
|
||||
}
|
||||
|
||||
// Check if we're done.
|
||||
if (last_unmap_address <= info.GetLastAddress()) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Advance.
|
||||
cur_address = info.GetEndAddress();
|
||||
++it;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Iterate over the memory.
|
||||
auto pg_it = page_linked_list.Nodes().begin();
|
||||
PAddr pg_phys_addr = pg_it->GetAddress();
|
||||
size_t pg_pages = pg_it->GetNumPages();
|
||||
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
while (true) {
|
||||
// Check that the iterator is valid.
|
||||
ASSERT(it != block_manager->end());
|
||||
|
||||
// Get the memory info.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
// If it's unmapped, we need to map it.
|
||||
if (info.GetState() == KMemoryState::Free) {
|
||||
// Determine the range to map.
|
||||
size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||
last_address + 1 - cur_address) /
|
||||
PageSize;
|
||||
|
||||
// While we have pages to map, map them.
|
||||
while (map_pages > 0) {
|
||||
// Check if we're at the end of the physical block.
|
||||
if (pg_pages == 0) {
|
||||
// Ensure there are more pages to map.
|
||||
ASSERT(pg_it != page_linked_list.Nodes().end());
|
||||
|
||||
// Advance our physical block.
|
||||
++pg_it;
|
||||
pg_phys_addr = pg_it->GetAddress();
|
||||
pg_pages = pg_it->GetNumPages();
|
||||
}
|
||||
|
||||
// Map whatever we can.
|
||||
const size_t cur_pages = std::min(pg_pages, map_pages);
|
||||
R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::UserReadWrite,
|
||||
OperationType::Map, pg_phys_addr));
|
||||
|
||||
// Advance.
|
||||
cur_address += cur_pages * PageSize;
|
||||
map_pages -= cur_pages;
|
||||
|
||||
pg_phys_addr += cur_pages * PageSize;
|
||||
pg_pages -= cur_pages;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we're done.
|
||||
if (last_address <= info.GetLastAddress()) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Advance.
|
||||
cur_address = info.GetEndAddress();
|
||||
++it;
|
||||
}
|
||||
|
||||
// We succeeded, so commit the memory reservation.
|
||||
memory_reservation.Commit();
|
||||
|
||||
// Increase our tracked mapped size.
|
||||
mapped_physical_memory_size += (size - mapped_size);
|
||||
|
||||
// Update the relevant memory blocks.
|
||||
block_manager->Update(address, size / PageSize, KMemoryState::Free,
|
||||
KMemoryPermission::None, KMemoryAttribute::None,
|
||||
KMemoryState::Normal, KMemoryPermission::UserReadWrite,
|
||||
KMemoryAttribute::None);
|
||||
|
||||
// Cancel our guard.
|
||||
unmap_guard.Cancel();
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ResultCode KPageTable::UnmapPhysicalMemory(VAddr addr, std::size_t size) {
|
||||
ResultCode KPageTable::UnmapPhysicalMemory(VAddr address, std::size_t size) {
|
||||
// Lock the physical memory lock.
|
||||
KScopedLightLock map_phys_mem_lk(map_physical_memory_lock);
|
||||
|
||||
// Lock the table.
|
||||
KScopedLightLock lk(general_lock);
|
||||
|
||||
const VAddr end_addr{addr + size};
|
||||
ResultCode result{ResultSuccess};
|
||||
std::size_t mapped_size{};
|
||||
// Calculate the last address for convenience.
|
||||
const VAddr last_address = address + size - 1;
|
||||
|
||||
// Verify that the region can be unmapped
|
||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
||||
if (info.state == KMemoryState::Normal) {
|
||||
if (info.attribute != KMemoryAttribute::None) {
|
||||
result = ResultInvalidCurrentMemory;
|
||||
return;
|
||||
// Define iteration variables.
|
||||
VAddr cur_address = 0;
|
||||
std::size_t mapped_size = 0;
|
||||
std::size_t num_allocator_blocks = 0;
|
||||
|
||||
// Check if the memory is mapped.
|
||||
{
|
||||
// Iterate over the memory.
|
||||
cur_address = address;
|
||||
mapped_size = 0;
|
||||
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
while (true) {
|
||||
// Check that the iterator is valid.
|
||||
ASSERT(it != block_manager->end());
|
||||
|
||||
// Get the memory info.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
// Verify the memory's state.
|
||||
const bool is_normal = info.GetState() == KMemoryState::Normal &&
|
||||
info.GetAttribute() == KMemoryAttribute::None;
|
||||
const bool is_free = info.GetState() == KMemoryState::Free;
|
||||
R_UNLESS(is_normal || is_free, ResultInvalidCurrentMemory);
|
||||
|
||||
if (is_normal) {
|
||||
R_UNLESS(info.GetAttribute() == KMemoryAttribute::None, ResultInvalidCurrentMemory);
|
||||
|
||||
if (info.GetAddress() < address) {
|
||||
++num_allocator_blocks;
|
||||
}
|
||||
if (last_address < info.GetLastAddress()) {
|
||||
++num_allocator_blocks;
|
||||
}
|
||||
}
|
||||
mapped_size += GetSizeInRange(info, addr, end_addr);
|
||||
} else if (info.state != KMemoryState::Free) {
|
||||
result = ResultInvalidCurrentMemory;
|
||||
|
||||
// Check if we're done.
|
||||
if (last_address <= info.GetLastAddress()) {
|
||||
if (is_normal) {
|
||||
mapped_size += (last_address + 1 - cur_address);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// Track the memory if it's mapped.
|
||||
if (is_normal) {
|
||||
mapped_size += VAddr(info.GetEndAddress()) - cur_address;
|
||||
}
|
||||
|
||||
// Advance.
|
||||
cur_address = info.GetEndAddress();
|
||||
++it;
|
||||
}
|
||||
});
|
||||
|
||||
if (result.IsError()) {
|
||||
return result;
|
||||
// If there's nothing mapped, we've nothing to do.
|
||||
R_SUCCEED_IF(mapped_size == 0);
|
||||
}
|
||||
|
||||
if (!mapped_size) {
|
||||
return ResultSuccess;
|
||||
// Make a page group for the unmap region.
|
||||
KPageLinkedList pg;
|
||||
{
|
||||
auto& impl = this->PageTableImpl();
|
||||
|
||||
// Begin traversal.
|
||||
Common::PageTable::TraversalContext context;
|
||||
Common::PageTable::TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
|
||||
bool cur_valid = false;
|
||||
Common::PageTable::TraversalEntry next_entry;
|
||||
bool next_valid = false;
|
||||
size_t tot_size = 0;
|
||||
|
||||
cur_address = address;
|
||||
next_valid =
|
||||
impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_address);
|
||||
next_entry.block_size =
|
||||
(next_entry.block_size - (next_entry.phys_addr & (next_entry.block_size - 1)));
|
||||
|
||||
// Iterate, building the group.
|
||||
while (true) {
|
||||
if ((!next_valid && !cur_valid) ||
|
||||
(next_valid && cur_valid &&
|
||||
next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
|
||||
cur_entry.block_size += next_entry.block_size;
|
||||
} else {
|
||||
if (cur_valid) {
|
||||
// ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
|
||||
R_TRY(pg.AddBlock(cur_entry.phys_addr, cur_entry.block_size / PageSize));
|
||||
}
|
||||
|
||||
// Update tracking variables.
|
||||
tot_size += cur_entry.block_size;
|
||||
cur_entry = next_entry;
|
||||
cur_valid = next_valid;
|
||||
}
|
||||
|
||||
if (cur_entry.block_size + tot_size >= size) {
|
||||
break;
|
||||
}
|
||||
|
||||
next_valid =
|
||||
impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
|
||||
}
|
||||
|
||||
// Add the last block.
|
||||
if (cur_valid) {
|
||||
// ASSERT(IsHeapPhysicalAddress(cur_entry.phys_addr));
|
||||
R_TRY(pg.AddBlock(cur_entry.phys_addr, (size - tot_size) / PageSize));
|
||||
}
|
||||
}
|
||||
ASSERT(pg.GetNumPages() == mapped_size / PageSize);
|
||||
|
||||
// Unmap each region within the range
|
||||
KPageLinkedList page_linked_list;
|
||||
block_manager->IterateForRange(addr, end_addr, [&](const KMemoryInfo& info) {
|
||||
if (info.state == KMemoryState::Normal) {
|
||||
const std::size_t block_size{GetSizeInRange(info, addr, end_addr)};
|
||||
const std::size_t block_num_pages{block_size / PageSize};
|
||||
const VAddr block_addr{GetAddressInRange(info, addr)};
|
||||
// Reset the current tracking address, and make sure we clean up on failure.
|
||||
cur_address = address;
|
||||
auto remap_guard = detail::ScopeExit([&] {
|
||||
if (cur_address > address) {
|
||||
const VAddr last_map_address = cur_address - 1;
|
||||
cur_address = address;
|
||||
|
||||
AddRegionToPages(block_addr, block_size / PageSize, page_linked_list);
|
||||
// Iterate over the memory we unmapped.
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
auto pg_it = pg.Nodes().begin();
|
||||
PAddr pg_phys_addr = pg_it->GetAddress();
|
||||
size_t pg_pages = pg_it->GetNumPages();
|
||||
|
||||
if (result = Operate(block_addr, block_num_pages, KMemoryPermission::None,
|
||||
OperationType::Unmap);
|
||||
result.IsError()) {
|
||||
return;
|
||||
while (true) {
|
||||
// Get the memory info for the pages we unmapped, convert to property.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
// If the memory is normal, we unmapped it and need to re-map it.
|
||||
if (info.GetState() == KMemoryState::Normal) {
|
||||
// Determine the range to map.
|
||||
size_t map_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||
last_map_address + 1 - cur_address) /
|
||||
PageSize;
|
||||
|
||||
// While we have pages to map, map them.
|
||||
while (map_pages > 0) {
|
||||
// Check if we're at the end of the physical block.
|
||||
if (pg_pages == 0) {
|
||||
// Ensure there are more pages to map.
|
||||
ASSERT(pg_it != pg.Nodes().end());
|
||||
|
||||
// Advance our physical block.
|
||||
++pg_it;
|
||||
pg_phys_addr = pg_it->GetAddress();
|
||||
pg_pages = pg_it->GetNumPages();
|
||||
}
|
||||
|
||||
// Map whatever we can.
|
||||
const size_t cur_pages = std::min(pg_pages, map_pages);
|
||||
ASSERT(this->Operate(cur_address, cur_pages, info.GetPermission(),
|
||||
OperationType::Map, pg_phys_addr) == ResultSuccess);
|
||||
|
||||
// Advance.
|
||||
cur_address += cur_pages * PageSize;
|
||||
map_pages -= cur_pages;
|
||||
|
||||
pg_phys_addr += cur_pages * PageSize;
|
||||
pg_pages -= cur_pages;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we're done.
|
||||
if (last_map_address <= info.GetLastAddress()) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Advance.
|
||||
++it;
|
||||
}
|
||||
}
|
||||
});
|
||||
if (result.IsError()) {
|
||||
return result;
|
||||
|
||||
// Iterate over the memory, unmapping as we go.
|
||||
auto it = block_manager->FindIterator(cur_address);
|
||||
while (true) {
|
||||
// Check that the iterator is valid.
|
||||
ASSERT(it != block_manager->end());
|
||||
|
||||
// Get the memory info.
|
||||
const KMemoryInfo info = it->GetMemoryInfo();
|
||||
|
||||
// If the memory state is normal, we need to unmap it.
|
||||
if (info.GetState() == KMemoryState::Normal) {
|
||||
// Determine the range to unmap.
|
||||
const size_t cur_pages = std::min(VAddr(info.GetEndAddress()) - cur_address,
|
||||
last_address + 1 - cur_address) /
|
||||
PageSize;
|
||||
|
||||
// Unmap.
|
||||
R_TRY(Operate(cur_address, cur_pages, KMemoryPermission::None, OperationType::Unmap));
|
||||
}
|
||||
|
||||
// Check if we're done.
|
||||
if (last_address <= info.GetLastAddress()) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Advance.
|
||||
cur_address = info.GetEndAddress();
|
||||
++it;
|
||||
}
|
||||
|
||||
const std::size_t num_pages{size / PageSize};
|
||||
system.Kernel().MemoryManager().Free(page_linked_list, num_pages, memory_pool,
|
||||
allocation_option);
|
||||
|
||||
block_manager->Update(addr, num_pages, KMemoryState::Free);
|
||||
|
||||
// Release the memory resource.
|
||||
mapped_physical_memory_size -= mapped_size;
|
||||
auto process{system.Kernel().CurrentProcess()};
|
||||
process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size);
|
||||
mapped_physical_memory_size -= mapped_size;
|
||||
|
||||
// Update memory blocks.
|
||||
system.Kernel().MemoryManager().Free(pg, size / PageSize, memory_pool, allocation_option);
|
||||
block_manager->Update(address, size / PageSize, KMemoryState::Free, KMemoryPermission::None,
|
||||
KMemoryAttribute::None);
|
||||
|
||||
// We succeeded.
|
||||
remap_guard.Cancel();
|
||||
|
||||
return ResultSuccess;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user