2023-08-04 12:00:25 +02:00

861 lines
25 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Koji Kitayama
* Portions copyrighted (c) 2021 Roland Winistoerfer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED && defined(TUP_USBIP_RUSB2)
#include "host/hcd.h"
#include "rusb2_type.h"
#if TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N)
#include "rusb2_rx.h"
#elif TU_CHECK_MCU(OPT_MCU_RAXXX)
#include "rusb2_ra.h"
#else
#error "Unsupported MCU"
#endif
#define TU_RUSB2_HCD_DBG 2
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
TU_ATTR_PACKED_BEGIN
TU_ATTR_BIT_FIELD_ORDER_BEGIN
typedef union TU_ATTR_PACKED {
struct {
volatile uint16_t u8: 8;
volatile uint16_t : 0;
};
volatile uint16_t u16;
} hw_fifo_t;
typedef struct TU_ATTR_PACKED {
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
struct {
uint32_t ep : 8; /* an assigned endpoint address */
uint32_t dev : 8; /* an assigned device address */
uint32_t ff : 1; /* `buf` is TU_FUFO or POD */
uint32_t : 0;
};
} pipe_state_t;
TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain)
TU_ATTR_BIT_FIELD_ORDER_END
typedef struct
{
bool need_reset; /* The device has not been reset after connection. */
pipe_state_t pipe[10];
uint8_t ep[4][2][15]; /* a lookup table for a pipe index from an endpoint address */
uint8_t ctl_mps[5]; /* EP0 max packet size for each device */
} hcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static hcd_data_t _hcd;
// TODO merged with DCD
// Transfer conditions specifiable for each pipe:
// - Pipe 0: Control transfer with 64-byte single buffer
// - Pipes 1 and 2: Bulk isochronous transfer continuous transfer mode with programmable buffer size up
// to 2 KB and optional double buffer
// - Pipes 3 to 5: Bulk transfer continuous transfer mode with programmable buffer size up to 2 KB and
// optional double buffer
// - Pipes 6 to 9: Interrupt transfer with 64-byte single buffer
enum {
PIPE_1ST_BULK = 3,
PIPE_1ST_INTERRUPT = 6,
PIPE_COUNT = 10,
};
static unsigned find_pipe(unsigned xfer) {
switch ( xfer ) {
case TUSB_XFER_ISOCHRONOUS:
for (int i = 1; i < PIPE_1ST_BULK; ++i) {
if ( 0 == _hcd.pipe[i].ep ) return i;
}
break;
case TUSB_XFER_BULK:
for (int i = PIPE_1ST_BULK; i < PIPE_1ST_INTERRUPT; ++i) {
if ( 0 == _hcd.pipe[i].ep ) return i;
}
for (int i = 1; i < PIPE_1ST_BULK; ++i) {
if ( 0 == _hcd.pipe[i].ep ) return i;
}
break;
case TUSB_XFER_INTERRUPT:
for (int i = PIPE_1ST_INTERRUPT; i < PIPE_COUNT; ++i) {
if ( 0 == _hcd.pipe[i].ep ) return i;
}
break;
default:
/* No support for control transfer */
break;
}
return 0;
}
static volatile uint16_t* get_pipectr(rusb2_reg_t *rusb, unsigned num)
{
if (num) {
return (volatile uint16_t*)&(rusb->PIPE_CTR[num - 1]);
} else {
return (volatile uint16_t*)&(rusb->DCPCTR);
}
}
static volatile reg_pipetre_t* get_pipetre(rusb2_reg_t *rusb, unsigned num)
{
volatile reg_pipetre_t* tre = NULL;
if ((1 <= num) && (num <= 5)) {
tre = (volatile reg_pipetre_t*)&(rusb->PIPE_TR[num - 1].E);
}
return tre;
}
static volatile uint16_t* addr_to_pipectr(uint8_t rhport, uint8_t dev_addr, unsigned ep_addr)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
const unsigned epn = tu_edpt_number(ep_addr);
if (epn) {
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned num = _hcd.ep[dev_addr][dir_in][epn - 1];
return get_pipectr(rusb, num);
} else {
return get_pipectr(rusb, 0);
}
}
static uint16_t edpt0_max_packet_size(rusb2_reg_t* rusb)
{
return rusb->DCPMAXP_b.MXPS;
}
static uint16_t edpt_max_packet_size(rusb2_reg_t *rusb, unsigned num)
{
rusb->PIPESEL = num;
return rusb->PIPEMAXP_b.MXPS;
}
static inline void pipe_wait_for_ready(rusb2_reg_t* rusb, unsigned num)
{
while (rusb->D0FIFOSEL_b.CURPIPE != num) ;
while (!rusb->D0FIFOCTR_b.FRDY) {}
}
static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len)
{
// NOTE: unlike DCD, Highspeed 32-bit FIFO does not need to adjust the fifo address
volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo;
uintptr_t addr = (uintptr_t)buf;
while (len >= 2) {
reg->u16 = *(const uint16_t *)addr;
addr += 2;
len -= 2;
}
if (len) {
reg->u8 = *(const uint8_t *)addr;
++addr;
}
}
static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len)
{
uint8_t *p = (uint8_t*)buf;
volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */
while (len--) *p++ = *reg;
}
static bool pipe0_xfer_in(rusb2_reg_t* rusb)
{
pipe_state_t *pipe = &_hcd.pipe[0];
const unsigned rem = pipe->remaining;
const unsigned mps = edpt0_max_packet_size(rusb);
const unsigned vld = rusb->CFIFOCTR_b.DTLN;
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK;
pipe_read_packet(buf, (volatile void*)&rusb->CFIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) {
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
}
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return true;
}
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF;
return false;
}
static bool pipe0_xfer_out(rusb2_reg_t* rusb)
{
pipe_state_t *pipe = &_hcd.pipe[0];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
const unsigned mps = edpt0_max_packet_size(rusb);
const unsigned len = TU_MIN(mps, rem);
void *buf = pipe->buf;
if (len) {
pipe_write_packet(buf, (volatile void*)&rusb->CFIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) {
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
}
pipe->remaining = rem - len;
return false;
}
static bool pipe_xfer_in(rusb2_reg_t* rusb, unsigned num)
{
pipe_state_t *pipe = &_hcd.pipe[num];
const unsigned rem = pipe->remaining;
rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_8BIT;
const unsigned mps = edpt_max_packet_size(rusb, num);
pipe_wait_for_ready(rusb, num);
const unsigned vld = rusb->D0FIFOCTR_b.DTLN;
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
pipe_read_packet(buf, (volatile void*)&rusb->D0FIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) {
rusb->D0FIFOCTR = RUSB2_D0FIFOCTR_BCLR_Msk;
}
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
return false;
}
static bool pipe_xfer_out(rusb2_reg_t* rusb, unsigned num)
{
pipe_state_t *pipe = &_hcd.pipe[num];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0);
const unsigned mps = edpt_max_packet_size(rusb, num);
pipe_wait_for_ready(rusb, num);
const unsigned len = TU_MIN(rem, mps);
void *buf = pipe->buf;
if (len) {
pipe_write_packet(buf, (volatile void*)&rusb->D0FIFO, len);
pipe->buf = (uint8_t*)buf + len;
}
if (len < mps) {
rusb->D0FIFOCTR = RUSB2_D0FIFOCTR_BVAL_Msk;
}
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
return false;
}
static bool process_pipe0_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen)
{
(void)dev_addr;
rusb2_reg_t* rusb = RUSB2_REG(rhport);
const unsigned dir_in = tu_edpt_dir(ep_addr);
/* configure fifo direction and access unit settings */
if (dir_in) { /* IN, a byte */
rusb->CFIFOSEL = RUSB2_FIFOSEL_MBW_8BIT;
while (rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) ;
} else { /* OUT, 2 bytes */
rusb->CFIFOSEL = RUSB2_CFIFOSEL_ISEL_WRITE | RUSB2_FIFOSEL_MBW_16BIT |
(TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0);
while (!(rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE)) ;
}
pipe_state_t *pipe = &_hcd.pipe[0];
pipe->ep = ep_addr;
pipe->length = buflen;
pipe->remaining = buflen;
if (buflen) {
pipe->buf = buffer;
if (!dir_in) { /* OUT */
TU_ASSERT(rusb->DCPCTR_b.BSTS && (rusb->USBREQ & 0x80));
pipe0_xfer_out(rusb);
}
} else { /* ZLP */
pipe->buf = NULL;
if (!dir_in) { /* OUT */
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
}
if (dir_in == rusb->DCPCFG_b.DIR) {
TU_ASSERT(RUSB2_PIPE_CTR_PID_NAK == rusb->DCPCTR_b.PID);
rusb->DCPCTR_b.SQSET = 1;
rusb->DCPCFG_b.DIR = dir_in ^ 1;
}
}
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF;
return true;
}
static bool process_pipe_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, void *buffer, uint16_t buflen)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned num = _hcd.ep[dev_addr - 1][dir_in][epn - 1];
TU_ASSERT(num);
pipe_state_t *pipe = &_hcd.pipe[num];
pipe->buf = buffer;
pipe->length = buflen;
pipe->remaining = buflen;
if (!dir_in) { /* OUT */
if (buflen) {
pipe_xfer_out(rusb, num);
} else { /* ZLP */
rusb->D0FIFOSEL = num;
pipe_wait_for_ready(rusb, num);
rusb->D0FIFOCTR = RUSB2_D0FIFOCTR_BVAL_Msk;
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
}
} else {
volatile uint16_t *ctr = get_pipectr(rusb, num);
volatile reg_pipetre_t *pt = get_pipetre(rusb, num);
if (pt) {
const unsigned mps = edpt_max_packet_size(rusb, num);
if (*ctr & 0x3) *ctr = RUSB2_PIPE_CTR_PID_NAK;
pt->TRE = TU_BIT(8);
pt->TRN = (buflen + mps - 1) / mps;
pt->TRENB = 1;
}
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
return true;
}
static bool process_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen)
{
const unsigned epn = tu_edpt_number(ep_addr);
if (0 == epn) {
return process_pipe0_xfer(rhport, dev_addr, ep_addr, buffer, buflen);
} else {
return process_pipe_xfer(rhport, dev_addr, ep_addr, buffer, buflen);
}
}
static void process_pipe0_bemp(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
bool completed = pipe0_xfer_out(rusb);
if (completed) {
pipe_state_t *pipe = &_hcd.pipe[0];
hcd_event_xfer_complete(pipe->dev,
tu_edpt_addr(0, TUSB_DIR_OUT),
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_pipe_nrdy(uint8_t rhport, unsigned num)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
xfer_result_t result;
uint16_t volatile *ctr = get_pipectr(rusb, num);
TU_LOG(TU_RUSB2_HCD_DBG, "NRDY %d %x\r\n", num, *ctr);
switch (*ctr & RUSB2_PIPE_CTR_PID_Msk) {
default: return;
case RUSB2_PIPE_CTR_PID_STALL: result = XFER_RESULT_STALLED; break;
case RUSB2_PIPE_CTR_PID_STALL2: result = XFER_RESULT_STALLED; break;
case RUSB2_PIPE_CTR_PID_NAK: result = XFER_RESULT_FAILED; break;
}
pipe_state_t *pipe = &_hcd.pipe[num];
hcd_event_xfer_complete(pipe->dev, pipe->ep,
pipe->length - pipe->remaining,
result, true);
}
static void process_pipe_brdy(uint8_t rhport, unsigned num)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
pipe_state_t *pipe = &_hcd.pipe[num];
const unsigned dir_in = tu_edpt_dir(pipe->ep);
bool completed;
if (dir_in) { /* IN */
if (num) {
completed = pipe_xfer_in(rusb, num);
} else {
completed = pipe0_xfer_in(rusb);
}
} else {
completed = pipe_xfer_out(rusb, num);
}
if (completed) {
hcd_event_xfer_complete(pipe->dev, pipe->ep,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
TU_LOG(TU_RUSB2_HCD_DBG, "C %d %d\r\n", num, pipe->length - pipe->remaining);
}
}
/*------------------------------------------------------------------*/
/* Host API
*------------------------------------------------------------------*/
#if 0 // previously present in the rx driver before generalization
static uint32_t disable_interrupt(void)
{
uint32_t pswi;
#if defined(__CCRX__)
pswi = get_psw() & 0x010000;
clrpsw_i();
#else
pswi = __builtin_rx_mvfc(0) & 0x010000;
__builtin_rx_clrpsw('I');
#endif
return pswi;
}
static void enable_interrupt(uint32_t pswi)
{
#if defined(__CCRX__)
set_psw(get_psw() | pswi);
#else
__builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi);
#endif
}
#endif
bool hcd_init(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb2_module_start(rhport, true);
#ifdef RUSB2_SUPPORT_HIGHSPEED
if (rusb2_is_highspeed_rhport(rhport) ) {
rusb->SYSCFG_b.HSE = 1;
rusb->PHYSET_b.HSEB = 0;
rusb->PHYSET_b.DIRPD = 0;
R_BSP_SoftwareDelay((uint32_t) 1, BSP_DELAY_UNITS_MILLISECONDS);
rusb->PHYSET_b.PLLRESET = 0;
rusb->LPSTS_b.SUSPENDM = 1;
while ( !rusb->PLLSTA_b.PLLLOCK );
rusb->SYSCFG_b.DRPD = 1;
rusb->SYSCFG_b.DCFM = 1;
rusb->SYSCFG_b.DPRPU = 0;
rusb->SYSCFG_b.CNEN = 1;
rusb->BUSWAIT |= 0x0F00U;
rusb->SOFCFG_b.INTL = 1;
rusb->DVSTCTR0_b.VBUSEN = 1;
rusb->CFIFOSEL_b.MBW = 1;
rusb->D0FIFOSEL_b.MBW = 1;
rusb->D1FIFOSEL_b.MBW = 1;
rusb->INTSTS0 = 0;
for ( volatile int i = 0; i < 30000; ++i );
rusb->SYSCFG_b.USBE = 1;
} else
#endif
{
rusb->SYSCFG_b.SCKE = 1;
while ( !rusb->SYSCFG_b.SCKE ) {}
rusb->SYSCFG_b.DCFM = 1; // Host function
rusb->SYSCFG_b.DPRPU = 0; // Disable D+ pull up
rusb->SYSCFG_b.DRPD = 1; // Enable D+/D- pull down
rusb->DVSTCTR0_b.VBUSEN = 1;
for ( volatile int i = 0; i < 30000; ++i ) {} // FIXME do we need to wait here? how long ?
//R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);
rusb->SYSCFG_b.USBE = 1;
// MCU specific PHY init
rusb2_phy_init();
rusb->PHYSLEW = 0x5;
rusb->DPUSR0R_FS_b.FIXPHY0 = 0u; /* Transceiver Output fixed */
}
/* Setup default control pipe */
rusb->DCPCFG = RUSB2_PIPECFG_SHTNAK_Msk;
rusb->DCPMAXP = 64;
rusb->INTENB0 = RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_NRDY_Msk | RUSB2_INTSTS0_BEMP_Msk;
rusb->INTENB1 = RUSB2_INTSTS1_SACK_Msk | RUSB2_INTSTS1_SIGN_Msk | RUSB2_INTSTS1_ATTCH_Msk | RUSB2_INTSTS1_DTCH_Msk;
rusb->BEMPENB = 1;
rusb->NRDYENB = 1;
rusb->BRDYENB = 1;
return true;
}
void hcd_int_enable(uint8_t rhport) {
rusb2_int_enable(rhport);
}
void hcd_int_disable(uint8_t rhport) {
rusb2_int_disable(rhport);
}
uint32_t hcd_frame_number(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
/* The device must be reset at least once after connection
* in order to start the frame counter. */
if (_hcd.need_reset) hcd_port_reset(rhport);
return rusb->FRMNUM_b.FRNM;
}
/*--------------------------------------------------------------------+
* Port API
*--------------------------------------------------------------------+*/
bool hcd_port_connect_status(uint8_t rhport) {
rusb2_reg_t* rusb = RUSB2_REG(rhport);
return rusb->INTSTS1_b.ATTCH ? true : false;
}
void hcd_port_reset(uint8_t rhport) {
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK;
while (rusb->DCPCTR_b.PBUSY) {}
hcd_int_disable(rhport);
rusb->DVSTCTR0_b.UACT = 0;
if (rusb->DCPCTR_b.SUREQ) {
rusb->DCPCTR_b.SUREQCLR = 1;
}
hcd_int_enable(rhport);
/* Reset should be asserted 10-20ms. */
rusb->DVSTCTR0_b.USBRST = 1;
for (volatile int i = 0; i < 2400000; ++i) {}
rusb->DVSTCTR0_b.USBRST = 0;
rusb->DVSTCTR0_b.UACT = 1;
_hcd.need_reset = false;
}
void hcd_port_reset_end(uint8_t rhport) {
(void) rhport;
}
tusb_speed_t hcd_port_speed_get(uint8_t rhport) {
rusb2_reg_t* rusb = RUSB2_REG(rhport);
switch (rusb->DVSTCTR0_b.RHST) {
case RUSB2_DVSTCTR0_RHST_HS: return TUSB_SPEED_HIGH;
case RUSB2_DVSTCTR0_RHST_FS: return TUSB_SPEED_FULL;
case RUSB2_DVSTCTR0_RHST_LS: return TUSB_SPEED_LOW;
default: return TUSB_SPEED_INVALID;
}
}
void hcd_device_close(uint8_t rhport, uint8_t dev_addr) {
rusb2_reg_t* rusb = RUSB2_REG(rhport);
uint16_t volatile *ctr;
TU_ASSERT(dev_addr < 6,); /* USBa can only handle addresses from 0 to 5. */
if (!dev_addr) return;
_hcd.ctl_mps[dev_addr] = 0;
uint8_t *ep = &_hcd.ep[dev_addr - 1][0][0];
for (int i = 0; i < 2 * 15; ++i, ++ep) {
unsigned num = *ep;
if (!num || (dev_addr != _hcd.pipe[num].dev)) continue;
ctr = (uint16_t volatile*)&rusb->PIPE_CTR[num - 1];
*ctr = 0;
rusb->NRDYENB &= ~TU_BIT(num);
rusb->BRDYENB &= ~TU_BIT(num);
rusb->PIPESEL = num;
rusb->PIPECFG = 0;
rusb->PIPEMAXP = 0;
_hcd.pipe[num].ep = 0;
_hcd.pipe[num].dev = 0;
*ep = 0;
}
}
/*--------------------------------------------------------------------+
* Endpoints API
*--------------------------------------------------------------------+*/
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */
rusb2_reg_t* rusb = RUSB2_REG(rhport);
TU_LOG(TU_RUSB2_HCD_DBG, "S %d %x\r\n", dev_addr, rusb->DCPCTR);
TU_ASSERT(0 == rusb->DCPCTR_b.SUREQ);
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK;
_hcd.pipe[0].buf = NULL;
_hcd.pipe[0].length = 8;
_hcd.pipe[0].remaining = 0;
_hcd.pipe[0].dev = dev_addr;
while (rusb->DCPCTR_b.PBUSY) ;
rusb->DCPMAXP = (dev_addr << 12) | _hcd.ctl_mps[dev_addr];
/* Set direction in advance for DATA stage */
uint8_t const bmRequesttype = setup_packet[0];
rusb->DCPCFG_b.DIR = tu_edpt_dir(bmRequesttype) ? 0: 1;
uint16_t const* p = (uint16_t const*)(uintptr_t)&setup_packet[0];
rusb->USBREQ = tu_htole16(p[0]);
rusb->USBVAL = p[1];
rusb->USBINDX = p[2];
rusb->USBLENG = p[3];
rusb->DCPCTR_b.SUREQ = 1;
return true;
}
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const *ep_desc)
{
TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */
rusb2_reg_t* rusb = RUSB2_REG(rhport);
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned mps = tu_edpt_packet_size(ep_desc);
if (0 == epn) {
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK;
hcd_devtree_info_t devtree;
hcd_devtree_get_info(dev_addr, &devtree);
uint16_t volatile *devadd = (uint16_t volatile *)(uintptr_t) &rusb->DEVADD[0];
devadd += dev_addr;
while (rusb->DCPCTR_b.PBUSY) {}
rusb->DCPMAXP = (dev_addr << 12) | mps;
*devadd = (TUSB_SPEED_FULL == devtree.speed) ? RUSB2_DEVADD_USBSPD_FS : RUSB2_DEVADD_USBSPD_LS;
_hcd.ctl_mps[dev_addr] = mps;
return true;
}
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) {
/* USBa supports up to 256 bytes */
return false;
}
const unsigned num = find_pipe(xfer);
if (!num) return false;
_hcd.pipe[num].dev = dev_addr;
_hcd.pipe[num].ep = ep_addr;
_hcd.ep[dev_addr - 1][dir_in][epn - 1] = num;
/* setup pipe */
hcd_int_disable(rhport);
rusb->PIPESEL = num;
rusb->PIPEMAXP = (dev_addr << 12) | mps;
volatile uint16_t *ctr = get_pipectr(rusb, num);
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk | RUSB2_PIPE_CTR_SQCLR_Msk;
*ctr = 0;
unsigned cfg = ((1 ^ dir_in) << 4) | epn;
if (xfer == TUSB_XFER_BULK) {
cfg |= RUSB2_PIPECFG_TYPE_BULK | RUSB2_PIPECFG_SHTNAK_Msk | RUSB2_PIPECFG_DBLB_Msk;
} else if (xfer == TUSB_XFER_INTERRUPT) {
cfg |= RUSB2_PIPECFG_TYPE_INT;
} else {
cfg |= RUSB2_PIPECFG_TYPE_ISO | RUSB2_PIPECFG_DBLB_Msk;
}
rusb->PIPECFG = cfg;
rusb->BRDYSTS = 0x1FFu ^ TU_BIT(num);
rusb->NRDYENB |= TU_BIT(num);
rusb->BRDYENB |= TU_BIT(num);
if (!dir_in) {
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
hcd_int_enable(rhport);
return true;
}
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *buffer, uint16_t buflen)
{
bool r;
hcd_int_disable(rhport);
TU_LOG(TU_RUSB2_HCD_DBG, "X %d %x %u\r\n", dev_addr, ep_addr, buflen);
r = process_edpt_xfer(rhport, dev_addr, ep_addr, buffer, buflen);
hcd_int_enable(rhport);
return r;
}
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;
// TODO not implemented yet
return false;
}
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
uint16_t volatile *ctr = addr_to_pipectr(rhport, dev_addr, ep_addr);
TU_ASSERT(ctr);
const uint32_t pid = *ctr & 0x3;
if (pid & 2) {
*ctr = pid & 2;
*ctr = 0;
}
*ctr = RUSB2_PIPE_CTR_SQCLR_Msk;
unsigned const epn = tu_edpt_number(ep_addr);
if (!epn) return true;
if (!tu_edpt_dir(ep_addr)) { /* OUT */
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void hcd_int_handler(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
unsigned is0 = rusb->INTSTS0;
unsigned is1 = rusb->INTSTS1;
/* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */
rusb->INTSTS1 = ~((RUSB2_INTSTS1_SACK_Msk | RUSB2_INTSTS1_SIGN_Msk | RUSB2_INTSTS1_ATTCH_Msk | RUSB2_INTSTS1_DTCH_Msk) & is1);
rusb->INTSTS0 = ~((RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_NRDY_Msk | RUSB2_INTSTS0_BEMP_Msk) & is0);
TU_LOG3("IS %04x %04x\r\n", is0, is1);
is1 &= rusb->INTENB1;
is0 &= rusb->INTENB0;
if (is1 & RUSB2_INTSTS1_SACK_Msk) {
/* Set DATA1 in advance for the next transfer. */
rusb->DCPCTR_b.SQSET = 1;
hcd_event_xfer_complete(rusb->DCPMAXP_b.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_SUCCESS, true);
}
if (is1 & RUSB2_INTSTS1_SIGN_Msk) {
hcd_event_xfer_complete(rusb->DCPMAXP_b.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_FAILED, true);
}
if (is1 & RUSB2_INTSTS1_ATTCH_Msk) {
rusb->DVSTCTR0_b.UACT = 1;
_hcd.need_reset = true;
rusb->INTENB1 = (rusb->INTENB1 & ~RUSB2_INTSTS1_ATTCH_Msk) | RUSB2_INTSTS1_DTCH_Msk;
hcd_event_device_attach(rhport, true);
}
if (is1 & RUSB2_INTSTS1_DTCH_Msk) {
rusb->DVSTCTR0_b.UACT = 0;
if (rusb->DCPCTR_b.SUREQ) {
rusb->DCPCTR_b.SUREQCLR = 1;
}
rusb->INTENB1 = (rusb->INTENB1 & ~RUSB2_INTSTS1_DTCH_Msk) | RUSB2_INTSTS1_ATTCH_Msk;
hcd_event_device_remove(rhport, true);
}
if (is0 & RUSB2_INTSTS0_BEMP_Msk) {
const unsigned s = rusb->BEMPSTS;
rusb->BEMPSTS = 0;
if (s & 1) {
process_pipe0_bemp(rhport);
}
}
#if defined(__CCRX__)
static const int Mod37BitPosition[] = {
-1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4,
7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5,
20, 8, 19, 18};
#endif
if (is0 & RUSB2_INTSTS0_NRDY_Msk) {
const unsigned m = rusb->NRDYENB;
unsigned s = rusb->NRDYSTS & m;
rusb->NRDYSTS = ~s;
while (s) {
#if defined(__CCRX__)
const unsigned num = Mod37BitPosition[(-s & s) % 37];
#else
const unsigned num = __builtin_ctz(s);
#endif
process_pipe_nrdy(rhport, num);
s &= ~TU_BIT(num);
}
}
if (is0 & RUSB2_INTSTS0_BRDY_Msk) {
const unsigned m = rusb->BRDYENB;
unsigned s = rusb->BRDYSTS & m;
/* clear active bits (don't write 0 to already cleared bits according to the HW manual) */
rusb->BRDYSTS = ~s;
while (s) {
#if defined(__CCRX__)
const unsigned num = Mod37BitPosition[(-s & s) % 37];
#else
const unsigned num = __builtin_ctz(s);
#endif
process_pipe_brdy(rhport, num);
s &= ~TU_BIT(num);
}
}
}
#endif