/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_MIDI) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "midi_device.h" #include "class/audio/audio.h" #include "device/usbd_pvt.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ typedef struct { uint8_t itf_num; uint8_t ep_in; uint8_t ep_out; /*------------- From this point, data is not cleared by bus reset -------------*/ // FIFO tu_fifo_t rx_ff; tu_fifo_t tx_ff; uint8_t rx_ff_buf[CFG_TUD_MIDI_RX_BUFSIZE]; uint8_t tx_ff_buf[CFG_TUD_MIDI_TX_BUFSIZE]; #if CFG_FIFO_MUTEX osal_mutex_def_t rx_ff_mutex; osal_mutex_def_t tx_ff_mutex; #endif // Messages are always 4 bytes long, queue them for reading and writing so the // callers can use the Stream interface with single-byte read/write calls. uint8_t write_buffer[4]; uint8_t write_buffer_length; uint8_t write_target_length; uint8_t read_buffer[4]; uint8_t read_buffer_length; uint8_t read_target_length; // Endpoint Transfer buffer CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EP_BUFSIZE]; CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EP_BUFSIZE]; } midid_interface_t; #define ITF_MEM_RESET_SIZE offsetof(midid_interface_t, rx_ff) //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ CFG_TUSB_MEM_SECTION midid_interface_t _midid_itf[CFG_TUD_MIDI]; bool tud_midi_n_mounted (uint8_t itf) { midid_interface_t* midi = &_midid_itf[itf]; return midi->ep_in && midi->ep_out; } static void _prep_out_transaction (midid_interface_t* p_midi) { uint8_t const rhport = TUD_OPT_RHPORT; uint16_t available = tu_fifo_remaining(&p_midi->rx_ff); // Prepare for incoming data but only allow what we can store in the ring buffer. // TODO Actually we can still carry out the transfer, keeping count of received bytes // and slowly move it to the FIFO when read(). // This pre-check reduces endpoint claiming TU_VERIFY(available >= sizeof(p_midi->epout_buf), ); // claim endpoint TU_VERIFY(usbd_edpt_claim(rhport, p_midi->ep_out), ); // fifo can be changed before endpoint is claimed available = tu_fifo_remaining(&p_midi->rx_ff); if ( available >= sizeof(p_midi->epout_buf) ) { usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, sizeof(p_midi->epout_buf)); }else { // Release endpoint since we don't make any transfer usbd_edpt_release(rhport, p_midi->ep_out); } } //--------------------------------------------------------------------+ // READ API //--------------------------------------------------------------------+ uint32_t tud_midi_n_available(uint8_t itf, uint8_t cable_num) { (void) cable_num; return tu_fifo_count(&_midid_itf[itf].rx_ff); } uint32_t tud_midi_n_read(uint8_t itf, uint8_t cable_num, void* buffer, uint32_t bufsize) { (void) cable_num; midid_interface_t* midi = &_midid_itf[itf]; // Fill empty buffer if ( midi->read_buffer_length == 0 ) { if ( !tud_midi_n_packet_read(itf, midi->read_buffer) ) return 0; uint8_t code_index = midi->read_buffer[0] & 0x0f; // We always copy over the first byte. uint8_t count = 1; // Ignore subsequent bytes based on the code. if ( code_index != 0x5 && code_index != 0xf ) { count = 2; if ( code_index != 0x2 && code_index != 0x6 && code_index != 0xc && code_index != 0xd ) { count = 3; } } midi->read_buffer_length = count; } uint32_t n = midi->read_buffer_length - midi->read_target_length; if (bufsize < n) n = bufsize; // Skip the header in the buffer memcpy(buffer, midi->read_buffer + 1 + midi->read_target_length, n); midi->read_target_length += n; if ( midi->read_target_length == midi->read_buffer_length ) { midi->read_buffer_length = 0; midi->read_target_length = 0; } return n; } bool tud_midi_n_packet_read (uint8_t itf, uint8_t packet[4]) { midid_interface_t* p_midi = &_midid_itf[itf]; uint32_t num_read = tu_fifo_read_n(&p_midi->rx_ff, packet, 4); _prep_out_transaction(p_midi); return (num_read == 4); } //--------------------------------------------------------------------+ // WRITE API //--------------------------------------------------------------------+ static uint32_t write_flush(midid_interface_t* midi) { // No data to send if ( !tu_fifo_count(&midi->tx_ff) ) return 0; uint8_t const rhport = TUD_OPT_RHPORT; // skip if previous transfer not complete TU_VERIFY( usbd_edpt_claim(rhport, midi->ep_in), 0 ); uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EP_BUFSIZE); if (count) { TU_ASSERT( usbd_edpt_xfer(rhport, midi->ep_in, midi->epin_buf, count), 0 ); return count; }else { // Release endpoint since we don't make any transfer usbd_edpt_release(rhport, midi->ep_in); return 0; } } uint32_t tud_midi_n_write(uint8_t itf, uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize) { midid_interface_t* midi = &_midid_itf[itf]; TU_VERIFY(midi->itf_num, 0); uint32_t written = 0; uint32_t i = 0; while ( i < bufsize ) { uint8_t const data = buffer[i]; if ( midi->write_buffer_length == 0 ) { // new packet uint8_t const msg = data >> 4; midi->write_buffer[1] = data; midi->write_buffer_length = 2; // Check to see if we're still in a SysEx transmit. if ( midi->write_buffer[0] == MIDI_CIN_SYSEX_START ) { if ( data == MIDI_STATUS_SYSEX_END ) { midi->write_buffer[0] = MIDI_CIN_SYSEX_END_1BYTE; midi->write_target_length = 2; } else { midi->write_target_length = 4; } } else if ( (msg >= 0x8 && msg <= 0xB) || msg == 0xE ) { // Channel Voice Messages midi->write_buffer[0] = (cable_num << 4) | msg; midi->write_target_length = 4; } else if ( msg == 0xf ) { // System message if ( data == MIDI_STATUS_SYSEX_START ) { midi->write_buffer[0] = MIDI_CIN_SYSEX_START; midi->write_target_length = 4; } else if ( data == MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME || data == MIDI_STATUS_SYSCOM_SONG_SELECT ) { midi->write_buffer[0] = MIDI_CIN_SYSCOM_2BYTE; midi->write_target_length = 3; } else if ( data == MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER ) { midi->write_buffer[0] = MIDI_CIN_SYSCOM_3BYTE; midi->write_target_length = 4; } else { midi->write_buffer[0] = MIDI_CIN_SYSEX_END_1BYTE; midi->write_target_length = 2; } } else { // Pack individual bytes if we don't support packing them into words. midi->write_buffer[0] = cable_num << 4 | 0xf; midi->write_buffer[2] = 0; midi->write_buffer[3] = 0; midi->write_buffer_length = 2; midi->write_target_length = 2; } } else { // On-going packet TU_ASSERT(midi->write_buffer_length < 4, 0); midi->write_buffer[midi->write_buffer_length] = data; midi->write_buffer_length++; // See if this byte ends a SysEx. if ( midi->write_buffer[0] == MIDI_CIN_SYSEX_START && data == MIDI_STATUS_SYSEX_END ) { midi->write_buffer[0] = MIDI_CIN_SYSEX_START + (midi->write_buffer_length - 1); midi->write_target_length = midi->write_buffer_length; } } // Send out packet if ( midi->write_buffer_length == midi->write_target_length ) { // zeroes unused bytes for(uint8_t idx = midi->write_target_length; idx < 4; idx++) midi->write_buffer[idx] = 0; uint16_t const count = tu_fifo_write_n(&midi->tx_ff, midi->write_buffer, 4); // reset buffer midi->write_buffer_length = midi->write_target_length = 0; // fifo overflow, here we assume FIFO is multiple of 4 and didn't check remaining before writing if ( count != 4 ) break; // updated written if succeeded written = i; } i++; } write_flush(midi); return written; } bool tud_midi_n_packet_write (uint8_t itf, uint8_t const packet[4]) { midid_interface_t* midi = &_midid_itf[itf]; if (midi->itf_num == 0) { return 0; } if (tu_fifo_remaining(&midi->tx_ff) < 4) return false; tu_fifo_write_n(&midi->tx_ff, packet, 4); write_flush(midi); return true; } //--------------------------------------------------------------------+ // USBD Driver API //--------------------------------------------------------------------+ void midid_init(void) { tu_memclr(_midid_itf, sizeof(_midid_itf)); for(uint8_t i=0; irx_ff, midi->rx_ff_buf, CFG_TUD_MIDI_RX_BUFSIZE, 1, false); // true, true tu_fifo_config(&midi->tx_ff, midi->tx_ff_buf, CFG_TUD_MIDI_TX_BUFSIZE, 1, false); // OBVS. #if CFG_FIFO_MUTEX tu_fifo_config_mutex(&midi->rx_ff, osal_mutex_create(&midi->rx_ff_mutex)); tu_fifo_config_mutex(&midi->tx_ff, osal_mutex_create(&midi->tx_ff_mutex)); #endif } } void midid_reset(uint8_t rhport) { (void) rhport; for(uint8_t i=0; irx_ff); tu_fifo_clear(&midi->tx_ff); } } uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len) { // 1st Interface is Audio Control v1 TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass && AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass && AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol, 0); uint16_t drv_len = tu_desc_len(desc_itf); uint8_t const * p_desc = tu_desc_next(desc_itf); // Skip Class Specific descriptors while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len ) { drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); } // 2nd Interface is MIDI Streaming TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0); tusb_desc_interface_t const * desc_midi = (tusb_desc_interface_t const *) p_desc; TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass && AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass && AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_midi->bInterfaceProtocol, 0); // Find available interface midid_interface_t * p_midi = NULL; for(uint8_t i=0; iitf_num = desc_midi->bInterfaceNumber; // next descriptor drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); // Find and open endpoint descriptors uint8_t found_endpoints = 0; while ( (found_endpoints < desc_midi->bNumEndpoints) && (drv_len <= max_len) ) { if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) ) { TU_ASSERT(usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0); uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress; if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) { p_midi->ep_in = ep_addr; } else { p_midi->ep_out = ep_addr; } // Class Specific MIDI Stream endpoint descriptor drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); found_endpoints += 1; } drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); } // Prepare for incoming data _prep_out_transaction(p_midi); return drv_len; } // Invoked when a control transfer occurred on an interface of this class // Driver response accordingly to the request and the transfer stage (setup/data/ack) // return false to stall control endpoint (e.g unsupported request) bool midid_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request) { (void) rhport; (void) stage; (void) request; // driver doesn't support any request yet return false; } bool midid_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { (void) result; (void) rhport; uint8_t itf; midid_interface_t* p_midi; // Identify which interface to use for (itf = 0; itf < CFG_TUD_MIDI; itf++) { p_midi = &_midid_itf[itf]; if ( ( ep_addr == p_midi->ep_out ) || ( ep_addr == p_midi->ep_in ) ) break; } TU_ASSERT(itf < CFG_TUD_MIDI); // receive new data if ( ep_addr == p_midi->ep_out ) { tu_fifo_write_n(&p_midi->rx_ff, p_midi->epout_buf, xferred_bytes); // invoke receive callback if available if (tud_midi_rx_cb) tud_midi_rx_cb(itf); // prepare for next // TODO for now ep_out is not used by public API therefore there is no race condition, // and does not need to claim like ep_in _prep_out_transaction(p_midi); } else if ( ep_addr == p_midi->ep_in ) { if (0 == write_flush(p_midi)) { // If there is no data left, a ZLP should be sent if // xferred_bytes is multiple of EP size and not zero if ( !tu_fifo_count(&p_midi->tx_ff) && xferred_bytes && (0 == (xferred_bytes % CFG_TUD_MIDI_EP_BUFSIZE)) ) { if ( usbd_edpt_claim(rhport, p_midi->ep_in) ) { usbd_edpt_xfer(rhport, p_midi->ep_in, NULL, 0); } } } } return true; } #endif