mirror of
https://github.com/hathach/tinyusb.git
synced 2025-03-27 20:37:30 +00:00
1007 lines
29 KiB
C
1007 lines
29 KiB
C
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2023 Ha Thach (tinyusb.org)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* This file is part of the TinyUSB stack.
|
|
*/
|
|
|
|
#include "tusb_option.h"
|
|
|
|
#if CFG_TUH_ENABLED && defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421
|
|
|
|
#include <stdatomic.h>
|
|
#include "host/hcd.h"
|
|
#include "host/usbh.h"
|
|
|
|
//--------------------------------------------------------------------+
|
|
//
|
|
//--------------------------------------------------------------------+
|
|
|
|
// Command format is
|
|
// Reg [7:3] | 0 [2] | Dir [1] | Ack [0]
|
|
|
|
enum {
|
|
CMDBYTE_WRITE = 0x02,
|
|
};
|
|
|
|
enum {
|
|
RCVVFIFO_ADDR = 1u << 3, // 0x08
|
|
SNDFIFO_ADDR = 2u << 3, // 0x10
|
|
SUDFIFO_ADDR = 4u << 3, // 0x20
|
|
RCVBC_ADDR = 6u << 3, // 0x30
|
|
SNDBC_ADDR = 7u << 3, // 0x38
|
|
USBIRQ_ADDR = 13u << 3, // 0x68
|
|
USBIEN_ADDR = 14u << 3, // 0x70
|
|
USBCTL_ADDR = 15u << 3, // 0x78
|
|
CPUCTL_ADDR = 16u << 3, // 0x80
|
|
PINCTL_ADDR = 17u << 3, // 0x88
|
|
REVISION_ADDR = 18u << 3, // 0x90
|
|
// 19 is not used
|
|
IOPINS1_ADDR = 20u << 3, // 0xA0
|
|
IOPINS2_ADDR = 21u << 3, // 0xA8
|
|
GPINIRQ_ADDR = 22u << 3, // 0xB0
|
|
GPINIEN_ADDR = 23u << 3, // 0xB8
|
|
GPINPOL_ADDR = 24u << 3, // 0xC0
|
|
HIRQ_ADDR = 25u << 3, // 0xC8
|
|
HIEN_ADDR = 26u << 3, // 0xD0
|
|
MODE_ADDR = 27u << 3, // 0xD8
|
|
PERADDR_ADDR = 28u << 3, // 0xE0
|
|
HCTL_ADDR = 29u << 3, // 0xE8
|
|
HXFR_ADDR = 30u << 3, // 0xF0
|
|
HRSL_ADDR = 31u << 3, // 0xF8
|
|
};
|
|
|
|
enum {
|
|
USBIRQ_OSCOK_IRQ = 1u << 0,
|
|
USBIRQ_NOVBUS_IRQ = 1u << 5,
|
|
USBIRQ_VBUS_IRQ = 1u << 6,
|
|
};
|
|
|
|
enum {
|
|
USBCTL_PWRDOWN = 1u << 4,
|
|
USBCTL_CHIPRES = 1u << 5,
|
|
};
|
|
|
|
enum {
|
|
CPUCTL_IE = 1u << 0,
|
|
CPUCTL_PULSEWID0 = 1u << 6,
|
|
CPUCTL_PULSEWID1 = 1u << 7,
|
|
};
|
|
|
|
enum {
|
|
PINCTL_GPXA = 1u << 0,
|
|
PINCTL_GPXB = 1u << 1,
|
|
PINCTL_POSINT = 1u << 2,
|
|
PINCTL_INTLEVEL = 1u << 3,
|
|
PINCTL_FDUPSPI = 1u << 4,
|
|
};
|
|
|
|
enum {
|
|
HIRQ_BUSEVENT_IRQ = 1u << 0,
|
|
HIRQ_RWU_IRQ = 1u << 1,
|
|
HIRQ_RCVDAV_IRQ = 1u << 2,
|
|
HIRQ_SNDBAV_IRQ = 1u << 3,
|
|
HIRQ_SUSDN_IRQ = 1u << 4,
|
|
HIRQ_CONDET_IRQ = 1u << 5,
|
|
HIRQ_FRAME_IRQ = 1u << 6,
|
|
HIRQ_HXFRDN_IRQ = 1u << 7,
|
|
};
|
|
|
|
enum {
|
|
MODE_HOST = 1u << 0,
|
|
MODE_LOWSPEED = 1u << 1,
|
|
MODE_HUBPRE = 1u << 2,
|
|
MODE_SOFKAENAB = 1u << 3,
|
|
MODE_SEPIRQ = 1u << 4,
|
|
MODE_DELAYISO = 1u << 5,
|
|
MODE_DMPULLDN = 1u << 6,
|
|
MODE_DPPULLDN = 1u << 7,
|
|
};
|
|
|
|
enum {
|
|
HCTL_BUSRST = 1u << 0,
|
|
HCTL_FRMRST = 1u << 1,
|
|
HCTL_SAMPLEBUS = 1u << 2,
|
|
HCTL_SIGRSM = 1u << 3,
|
|
HCTL_RCVTOG0 = 1u << 4,
|
|
HCTL_RCVTOG1 = 1u << 5,
|
|
HCTL_SNDTOG0 = 1u << 6,
|
|
HCTL_SNDTOG1 = 1u << 7,
|
|
};
|
|
|
|
enum {
|
|
HXFR_EPNUM_MASK = 0x0f,
|
|
HXFR_SETUP = 1u << 4,
|
|
HXFR_OUT_NIN = 1u << 5,
|
|
HXFR_ISO = 1u << 6,
|
|
HXFR_HS = 1u << 7,
|
|
};
|
|
|
|
enum {
|
|
HRSL_RESULT_MASK = 0x0f,
|
|
HRSL_RCVTOGRD = 1u << 4,
|
|
HRSL_SNDTOGRD = 1u << 5,
|
|
HRSL_KSTATUS = 1u << 6,
|
|
HRSL_JSTATUS = 1u << 7,
|
|
};
|
|
|
|
enum {
|
|
HRSL_SUCCESS = 0,
|
|
HRSL_BUSY,
|
|
HRSL_BAD_REQ,
|
|
HRSL_UNDEF,
|
|
HRSL_NAK,
|
|
HRSL_STALL,
|
|
HRSL_TOG_ERR,
|
|
HRSL_WRONG_PID,
|
|
HRSL_BAD_BYTECOUNT,
|
|
HRSL_PID_ERR,
|
|
HRSL_PKT_ERR,
|
|
HRSL_CRC_ERR,
|
|
HRSL_K_ERR,
|
|
HRSL_J_ERR,
|
|
HRSL_TIMEOUT,
|
|
HRSL_BABBLE,
|
|
};
|
|
|
|
enum {
|
|
DEFAULT_HIEN = HIRQ_CONDET_IRQ | HIRQ_FRAME_IRQ | HIRQ_HXFRDN_IRQ | HIRQ_RCVDAV_IRQ
|
|
};
|
|
|
|
enum {
|
|
MAX_NAK_DEFAULT = 1 // Number of NAK per endpoint per usb frame
|
|
};
|
|
|
|
enum {
|
|
EP_STATE_IDLE = 0,
|
|
EP_STATE_COMPLETE = 1,
|
|
EP_STATE_ATTEMPT_1 = 2, // pending 1st attempt
|
|
EP_STATE_ATTEMPT_MAX = 15
|
|
};
|
|
|
|
//--------------------------------------------------------------------+
|
|
//
|
|
//--------------------------------------------------------------------+
|
|
|
|
typedef struct {
|
|
uint8_t daddr;
|
|
|
|
union { ;
|
|
struct TU_ATTR_PACKED {
|
|
uint8_t ep_num : 4;
|
|
uint8_t is_setup : 1;
|
|
uint8_t is_out : 1;
|
|
uint8_t is_iso : 1;
|
|
}hxfr_bm;
|
|
|
|
uint8_t hxfr;
|
|
};
|
|
|
|
struct TU_ATTR_PACKED {
|
|
uint8_t state : 4;
|
|
uint8_t data_toggle : 1;
|
|
uint16_t packet_size : 11;
|
|
};
|
|
|
|
uint16_t total_len;
|
|
uint16_t xferred_len;
|
|
uint8_t* buf;
|
|
} max3421_ep_t;
|
|
|
|
TU_VERIFY_STATIC(sizeof(max3421_ep_t) == 12, "size is not correct");
|
|
|
|
typedef struct {
|
|
volatile uint16_t frame_count;
|
|
|
|
// cached register
|
|
uint8_t sndbc;
|
|
uint8_t hirq;
|
|
uint8_t hien;
|
|
uint8_t mode;
|
|
uint8_t peraddr;
|
|
uint8_t hxfr;
|
|
|
|
atomic_flag busy; // busy transferring
|
|
|
|
#if OSAL_MUTEX_REQUIRED
|
|
OSAL_MUTEX_DEF(spi_mutexdef);
|
|
osal_mutex_t spi_mutex;
|
|
#endif
|
|
|
|
max3421_ep_t ep[CFG_TUH_MAX3421_ENDPOINT_TOTAL]; // [0] is reserved for addr0
|
|
} max3421_data_t;
|
|
|
|
static max3421_data_t _hcd_data;
|
|
|
|
// max NAK before giving up in a frame. 0 means infinite NAKs
|
|
static uint8_t _max_nak = MAX_NAK_DEFAULT;
|
|
|
|
//--------------------------------------------------------------------+
|
|
// API: SPI transfer with MAX3421E
|
|
// - spi_cs_api(), spi_xfer_api(), int_api(): must be implemented by application
|
|
// - reg_read(), reg_write(): is implemented by this driver, can be used by application
|
|
//--------------------------------------------------------------------+
|
|
|
|
// API to control MAX3421 SPI CS
|
|
extern void tuh_max3421_spi_cs_api(uint8_t rhport, bool active);
|
|
|
|
// API to transfer data with MAX3421 SPI
|
|
// Either tx_buf or rx_buf can be NULL, which means transfer is write or read only
|
|
extern bool tuh_max3421_spi_xfer_api(uint8_t rhport, uint8_t const* tx_buf, uint8_t* rx_buf, size_t xfer_bytes);
|
|
|
|
// API to enable/disable MAX3421 INTR pin interrupt
|
|
extern void tuh_max3421_int_api(uint8_t rhport, bool enabled);
|
|
|
|
// API to read MAX3421's register. Implemented by TinyUSB
|
|
uint8_t tuh_max3421_reg_read(uint8_t rhport, uint8_t reg, bool in_isr);
|
|
|
|
// API to write MAX3421's register. Implemented by TinyUSB
|
|
bool tuh_max3421_reg_write(uint8_t rhport, uint8_t reg, uint8_t data, bool in_isr);
|
|
|
|
//--------------------------------------------------------------------+
|
|
// SPI Commands and Helper
|
|
//--------------------------------------------------------------------+
|
|
|
|
#define reg_read tuh_max3421_reg_read
|
|
#define reg_write tuh_max3421_reg_write
|
|
|
|
static void max3421_spi_lock(uint8_t rhport, bool in_isr) {
|
|
// disable interrupt and mutex lock (for pre-emptive RTOS) if not in_isr
|
|
if (!in_isr) {
|
|
(void) osal_mutex_lock(_hcd_data.spi_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
|
|
tuh_max3421_int_api(rhport, false);
|
|
}
|
|
|
|
// assert CS
|
|
tuh_max3421_spi_cs_api(rhport, true);
|
|
}
|
|
|
|
static void max3421_spi_unlock(uint8_t rhport, bool in_isr) {
|
|
// de-assert CS
|
|
tuh_max3421_spi_cs_api(rhport, false);
|
|
|
|
// mutex unlock and re-enable interrupt
|
|
if (!in_isr) {
|
|
tuh_max3421_int_api(rhport, true);
|
|
(void) osal_mutex_unlock(_hcd_data.spi_mutex);
|
|
}
|
|
}
|
|
|
|
uint8_t tuh_max3421_reg_read(uint8_t rhport, uint8_t reg, bool in_isr) {
|
|
uint8_t tx_buf[2] = {reg, 0};
|
|
uint8_t rx_buf[2] = {0, 0};
|
|
|
|
max3421_spi_lock(rhport, in_isr);
|
|
bool ret = tuh_max3421_spi_xfer_api(rhport, tx_buf, rx_buf, 2);
|
|
max3421_spi_unlock(rhport, in_isr);
|
|
|
|
_hcd_data.hirq = rx_buf[0];
|
|
return ret ? rx_buf[1] : 0;
|
|
}
|
|
|
|
bool tuh_max3421_reg_write(uint8_t rhport, uint8_t reg, uint8_t data, bool in_isr) {
|
|
uint8_t tx_buf[2] = {reg | CMDBYTE_WRITE, data};
|
|
uint8_t rx_buf[2] = {0, 0};
|
|
|
|
max3421_spi_lock(rhport, in_isr);
|
|
bool ret = tuh_max3421_spi_xfer_api(rhport, tx_buf, rx_buf, 2);
|
|
max3421_spi_unlock(rhport, in_isr);
|
|
|
|
// HIRQ register since we are in full-duplex mode
|
|
_hcd_data.hirq = rx_buf[0];
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void fifo_write(uint8_t rhport, uint8_t reg, uint8_t const * buffer, uint16_t len, bool in_isr) {
|
|
uint8_t hirq;
|
|
reg |= CMDBYTE_WRITE;
|
|
|
|
max3421_spi_lock(rhport, in_isr);
|
|
|
|
tuh_max3421_spi_xfer_api(rhport, ®, &hirq, 1);
|
|
_hcd_data.hirq = hirq;
|
|
tuh_max3421_spi_xfer_api(rhport, buffer, NULL, len);
|
|
|
|
max3421_spi_unlock(rhport, in_isr);
|
|
}
|
|
|
|
static void fifo_read(uint8_t rhport, uint8_t * buffer, uint16_t len, bool in_isr) {
|
|
uint8_t hirq;
|
|
uint8_t const reg = RCVVFIFO_ADDR;
|
|
|
|
max3421_spi_lock(rhport, in_isr);
|
|
|
|
tuh_max3421_spi_xfer_api(rhport, ®, &hirq, 1);
|
|
_hcd_data.hirq = hirq;
|
|
tuh_max3421_spi_xfer_api(rhport, NULL, buffer, len);
|
|
|
|
max3421_spi_unlock(rhport, in_isr);
|
|
}
|
|
|
|
//------------- register write helper -------------//
|
|
TU_ATTR_ALWAYS_INLINE static inline void hirq_write(uint8_t rhport, uint8_t data, bool in_isr) {
|
|
reg_write(rhport, HIRQ_ADDR, data, in_isr);
|
|
// HIRQ write 1 is clear
|
|
_hcd_data.hirq &= (uint8_t) ~data;
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void hien_write(uint8_t rhport, uint8_t data, bool in_isr) {
|
|
_hcd_data.hien = data;
|
|
reg_write(rhport, HIEN_ADDR, data, in_isr);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void mode_write(uint8_t rhport, uint8_t data, bool in_isr) {
|
|
_hcd_data.mode = data;
|
|
reg_write(rhport, MODE_ADDR, data, in_isr);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void peraddr_write(uint8_t rhport, uint8_t data, bool in_isr) {
|
|
if ( _hcd_data.peraddr == data ) return; // no need to change address
|
|
|
|
_hcd_data.peraddr = data;
|
|
reg_write(rhport, PERADDR_ADDR, data, in_isr);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void hxfr_write(uint8_t rhport, uint8_t data, bool in_isr) {
|
|
_hcd_data.hxfr = data;
|
|
reg_write(rhport, HXFR_ADDR, data, in_isr);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void sndbc_write(uint8_t rhport, uint8_t data, bool in_isr) {
|
|
_hcd_data.sndbc = data;
|
|
reg_write(rhport, SNDBC_ADDR, data, in_isr);
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Endpoint helper
|
|
//--------------------------------------------------------------------+
|
|
|
|
static max3421_ep_t* find_ep_not_addr0(uint8_t daddr, uint8_t ep_num, uint8_t ep_dir) {
|
|
uint8_t const is_out = 1-ep_dir;
|
|
for(size_t i=1; i<CFG_TUH_MAX3421_ENDPOINT_TOTAL; i++) {
|
|
max3421_ep_t* ep = &_hcd_data.ep[i];
|
|
// control endpoint is bi-direction (skip check)
|
|
if (daddr == ep->daddr && ep_num == ep->hxfr_bm.ep_num && (ep_num == 0 || is_out == ep->hxfr_bm.is_out)) {
|
|
return ep;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// daddr = 0 and ep_num = 0 means find a free (allocate) endpoint
|
|
TU_ATTR_ALWAYS_INLINE static inline max3421_ep_t * allocate_ep(void) {
|
|
return find_ep_not_addr0(0, 0, 0);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline max3421_ep_t * find_opened_ep(uint8_t daddr, uint8_t ep_num, uint8_t ep_dir) {
|
|
if (daddr == 0 && ep_num == 0) {
|
|
return &_hcd_data.ep[0];
|
|
}else{
|
|
return find_ep_not_addr0(daddr, ep_num, ep_dir);
|
|
}
|
|
}
|
|
|
|
// free all endpoints belong to device address
|
|
static void free_ep(uint8_t daddr) {
|
|
for (size_t i=1; i<CFG_TUH_MAX3421_ENDPOINT_TOTAL; i++) {
|
|
max3421_ep_t* ep = &_hcd_data.ep[i];
|
|
if (ep->daddr == daddr) {
|
|
tu_memclr(ep, sizeof(max3421_ep_t));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if endpoint has an queued transfer and not reach max NAK
|
|
TU_ATTR_ALWAYS_INLINE static inline bool is_ep_pending(max3421_ep_t const * ep) {
|
|
uint8_t const state = ep->state;
|
|
return ep->packet_size && (state >= EP_STATE_ATTEMPT_1) &&
|
|
(_max_nak == 0 || state < EP_STATE_ATTEMPT_1 + _max_nak);
|
|
}
|
|
|
|
// Find the next pending endpoint using round-robin scheduling, starting from next endpoint.
|
|
// return NULL if not found
|
|
// TODO respect interrupt endpoint's interval
|
|
static max3421_ep_t * find_next_pending_ep(max3421_ep_t * cur_ep) {
|
|
size_t const idx = (size_t) (cur_ep - _hcd_data.ep);
|
|
|
|
// starting from next endpoint
|
|
for (size_t i = idx + 1; i < CFG_TUH_MAX3421_ENDPOINT_TOTAL; i++) {
|
|
max3421_ep_t* ep = &_hcd_data.ep[i];
|
|
if (is_ep_pending(ep)) {
|
|
return ep;
|
|
}
|
|
}
|
|
|
|
// wrap around including current endpoint
|
|
for (size_t i = 0; i <= idx; i++) {
|
|
max3421_ep_t* ep = &_hcd_data.ep[i];
|
|
if (is_ep_pending(ep)) {
|
|
return ep;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Controller API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// optional hcd configuration, called by tuh_configure()
|
|
bool hcd_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param) {
|
|
(void) rhport;
|
|
TU_VERIFY(cfg_id == TUH_CFGID_MAX3421 && cfg_param != NULL);
|
|
|
|
tuh_configure_param_t const* cfg = (tuh_configure_param_t const*) cfg_param;
|
|
_max_nak = tu_min8(cfg->max3421.max_nak, EP_STATE_ATTEMPT_MAX-EP_STATE_ATTEMPT_1);
|
|
return true;
|
|
}
|
|
|
|
// Initialize controller to host mode
|
|
bool hcd_init(uint8_t rhport) {
|
|
(void) rhport;
|
|
|
|
tuh_max3421_int_api(rhport, false);
|
|
|
|
TU_LOG2_INT(sizeof(max3421_ep_t));
|
|
TU_LOG2_INT(sizeof(max3421_data_t));
|
|
TU_LOG2_INT(offsetof(max3421_data_t, ep));
|
|
|
|
tu_memclr(&_hcd_data, sizeof(_hcd_data));
|
|
_hcd_data.peraddr = 0xff; // invalid
|
|
|
|
#if OSAL_MUTEX_REQUIRED
|
|
_hcd_data.spi_mutex = osal_mutex_create(&_hcd_data.spi_mutexdef);
|
|
#endif
|
|
|
|
// full duplex, interrupt negative edge
|
|
reg_write(rhport, PINCTL_ADDR, PINCTL_FDUPSPI, false);
|
|
|
|
// v1 is 0x01, v2 is 0x12, v3 is 0x13
|
|
uint8_t const revision = reg_read(rhport, REVISION_ADDR, false);
|
|
TU_ASSERT(revision == 0x01 || revision == 0x12 || revision == 0x13, false);
|
|
TU_LOG2_HEX(revision);
|
|
|
|
// reset
|
|
reg_write(rhport, USBCTL_ADDR, USBCTL_CHIPRES, false);
|
|
reg_write(rhport, USBCTL_ADDR, 0, false);
|
|
while( !(reg_read(rhport, USBIRQ_ADDR, false) & USBIRQ_OSCOK_IRQ) ) {
|
|
// wait for oscillator to stabilize
|
|
}
|
|
|
|
// Mode: Host and DP/DM pull down
|
|
mode_write(rhport, MODE_DPPULLDN | MODE_DMPULLDN | MODE_HOST, false);
|
|
|
|
// frame reset & bus reset, this will trigger CONDET IRQ if device is already connected
|
|
reg_write(rhport, HCTL_ADDR, HCTL_BUSRST | HCTL_FRMRST, false);
|
|
|
|
// clear all previously pending IRQ
|
|
hirq_write(rhport, 0xff, false);
|
|
|
|
// Enable IRQ
|
|
hien_write(rhport, DEFAULT_HIEN, false);
|
|
|
|
tuh_max3421_int_api(rhport, true);
|
|
|
|
// Enable Interrupt pin
|
|
reg_write(rhport, CPUCTL_ADDR, CPUCTL_IE, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool hcd_deinit(uint8_t rhport) {
|
|
(void) rhport;
|
|
|
|
// disable interrupt
|
|
tuh_max3421_int_api(rhport, false);
|
|
|
|
// reset max3421
|
|
reg_write(rhport, USBCTL_ADDR, USBCTL_CHIPRES, false);
|
|
reg_write(rhport, USBCTL_ADDR, 0, false);
|
|
|
|
#if OSAL_MUTEX_REQUIRED
|
|
osal_mutex_delete(_hcd_data.spi_mutex);
|
|
_hcd_data.spi_mutex = NULL;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// Enable USB interrupt
|
|
// Not actually enable GPIO interrupt, just set variable to prevent handler to process
|
|
void hcd_int_enable (uint8_t rhport) {
|
|
tuh_max3421_int_api(rhport, true);
|
|
}
|
|
|
|
// Disable USB interrupt
|
|
// Not actually disable GPIO interrupt, just set variable to prevent handler to process
|
|
void hcd_int_disable(uint8_t rhport) {
|
|
tuh_max3421_int_api(rhport, false);
|
|
}
|
|
|
|
// Get frame number (1ms)
|
|
uint32_t hcd_frame_number(uint8_t rhport) {
|
|
(void) rhport;
|
|
return (uint32_t ) _hcd_data.frame_count;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Port API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// Get the current connect status of roothub port
|
|
bool hcd_port_connect_status(uint8_t rhport) {
|
|
(void) rhport;
|
|
return (_hcd_data.mode & MODE_SOFKAENAB) ? true : false;
|
|
}
|
|
|
|
// Reset USB bus on the port. Return immediately, bus reset sequence may not be complete.
|
|
// Some port would require hcd_port_reset_end() to be invoked after 10ms to complete the reset sequence.
|
|
void hcd_port_reset(uint8_t rhport) {
|
|
reg_write(rhport, HCTL_ADDR, HCTL_BUSRST, false);
|
|
}
|
|
|
|
// Complete bus reset sequence, may be required by some controllers
|
|
void hcd_port_reset_end(uint8_t rhport) {
|
|
reg_write(rhport, HCTL_ADDR, 0, false);
|
|
}
|
|
|
|
// Get port link speed
|
|
tusb_speed_t hcd_port_speed_get(uint8_t rhport) {
|
|
(void) rhport;
|
|
return (_hcd_data.mode & MODE_LOWSPEED) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL;
|
|
}
|
|
|
|
// HCD closes all opened endpoints belong to this device
|
|
void hcd_device_close(uint8_t rhport, uint8_t dev_addr) {
|
|
(void) rhport;
|
|
(void) dev_addr;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Endpoints API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// Open an endpoint
|
|
bool hcd_edpt_open(uint8_t rhport, uint8_t daddr, tusb_desc_endpoint_t const * ep_desc) {
|
|
(void) rhport;
|
|
|
|
uint8_t const ep_num = tu_edpt_number(ep_desc->bEndpointAddress);
|
|
tusb_dir_t const ep_dir = tu_edpt_dir(ep_desc->bEndpointAddress);
|
|
|
|
max3421_ep_t * ep;
|
|
if (daddr == 0 && ep_num == 0) {
|
|
ep = &_hcd_data.ep[0];
|
|
}else {
|
|
ep = allocate_ep();
|
|
TU_ASSERT(ep);
|
|
ep->daddr = daddr;
|
|
ep->hxfr_bm.ep_num = (uint8_t) (ep_num & 0x0f);
|
|
ep->hxfr_bm.is_out = (ep_dir == TUSB_DIR_OUT) ? 1 : 0;
|
|
ep->hxfr_bm.is_iso = (TUSB_XFER_ISOCHRONOUS == ep_desc->bmAttributes.xfer) ? 1 : 0;
|
|
}
|
|
|
|
ep->packet_size = (uint16_t) (tu_edpt_packet_size(ep_desc) & 0x7ff);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void xact_out(uint8_t rhport, max3421_ep_t *ep, bool switch_ep, bool in_isr) {
|
|
// Page 12: Programming BULK-OUT Transfers
|
|
// TODO double buffered
|
|
if (switch_ep) {
|
|
peraddr_write(rhport, ep->daddr, in_isr);
|
|
|
|
uint8_t const hctl = (ep->data_toggle ? HCTL_SNDTOG1 : HCTL_SNDTOG0);
|
|
reg_write(rhport, HCTL_ADDR, hctl, in_isr);
|
|
}
|
|
|
|
uint8_t const xact_len = (uint8_t) tu_min16(ep->total_len - ep->xferred_len, ep->packet_size);
|
|
TU_ASSERT(_hcd_data.hirq & HIRQ_SNDBAV_IRQ,);
|
|
if (xact_len) {
|
|
fifo_write(rhport, SNDFIFO_ADDR, ep->buf, xact_len, in_isr);
|
|
}
|
|
sndbc_write(rhport, xact_len, in_isr);
|
|
hxfr_write(rhport, ep->hxfr, in_isr);
|
|
}
|
|
|
|
static void xact_in(uint8_t rhport, max3421_ep_t *ep, bool switch_ep, bool in_isr) {
|
|
// Page 13: Programming BULK-IN Transfers
|
|
if (switch_ep) {
|
|
peraddr_write(rhport, ep->daddr, in_isr);
|
|
|
|
uint8_t const hctl = (ep->data_toggle ? HCTL_RCVTOG1 : HCTL_RCVTOG0);
|
|
reg_write(rhport, HCTL_ADDR, hctl, in_isr);
|
|
}
|
|
|
|
hxfr_write(rhport, ep->hxfr, in_isr);
|
|
}
|
|
|
|
static void xact_setup(uint8_t rhport, max3421_ep_t *ep, bool in_isr) {
|
|
peraddr_write(rhport, ep->daddr, in_isr);
|
|
fifo_write(rhport, SUDFIFO_ADDR, ep->buf, 8, in_isr);
|
|
hxfr_write(rhport, HXFR_SETUP, in_isr);
|
|
}
|
|
|
|
static void xact_generic(uint8_t rhport, max3421_ep_t *ep, bool switch_ep, bool in_isr) {
|
|
if (ep->hxfr_bm.ep_num == 0 ) {
|
|
// setup
|
|
if (ep->hxfr_bm.is_setup) {
|
|
xact_setup(rhport, ep, in_isr);
|
|
return;
|
|
}
|
|
|
|
// status
|
|
if (ep->buf == NULL || ep->total_len == 0) {
|
|
uint8_t const hxfr = (uint8_t) (HXFR_HS | (ep->hxfr & HXFR_OUT_NIN));
|
|
peraddr_write(rhport, ep->daddr, in_isr);
|
|
hxfr_write(rhport, hxfr, in_isr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ep->hxfr_bm.is_out) {
|
|
xact_out(rhport, ep, switch_ep, in_isr);
|
|
}else {
|
|
xact_in(rhport, ep, switch_ep, in_isr);
|
|
}
|
|
}
|
|
|
|
// Submit a transfer, when complete hcd_event_xfer_complete() must be invoked
|
|
bool hcd_edpt_xfer(uint8_t rhport, uint8_t daddr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen) {
|
|
uint8_t const ep_num = tu_edpt_number(ep_addr);
|
|
uint8_t const ep_dir = (uint8_t) tu_edpt_dir(ep_addr);
|
|
|
|
max3421_ep_t* ep = find_opened_ep(daddr, ep_num, ep_dir);
|
|
TU_VERIFY(ep);
|
|
|
|
if (ep_num == 0) {
|
|
// control transfer can switch direction
|
|
ep->hxfr_bm.is_out = ep_dir ? 0 : 1;
|
|
ep->hxfr_bm.is_setup = 0;
|
|
ep->data_toggle = 1;
|
|
}
|
|
|
|
ep->buf = buffer;
|
|
ep->total_len = buflen;
|
|
ep->xferred_len = 0;
|
|
ep->state = EP_STATE_ATTEMPT_1;
|
|
|
|
// carry out transfer if not busy
|
|
if (!atomic_flag_test_and_set(&_hcd_data.busy)) {
|
|
xact_generic(rhport, ep, true, false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Abort a queued transfer. Note: it can only abort transfer that has not been started
|
|
// Return true if a queued transfer is aborted, false if there is no transfer to abort
|
|
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
|
|
(void) rhport;
|
|
(void) dev_addr;
|
|
(void) ep_addr;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Submit a special transfer to send 8-byte Setup Packet, when complete hcd_event_xfer_complete() must be invoked
|
|
bool hcd_setup_send(uint8_t rhport, uint8_t daddr, uint8_t const setup_packet[8]) {
|
|
(void) rhport;
|
|
|
|
max3421_ep_t* ep = find_opened_ep(daddr, 0, 0);
|
|
TU_ASSERT(ep);
|
|
|
|
ep->hxfr_bm.is_out = 1;
|
|
ep->hxfr_bm.is_setup = 1;
|
|
ep->buf = (uint8_t*)(uintptr_t) setup_packet;
|
|
ep->total_len = 8;
|
|
ep->xferred_len = 0;
|
|
ep->state = EP_STATE_ATTEMPT_1;
|
|
|
|
// carry out transfer if not busy
|
|
if (!atomic_flag_test_and_set(&_hcd_data.busy)) {
|
|
xact_setup(rhport, ep, false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// clear stall, data toggle is also reset to DATA0
|
|
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
|
|
(void) rhport;
|
|
(void) dev_addr;
|
|
(void) ep_addr;
|
|
|
|
return false;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Interrupt Handler
|
|
//--------------------------------------------------------------------+
|
|
|
|
static void handle_connect_irq(uint8_t rhport, bool in_isr) {
|
|
uint8_t const hrsl = reg_read(rhport, HRSL_ADDR, in_isr);
|
|
uint8_t const jk = hrsl & (HRSL_JSTATUS | HRSL_KSTATUS);
|
|
|
|
uint8_t new_mode = MODE_DPPULLDN | MODE_DMPULLDN | MODE_HOST;
|
|
TU_LOG2_HEX(jk);
|
|
|
|
switch(jk) {
|
|
case 0x00: // SEO is disconnected
|
|
case (HRSL_JSTATUS | HRSL_KSTATUS): // SE1 is illegal
|
|
mode_write(rhport, new_mode, in_isr);
|
|
|
|
// port reset anyway, this will help to stable bus signal for next connection
|
|
reg_write(rhport, HCTL_ADDR, HCTL_BUSRST, in_isr);
|
|
hcd_event_device_remove(rhport, in_isr);
|
|
reg_write(rhport, HCTL_ADDR, 0, in_isr);
|
|
break;
|
|
|
|
default: {
|
|
// Bus Reset also cause CONDET IRQ, skip if we are already connected and doing bus reset
|
|
if ((_hcd_data.hirq & HIRQ_BUSEVENT_IRQ) && (_hcd_data.mode & MODE_SOFKAENAB)) {
|
|
break;
|
|
}
|
|
|
|
// Low speed if (LS = 1 and J-state) or (LS = 0 and K-State)
|
|
// However, since we are always in full speed mode, we can just check J-state
|
|
if (jk == HRSL_KSTATUS) {
|
|
new_mode |= MODE_LOWSPEED;
|
|
TU_LOG3("Low speed\r\n");
|
|
}else {
|
|
TU_LOG3("Full speed\r\n");
|
|
}
|
|
new_mode |= MODE_SOFKAENAB;
|
|
mode_write(rhport, new_mode, in_isr);
|
|
|
|
// FIXME multiple MAX3421 rootdevice address is not 1
|
|
uint8_t const daddr = 1;
|
|
free_ep(daddr);
|
|
|
|
hcd_event_device_attach(rhport, in_isr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void xfer_complete_isr(uint8_t rhport, max3421_ep_t *ep, xfer_result_t result, uint8_t hrsl, bool in_isr) {
|
|
uint8_t const ep_dir = 1-ep->hxfr_bm.is_out;
|
|
uint8_t const ep_addr = tu_edpt_addr(ep->hxfr_bm.ep_num, ep_dir);
|
|
|
|
// save data toggle
|
|
if (ep_dir) {
|
|
ep->data_toggle = (hrsl & HRSL_RCVTOGRD) ? 1u : 0u;
|
|
}else {
|
|
ep->data_toggle = (hrsl & HRSL_SNDTOGRD) ? 1u : 0u;
|
|
}
|
|
|
|
ep->state = EP_STATE_IDLE;
|
|
hcd_event_xfer_complete(ep->daddr, ep_addr, ep->xferred_len, result, in_isr);
|
|
|
|
// Find next pending endpoint
|
|
max3421_ep_t * next_ep = find_next_pending_ep(ep);
|
|
if (next_ep) {
|
|
xact_generic(rhport, next_ep, true, in_isr);
|
|
}else {
|
|
// no more pending
|
|
atomic_flag_clear(&_hcd_data.busy);
|
|
}
|
|
}
|
|
|
|
static void handle_xfer_done(uint8_t rhport, bool in_isr) {
|
|
uint8_t const hrsl = reg_read(rhport, HRSL_ADDR, in_isr);
|
|
uint8_t const hresult = hrsl & HRSL_RESULT_MASK;
|
|
|
|
uint8_t const ep_num = _hcd_data.hxfr & HXFR_EPNUM_MASK;
|
|
uint8_t const hxfr_type = _hcd_data.hxfr & 0xf0;
|
|
uint8_t const ep_dir = ((hxfr_type & HXFR_SETUP) || (hxfr_type & HXFR_OUT_NIN)) ? 0 : 1;
|
|
|
|
max3421_ep_t *ep = find_opened_ep(_hcd_data.peraddr, ep_num, ep_dir);
|
|
TU_VERIFY(ep, );
|
|
|
|
xfer_result_t xfer_result;
|
|
switch(hresult) {
|
|
case HRSL_SUCCESS:
|
|
xfer_result = XFER_RESULT_SUCCESS;
|
|
break;
|
|
|
|
case HRSL_STALL:
|
|
xfer_result = XFER_RESULT_STALLED;
|
|
break;
|
|
|
|
case HRSL_NAK:
|
|
if (ep_num == 0) {
|
|
// control endpoint -> retry immediately
|
|
hxfr_write(rhport, _hcd_data.hxfr, in_isr);
|
|
} else {
|
|
if (ep->state < EP_STATE_ATTEMPT_MAX) {
|
|
ep->state++;
|
|
}
|
|
|
|
max3421_ep_t * next_ep = find_next_pending_ep(ep);
|
|
if (ep == next_ep) {
|
|
// this endpoint is only one pending -> retry immediately
|
|
hxfr_write(rhport, _hcd_data.hxfr, in_isr);
|
|
} else if (next_ep) {
|
|
// switch to next pending endpoint TODO could have issue with double buffered if not clear previously out data
|
|
xact_generic(rhport, next_ep, true, in_isr);
|
|
} else {
|
|
// no more pending in this frame -> clear busy
|
|
atomic_flag_clear(&_hcd_data.busy);
|
|
}
|
|
}
|
|
return;
|
|
|
|
case HRSL_BAD_REQ:
|
|
// occurred when initialized without any pending transfer. Skip for now
|
|
return;
|
|
|
|
default:
|
|
TU_LOG3("HRSL: %02X\r\n", hrsl);
|
|
xfer_result = XFER_RESULT_FAILED;
|
|
break;
|
|
}
|
|
|
|
if (xfer_result != XFER_RESULT_SUCCESS) {
|
|
xfer_complete_isr(rhport, ep, xfer_result, hrsl, in_isr);
|
|
return;
|
|
}
|
|
|
|
if (ep_dir) {
|
|
// IN transfer: fifo data is already received in RCVDAV IRQ
|
|
|
|
// mark control handshake as complete
|
|
if (hxfr_type & HXFR_HS) {
|
|
ep->state = EP_STATE_COMPLETE;
|
|
}
|
|
|
|
// short packet or all bytes transferred
|
|
if (ep->state == EP_STATE_COMPLETE) {
|
|
xfer_complete_isr(rhport, ep, xfer_result, hrsl, in_isr);
|
|
}else {
|
|
// more to transfer
|
|
hxfr_write(rhport, _hcd_data.hxfr, in_isr);
|
|
}
|
|
} else {
|
|
// SETUP or OUT transfer
|
|
uint8_t xact_len;
|
|
|
|
if (hxfr_type & HXFR_SETUP) {
|
|
xact_len = 8;
|
|
} else if (hxfr_type & HXFR_HS) {
|
|
xact_len = 0;
|
|
} else {
|
|
xact_len = _hcd_data.sndbc;
|
|
}
|
|
|
|
ep->xferred_len += xact_len;
|
|
ep->buf += xact_len;
|
|
|
|
if (xact_len < ep->packet_size || ep->xferred_len >= ep->total_len) {
|
|
xfer_complete_isr(rhport, ep, xfer_result, hrsl, in_isr);
|
|
} else {
|
|
// more to transfer
|
|
xact_out(rhport, ep, false, in_isr);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CFG_TUSB_DEBUG >= 3
|
|
void print_hirq(uint8_t hirq) {
|
|
TU_LOG3_HEX(hirq);
|
|
|
|
if (hirq & HIRQ_HXFRDN_IRQ) TU_LOG3(" HXFRDN");
|
|
if (hirq & HIRQ_FRAME_IRQ) TU_LOG3(" FRAME");
|
|
if (hirq & HIRQ_CONDET_IRQ) TU_LOG3(" CONDET");
|
|
if (hirq & HIRQ_SUSDN_IRQ) TU_LOG3(" SUSDN");
|
|
if (hirq & HIRQ_SNDBAV_IRQ) TU_LOG3(" SNDBAV");
|
|
if (hirq & HIRQ_RCVDAV_IRQ) TU_LOG3(" RCVDAV");
|
|
if (hirq & HIRQ_RWU_IRQ) TU_LOG3(" RWU");
|
|
if (hirq & HIRQ_BUSEVENT_IRQ) TU_LOG3(" BUSEVENT");
|
|
|
|
TU_LOG3("\r\n");
|
|
}
|
|
#else
|
|
#define print_hirq(hirq)
|
|
#endif
|
|
|
|
// Interrupt handler
|
|
void hcd_int_handler(uint8_t rhport, bool in_isr) {
|
|
uint8_t hirq = reg_read(rhport, HIRQ_ADDR, in_isr) & _hcd_data.hien;
|
|
if (!hirq) return;
|
|
// print_hirq(hirq);
|
|
|
|
if (hirq & HIRQ_FRAME_IRQ) {
|
|
_hcd_data.frame_count++;
|
|
|
|
max3421_ep_t* ep_retry = NULL;
|
|
|
|
// reset all endpoints attempt counter
|
|
for (size_t i = 0; i < CFG_TUH_MAX3421_ENDPOINT_TOTAL; i++) {
|
|
max3421_ep_t* ep = &_hcd_data.ep[i];
|
|
if (ep->packet_size && ep->state > EP_STATE_ATTEMPT_1) {
|
|
ep->state = EP_STATE_ATTEMPT_1;
|
|
|
|
if (ep_retry == NULL) {
|
|
ep_retry = ep;
|
|
}
|
|
}
|
|
}
|
|
|
|
// start usb transfer if not busy
|
|
if (ep_retry != NULL && !atomic_flag_test_and_set(&_hcd_data.busy)) {
|
|
xact_generic(rhport, ep_retry, true, in_isr);
|
|
}
|
|
}
|
|
|
|
if (hirq & HIRQ_CONDET_IRQ) {
|
|
handle_connect_irq(rhport, in_isr);
|
|
}
|
|
|
|
// queue more transfer in handle_xfer_done() can cause hirq to be set again while external IRQ may not catch and/or
|
|
// not call this handler again. So we need to loop until all IRQ are cleared
|
|
while (hirq & (HIRQ_RCVDAV_IRQ | HIRQ_HXFRDN_IRQ)) {
|
|
if (hirq & HIRQ_RCVDAV_IRQ) {
|
|
uint8_t const ep_num = _hcd_data.hxfr & HXFR_EPNUM_MASK;
|
|
max3421_ep_t* ep = find_opened_ep(_hcd_data.peraddr, ep_num, 1);
|
|
uint8_t xact_len = 0;
|
|
|
|
// RCVDAV_IRQ can trigger 2 times (dual buffered)
|
|
while (hirq & HIRQ_RCVDAV_IRQ) {
|
|
uint8_t rcvbc = reg_read(rhport, RCVBC_ADDR, in_isr);
|
|
xact_len = (uint8_t) tu_min16(rcvbc, ep->total_len - ep->xferred_len);
|
|
if (xact_len) {
|
|
fifo_read(rhport, ep->buf, xact_len, in_isr);
|
|
ep->buf += xact_len;
|
|
ep->xferred_len += xact_len;
|
|
}
|
|
|
|
// ack RCVDVAV IRQ
|
|
hirq_write(rhport, HIRQ_RCVDAV_IRQ, in_isr);
|
|
hirq = reg_read(rhport, HIRQ_ADDR, in_isr);
|
|
}
|
|
|
|
if (xact_len < ep->packet_size || ep->xferred_len >= ep->total_len) {
|
|
ep->state = EP_STATE_COMPLETE;
|
|
}
|
|
}
|
|
|
|
if (hirq & HIRQ_HXFRDN_IRQ) {
|
|
hirq_write(rhport, HIRQ_HXFRDN_IRQ, in_isr);
|
|
handle_xfer_done(rhport, in_isr);
|
|
}
|
|
|
|
hirq = reg_read(rhport, HIRQ_ADDR, in_isr);
|
|
}
|
|
|
|
// clear all interrupt except SNDBAV_IRQ (never clear by us). Note RCVDAV_IRQ, HXFRDN_IRQ already clear while processing
|
|
hirq &= (uint8_t) ~HIRQ_SNDBAV_IRQ;
|
|
if ( hirq ) {
|
|
hirq_write(rhport, hirq, in_isr);
|
|
}
|
|
}
|
|
|
|
#endif
|