diff --git a/examples/device/audio_4_channel_mic/src/main.c b/examples/device/audio_4_channel_mic/src/main.c index 4bcbdb692..9c37315c8 100644 --- a/examples/device/audio_4_channel_mic/src/main.c +++ b/examples/device/audio_4_channel_mic/src/main.c @@ -69,8 +69,13 @@ uint8_t clkValid; audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state +#if CFG_TUD_AUDIO_ENABLE_ENCODING // Audio test data, each buffer contains 2 channels, buffer[0] for CH0-1, buffer[1] for CH1-2 uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ/2]; // Ensure half word aligned +#else +// Audio test data, 4 channels muxed together, buffer[0] for CH0, buffer[1] for CH1, buffer[2] for CH2, buffer[3] for CH3 +uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_EP_SZ_IN]; // Ensure half word aligned +#endif void led_blinking_task(void); void audio_task(void); @@ -97,6 +102,7 @@ int main(void) sampleFreqRng.subrange[0].bRes = 0; // Generate dummy data +#if CFG_TUD_AUDIO_ENABLE_ENCODING uint16_t * p_buff = i2s_dummy_buffer[0]; uint16_t dataVal = 1; for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++) @@ -116,6 +122,23 @@ int main(void) float t = 2*3.1415f * cnt / (AUDIO_SAMPLE_RATE/1000); *p_buff++ = (uint16_t)(sinf(t) * 25) + 200; } +#else + uint16_t * p_buff = i2s_dummy_buffer; + uint16_t dataVal = 1; + for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++) + { + // CH0 saw wave + *p_buff++ = dataVal; + // CH1 inverted saw wave + *p_buff++ = 60 + AUDIO_SAMPLE_RATE/1000 - dataVal; + dataVal++; + // CH3 square wave + *p_buff++ = cnt < (AUDIO_SAMPLE_RATE/1000/2) ? 120:170; + // CH4 sinus wave + float t = 2*3.1415f * cnt / (AUDIO_SAMPLE_RATE/1000); + *p_buff++ = (uint16_t)(sinf(t) * 25) + 200; + } +#endif while (1) { @@ -384,7 +407,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * { case AUDIO_CS_REQ_CUR: TU_LOG2(" Get Sample Freq.\r\n"); - return tud_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq)); + // Buffered control transfer is needed for IN flow control to work + return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq)); case AUDIO_CS_REQ_RANGE: TU_LOG2(" Get Sample Freq. range\r\n"); @@ -429,12 +453,15 @@ bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, u // tud_audio_write_support_ff(channel, data, samples * N_BYTES_PER_SAMPLE * N_CHANNEL_PER_FIFO); // } +#if CFG_TUD_AUDIO_ENABLE_ENCODING // Write I2S buffer into FIFO for (uint8_t cnt=0; cnt < 2; cnt++) { tud_audio_write_support_ff(cnt, i2s_dummy_buffer[cnt], AUDIO_SAMPLE_RATE/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX); } - +#else + tud_audio_write(i2s_dummy_buffer, AUDIO_SAMPLE_RATE/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX); +#endif return true; } diff --git a/examples/device/audio_4_channel_mic/src/plot_audio_samples.py b/examples/device/audio_4_channel_mic/src/plot_audio_samples.py index a3a2b2fd4..d17a908b6 100644 --- a/examples/device/audio_4_channel_mic/src/plot_audio_samples.py +++ b/examples/device/audio_4_channel_mic/src/plot_audio_samples.py @@ -10,11 +10,11 @@ if __name__ == '__main__': # print(sd.query_devices()) fs = 48000 # Sample rate - duration = 20e-3 # Duration of recording + duration = 1 # Duration of recording if platform.system() == 'Windows': # WDM-KS is needed since there are more than one MicNode device APIs (at least in Windows) - device = 'Microphone (MicNode_4_Ch), Windows WDM-KS' + device = 'Microphone (MicNode_4_Ch), Windows WASAPI' elif platform.system() == 'Darwin': device = 'MicNode_4_Ch' else: @@ -28,8 +28,7 @@ if __name__ == '__main__': time = np.arange(0, duration, 1 / fs) # time vector # strip starting zero - myrecording = myrecording[100:] - time = time[100:] + plt.plot(time, myrecording) plt.xlabel('Time [s]') plt.ylabel('Amplitude') diff --git a/examples/device/audio_4_channel_mic/src/tusb_config.h b/examples/device/audio_4_channel_mic/src/tusb_config.h index 291ac4f79..cf44918e2 100644 --- a/examples/device/audio_4_channel_mic/src/tusb_config.h +++ b/examples/device/audio_4_channel_mic/src/tusb_config.h @@ -114,14 +114,26 @@ extern "C" { #define CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX 2 // This value is not required by the driver, it parses this information from the descriptor once the alternate interface is set by the host - we use it for the setup #define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 4 // This value is not required by the driver, it parses this information from the descriptor once the alternate interface is set by the host - we use it for the setup #define CFG_TUD_AUDIO_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX) + +#define CFG_TUD_AUDIO_ENABLE_ENCODING 1 +#define CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL 1 + +#if CFG_TUD_AUDIO_ENABLE_ENCODING + #define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN #define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ CFG_TUD_AUDIO_EP_SZ_IN -#define CFG_TUD_AUDIO_ENABLE_ENCODING 1 #define CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING 1 #define CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX 2 // One I2S stream contains two channels, each stream is saved within one support FIFO - this value is currently fixed, the driver does not support a changing value #define CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO (CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX / CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX) -#define CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ (CFG_TUD_AUDIO_EP_SZ_IN / CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO) +#define CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ 4 * (CFG_TUD_AUDIO_EP_SZ_IN / CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO) // Minimum 4*EP size is needed for flow control + +#else + +#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN +#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ 4 * CFG_TUD_AUDIO_EP_SZ_IN // Minimum 4*EP size is needed for flow control + +#endif #ifdef __cplusplus } diff --git a/src/class/audio/audio_device.c b/src/class/audio/audio_device.c index 5d3772a9d..9af999992 100644 --- a/src/class/audio/audio_device.c +++ b/src/class/audio/audio_device.c @@ -110,24 +110,36 @@ #error Maximum number of audio functions restricted to three! #endif +// Put sw_buf in USB section only if necessary +#if USE_LINEAR_BUFFER || CFG_TUD_AUDIO_ENABLE_ENCODING +#define IN_SW_BUF_MEM_SECTION +#else +#define IN_SW_BUF_MEM_SECTION CFG_TUD_MEM_SECTION +#endif +#if USE_LINEAR_BUFFER || CFG_TUD_AUDIO_ENABLE_DECODING +#define OUT_SW_BUF_MEM_SECTION +#else +#define OUT_SW_BUF_MEM_SECTION CFG_TUD_MEM_SECTION +#endif + // EP IN software buffers and mutexes #if CFG_TUD_AUDIO_ENABLE_EP_IN && !CFG_TUD_AUDIO_ENABLE_ENCODING #if CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ]; + IN_SW_BUF_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ]; #if CFG_FIFO_MUTEX osal_mutex_def_t ep_in_ff_mutex_wr_1; // No need for read mutex as only USB driver reads from FIFO #endif #endif // CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ > 0 #if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ]; + IN_SW_BUF_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ]; #if CFG_FIFO_MUTEX osal_mutex_def_t ep_in_ff_mutex_wr_2; // No need for read mutex as only USB driver reads from FIFO #endif #endif // CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ > 0 #if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_EP_IN_SW_BUF_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_IN_SW_BUF_SZ]; + IN_SW_BUF_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_IN_SW_BUF_SZ]; #if CFG_FIFO_MUTEX osal_mutex_def_t ep_in_ff_mutex_wr_3; // No need for read mutex as only USB driver reads from FIFO #endif @@ -154,21 +166,21 @@ // EP OUT software buffers and mutexes #if CFG_TUD_AUDIO_ENABLE_EP_OUT && !CFG_TUD_AUDIO_ENABLE_DECODING #if CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ]; + OUT_SW_BUF_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ]; #if CFG_FIFO_MUTEX osal_mutex_def_t ep_out_ff_mutex_rd_1; // No need for write mutex as only USB driver writes into FIFO #endif #endif // CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ > 0 #if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ]; + OUT_SW_BUF_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ]; #if CFG_FIFO_MUTEX osal_mutex_def_t ep_out_ff_mutex_rd_2; // No need for write mutex as only USB driver writes into FIFO #endif #endif // CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ > 0 #if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_EP_OUT_SW_BUF_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_OUT_SW_BUF_SZ]; + OUT_SW_BUF_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_OUT_SW_BUF_SZ]; #if CFG_FIFO_MUTEX osal_mutex_def_t ep_out_ff_mutex_rd_3; // No need for write mutex as only USB driver writes into FIFO #endif @@ -217,7 +229,7 @@ uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT]; // Software encoding/decoding support FIFOs #if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_ENABLE_ENCODING #if CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ]; + CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ]; tu_fifo_t tx_supp_ff_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO]; #if CFG_FIFO_MUTEX osal_mutex_def_t tx_supp_ff_mutex_wr_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO]; // No need for read mutex as only USB driver reads from FIFO @@ -225,7 +237,7 @@ uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT]; #endif #if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_TX_SUPP_SW_FIFO_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_TX_SUPP_SW_FIFO_SZ]; + CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_TX_SUPP_SW_FIFO_SZ]; tu_fifo_t tx_supp_ff_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO]; #if CFG_FIFO_MUTEX osal_mutex_def_t tx_supp_ff_mutex_wr_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO]; // No need for read mutex as only USB driver reads from FIFO @@ -233,7 +245,7 @@ uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT]; #endif #if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_TX_SUPP_SW_FIFO_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_TX_SUPP_SW_FIFO_SZ]; + CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_TX_SUPP_SW_FIFO_SZ]; tu_fifo_t tx_supp_ff_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO]; #if CFG_FIFO_MUTEX osal_mutex_def_t tx_supp_ff_mutex_wr_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO]; // No need for read mutex as only USB driver reads from FIFO @@ -243,7 +255,7 @@ uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT]; #if CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_DECODING #if CFG_TUD_AUDIO_FUNC_1_RX_SUPP_SW_FIFO_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_RX_SUPP_SW_FIFO_SZ]; + CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_RX_SUPP_SW_FIFO_SZ]; tu_fifo_t rx_supp_ff_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO]; #if CFG_FIFO_MUTEX osal_mutex_def_t rx_supp_ff_mutex_rd_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO]; // No need for write mutex as only USB driver writes into FIFO @@ -251,7 +263,7 @@ uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT]; #endif #if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_RX_SUPP_SW_FIFO_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_RX_SUPP_SW_FIFO_SZ]; + CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_RX_SUPP_SW_FIFO_SZ]; tu_fifo_t rx_supp_ff_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO]; #if CFG_FIFO_MUTEX osal_mutex_def_t rx_supp_ff_mutex_rd_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO]; // No need for write mutex as only USB driver writes into FIFO @@ -259,7 +271,7 @@ uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT]; #endif #if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_RX_SUPP_SW_FIFO_SZ > 0 - CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_RX_SUPP_SW_FIFO_SZ]; + CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_RX_SUPP_SW_FIFO_SZ]; tu_fifo_t rx_supp_ff_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO]; #if CFG_FIFO_MUTEX osal_mutex_def_t rx_supp_ff_mutex_rd_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO]; // No need for write mutex as only USB driver writes into FIFO @@ -364,14 +376,21 @@ typedef struct #endif #endif +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + uint32_t sample_rate_tx; + uint16_t packet_sz_tx[3]; + uint8_t bclock_id_tx; + uint8_t interval_tx; +#endif + // Encoding parameters - parameters are set when alternate AS interface is set by host -#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_ENABLE_ENCODING +#if CFG_TUD_AUDIO_ENABLE_EP_IN && (CFG_TUD_AUDIO_ENABLE_ENCODING || CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL) audio_format_type_t format_type_tx; uint8_t n_channels_tx; + uint8_t n_bytes_per_sampe_tx; #if CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING audio_data_format_type_I_t format_type_I_tx; - uint8_t n_bytes_per_sampe_tx; uint8_t n_channels_per_ff_tx; uint8_t n_ff_used_tx; #endif @@ -444,7 +463,7 @@ static bool audiod_verify_itf_exists(uint8_t itf, uint8_t *func_id); static bool audiod_verify_ep_exists(uint8_t ep, uint8_t *func_id); static uint8_t audiod_get_audio_fct_idx(audiod_function_t * audio); -#if CFG_TUD_AUDIO_ENABLE_ENCODING || CFG_TUD_AUDIO_ENABLE_DECODING +#if (CFG_TUD_AUDIO_ENABLE_EP_IN && (CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL || CFG_TUD_AUDIO_ENABLE_ENCODING)) || (CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_DECODING) static void audiod_parse_for_AS_params(audiod_function_t* audio, uint8_t const * p_desc, uint8_t const * p_desc_end, uint8_t const as_itf); static inline uint8_t tu_desc_subtype(void const* desc) @@ -453,6 +472,11 @@ static inline uint8_t tu_desc_subtype(void const* desc) } #endif +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL +static bool audiod_calc_tx_packet_sz(audiod_function_t* audio); +static uint16_t audiod_tx_packet_size(const uint16_t* norminal_size, uint16_t data_count, uint16_t fifo_depth, uint16_t max_size); +#endif + #if CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP static bool set_fb_params_freq(audiod_function_t* audio, uint32_t sample_freq, uint32_t mclk_freq); #endif @@ -821,7 +845,6 @@ uint16_t tud_audio_int_ctr_n_write(uint8_t func_id, uint8_t const* buffer, uint1 #endif - // This function is called once a transmit of an audio packet was successfully completed. Here, we encode samples and place it in IN EP's buffer for next transmission. // If you prefer your own (more efficient) implementation suiting your purpose set CFG_TUD_AUDIO_ENABLE_ENCODING = 0 and use tud_audio_n_write. @@ -886,9 +909,12 @@ static bool audiod_tx_done_cb(uint8_t rhport, audiod_function_t * audio) #else // No support FIFOs, if no linear buffer required schedule transmit, else put data into linear buffer and schedule - +#if CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + // packet_sz_tx is based on total packet size, here we want size for each support buffer. + n_bytes_tx = audiod_tx_packet_size(audio->packet_sz_tx, tu_fifo_count(&audio->ep_in_ff), audio->ep_in_ff.depth, audio->ep_in_sz); +#else n_bytes_tx = tu_min16(tu_fifo_count(&audio->ep_in_ff), audio->ep_in_sz); // Limit up to max packet size, more can not be done for ISO - +#endif #if USE_LINEAR_BUFFER_TX tu_fifo_read_n(&audio->ep_in_ff, audio->lin_buf_in, n_bytes_tx); TU_VERIFY(usbd_edpt_xfer(rhport, audio->ep_in, audio->lin_buf_in, n_bytes_tx)); @@ -987,8 +1013,6 @@ static uint16_t audiod_encode_type_I_pcm(uint8_t rhport, audiod_function_t* audi // Determine amount of samples uint8_t const n_ff_used = audio->n_ff_used_tx; - uint16_t const nBytesToCopy = audio->n_channels_per_ff_tx * audio->n_bytes_per_sampe_tx; - uint16_t const capPerFF = audio->ep_in_sz / n_ff_used; // Sample capacity per FIFO in bytes uint16_t nBytesPerFFToSend = tu_fifo_count(&audio->tx_supp_ff[0]); uint8_t cnt_ff; @@ -1001,14 +1025,23 @@ static uint16_t audiod_encode_type_I_pcm(uint8_t rhport, audiod_function_t* audi } } - // Check if there is enough +#if CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + const uint16_t norm_packet_sz_tx[3] = {audio->packet_sz_tx[0] / n_ff_used, + audio->packet_sz_tx[1] / n_ff_used, + audio->packet_sz_tx[2] / n_ff_used}; + // packet_sz_tx is based on total packet size, here we want size for each support buffer. + nBytesPerFFToSend = audiod_tx_packet_size(norm_packet_sz_tx, nBytesPerFFToSend, audio->tx_supp_ff[0].depth, audio->ep_in_sz / n_ff_used); + // Check if there is enough data + if (nBytesPerFFToSend == 0) return 0; +#else + // Check if there is enough data if (nBytesPerFFToSend == 0) return 0; - // Limit to maximum sample number - THIS IS A POSSIBLE ERROR SOURCE IF TOO MANY SAMPLE WOULD NEED TO BE SENT BUT CAN NOT! - nBytesPerFFToSend = tu_min16(nBytesPerFFToSend, capPerFF); - + nBytesPerFFToSend = tu_min16(nBytesPerFFToSend, audio->ep_in_sz / n_ff_used); // Round to full number of samples (flooring) - nBytesPerFFToSend = (nBytesPerFFToSend / nBytesToCopy) * nBytesToCopy; + uint16_t const nSlotSize = audio->n_channels_per_ff_tx * audio->n_bytes_per_sampe_tx; + nBytesPerFFToSend = (nBytesPerFFToSend / nSlotSize) * nSlotSize; +#endif // Encode uint8_t * dst; @@ -1271,7 +1304,7 @@ void audiod_init(void) #endif // CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_ENABLE_ENCODING // Set encoding parameters for Type_I formats -#if CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING switch (i) { #if CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ > 0 @@ -1451,81 +1484,114 @@ uint16_t audiod_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uin } #if USE_ISO_EP_ALLOCATION - #if CFG_TUD_AUDIO_ENABLE_EP_IN - uint8_t ep_in = 0; - uint16_t ep_in_size = 0; - #endif - - #if CFG_TUD_AUDIO_ENABLE_EP_OUT - uint8_t ep_out = 0; - uint16_t ep_out_size = 0; - #endif - - #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP - uint8_t ep_fb = 0; - #endif - - uint8_t const *p_desc = _audiod_fct[i].p_desc; - uint8_t const *p_desc_end = p_desc + _audiod_fct[i].desc_length - TUD_AUDIO_DESC_IAD_LEN; - while (p_desc < p_desc_end) { - if (tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT) - { - tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) p_desc; - if (desc_ep->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) - { - #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP - // Explicit feedback EP - if (desc_ep->bmAttributes.usage == 1) - { - ep_fb = desc_ep->bEndpointAddress; - } - #endif - // Data EP - if (desc_ep->bmAttributes.usage == 0) - { - if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) - { #if CFG_TUD_AUDIO_ENABLE_EP_IN - ep_in = desc_ep->bEndpointAddress; - ep_in_size = TU_MAX(tu_edpt_packet_size(desc_ep), ep_in_size); + uint8_t ep_in = 0; + uint16_t ep_in_size = 0; #endif - } else - { + #if CFG_TUD_AUDIO_ENABLE_EP_OUT - ep_out = desc_ep->bEndpointAddress; - ep_out_size = TU_MAX(tu_edpt_packet_size(desc_ep), ep_out_size); + uint8_t ep_out = 0; + uint16_t ep_out_size = 0; #endif + + #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP + uint8_t ep_fb = 0; + #endif + uint8_t const *p_desc = _audiod_fct[i].p_desc; + uint8_t const *p_desc_end = p_desc + _audiod_fct[i].desc_length - TUD_AUDIO_DESC_IAD_LEN; + while (p_desc < p_desc_end) + { + if (tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT) + { + tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) p_desc; + if (desc_ep->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) + { + #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP + // Explicit feedback EP + if (desc_ep->bmAttributes.usage == 1) + { + ep_fb = desc_ep->bEndpointAddress; + } + #endif + // Data EP + if (desc_ep->bmAttributes.usage == 0) + { + if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) + { + #if CFG_TUD_AUDIO_ENABLE_EP_IN + ep_in = desc_ep->bEndpointAddress; + ep_in_size = TU_MAX(tu_edpt_packet_size(desc_ep), ep_in_size); + #endif + } else + { + #if CFG_TUD_AUDIO_ENABLE_EP_OUT + ep_out = desc_ep->bEndpointAddress; + ep_out_size = TU_MAX(tu_edpt_packet_size(desc_ep), ep_out_size); + #endif + } + } + + } + } + + p_desc = tu_desc_next(p_desc); + } + + #if CFG_TUD_AUDIO_ENABLE_EP_IN + if (ep_in) + { + usbd_edpt_iso_alloc(rhport, ep_in, ep_in_size); + } + #endif + + #if CFG_TUD_AUDIO_ENABLE_EP_OUT + if (ep_out) + { + usbd_edpt_iso_alloc(rhport, ep_out, ep_out_size); + } + #endif + + #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP + if (ep_fb) + { + usbd_edpt_iso_alloc(rhport, ep_fb, 4); + } + #endif + } +#endif // USE_ISO_EP_ALLOCATION + +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + { + uint8_t const *p_desc = _audiod_fct[i].p_desc; + uint8_t const *p_desc_end = p_desc + _audiod_fct[i].desc_length - TUD_AUDIO_DESC_IAD_LEN; + while (p_desc < p_desc_end) + { + if (tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT) + { + tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) p_desc; + if (desc_ep->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) + { + if (desc_ep->bmAttributes.usage == 0) + { + if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) + { + _audiod_fct[i].interval_tx = desc_ep->bInterval; + } } } - + } else + if (tu_desc_type(p_desc) == TUSB_DESC_CS_INTERFACE && tu_desc_subtype(p_desc) == AUDIO_CS_AC_INTERFACE_OUTPUT_TERMINAL) + { + if(tu_unaligned_read16(p_desc + 4) == AUDIO_TERM_TYPE_USB_STREAMING) + { + _audiod_fct[i].bclock_id_tx = p_desc[8]; + } } + p_desc = tu_desc_next(p_desc); } - p_desc = tu_desc_next(p_desc); } - - #if CFG_TUD_AUDIO_ENABLE_EP_IN - if (ep_in) - { - usbd_edpt_iso_alloc(rhport, ep_in, ep_in_size); - } - #endif - - #if CFG_TUD_AUDIO_ENABLE_EP_OUT - if (ep_out) - { - usbd_edpt_iso_alloc(rhport, ep_out, ep_out_size); - } - #endif - - #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP - if (ep_fb) - { - usbd_edpt_iso_alloc(rhport, ep_fb, 4); - } - #endif - -#endif // USE_ISO_EP_ALLOCATION +#endif // CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL break; } @@ -1607,6 +1673,11 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const * audio->ep_in = 0; // Necessary? + #if CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + audio->packet_sz_tx[0] = 0; + audio->packet_sz_tx[1] = 0; + audio->packet_sz_tx[2] = 0; + #endif } #endif // CFG_TUD_AUDIO_ENABLE_EP_IN @@ -1657,7 +1728,7 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const * // Find correct interface if (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE && ((tusb_desc_interface_t const * )p_desc)->bInterfaceNumber == itf && ((tusb_desc_interface_t const * )p_desc)->bAlternateSetting == alt) { -#if CFG_TUD_AUDIO_ENABLE_ENCODING || CFG_TUD_AUDIO_ENABLE_DECODING +#if CFG_TUD_AUDIO_ENABLE_ENCODING || CFG_TUD_AUDIO_ENABLE_DECODING || CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL uint8_t const * p_desc_parse_for_params = p_desc; #endif // From this point forward follow the EP descriptors associated to the current alternate setting interface - Open EPs if necessary @@ -1686,12 +1757,13 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const * audio->ep_in_sz = tu_edpt_packet_size(desc_ep); // If software encoding is enabled, parse for the corresponding parameters - doing this here means only AS interfaces with EPs get scanned for parameters - #if CFG_TUD_AUDIO_ENABLE_ENCODING + #if CFG_TUD_AUDIO_ENABLE_ENCODING || CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL audiod_parse_for_AS_params(audio, p_desc_parse_for_params, p_desc_end, itf); // Reconfigure size of support FIFOs - this is necessary to avoid samples to get split in case of a wrap - #if CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING - const uint16_t active_fifo_depth = (uint16_t) ((audio->tx_supp_ff_sz_max / audio->n_bytes_per_sampe_tx) * audio->n_bytes_per_sampe_tx); + #if CFG_TUD_AUDIO_ENABLE_ENCODING && CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING + const uint16_t active_fifo_depth = (uint16_t) ((audio->tx_supp_ff_sz_max / (audio->n_channels_per_ff_tx * audio->n_bytes_per_sampe_tx)) + * (audio->n_channels_per_ff_tx * audio->n_bytes_per_sampe_tx)); for (uint8_t cnt = 0; cnt < audio->n_tx_supp_ff; cnt++) { tu_fifo_config(&audio->tx_supp_ff[cnt], audio->tx_supp_ff[cnt].buffer, active_fifo_depth, 1, true); @@ -1823,6 +1895,10 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const * if (disable) usbd_sof_enable(rhport, false); #endif +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + audiod_calc_tx_packet_sz(audio); +#endif + tud_control_status(rhport, p_request); return true; @@ -2265,6 +2341,19 @@ bool tud_audio_buffer_and_schedule_control_xfer(uint8_t rhport, tusb_control_req // Copy into buffer TU_VERIFY(0 == tu_memcpy_s(_audiod_fct[func_id].ctrl_buf, _audiod_fct[func_id].ctrl_buf_sz, data, (size_t)len)); +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + // Find data for sampling_frequency_control + if (p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS && p_request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE) + { + uint8_t entityID = TU_U16_HIGH(p_request->wIndex); + uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue); + if (_audiod_fct[func_id].bclock_id_tx == entityID && ctrlSel == AUDIO_CS_CTRL_SAM_FREQ && p_request->bRequest == AUDIO_CS_REQ_CUR) + { + _audiod_fct[func_id].sample_rate_tx = tu_unaligned_read32(_audiod_fct[func_id].ctrl_buf); + } + } +#endif + // Schedule transmit return tud_control_xfer(rhport, p_request, (void*)_audiod_fct[func_id].ctrl_buf, len); } @@ -2404,7 +2493,7 @@ static bool audiod_verify_ep_exists(uint8_t ep, uint8_t *func_id) return false; } -#if CFG_TUD_AUDIO_ENABLE_ENCODING || CFG_TUD_AUDIO_ENABLE_DECODING +#if (CFG_TUD_AUDIO_ENABLE_EP_IN && (CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL || CFG_TUD_AUDIO_ENABLE_ENCODING)) || (CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_DECODING) // p_desc points to the AS interface of alternate setting zero // itf is the interface number of the corresponding interface - we check if the interface belongs to EP in or EP out to see if it is a TX or RX parameter // Currently, only AS interfaces with an EP (in or out) are supposed to be parsed for! @@ -2442,7 +2531,7 @@ static void audiod_parse_for_AS_params(audiod_function_t* audio, uint8_t const * } #endif -#if CFG_TUD_AUDIO_ENABLE_EP_OUT +#if CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_DECODING if (as_itf == audio->ep_out_as_intf_num) { audio->n_channels_rx = ((audio_desc_cs_as_interface_t const * )p_desc)->bNrChannels; @@ -2455,7 +2544,7 @@ static void audiod_parse_for_AS_params(audiod_function_t* audio, uint8_t const * } // Look for a Type I Format Type Descriptor(2.3.1.6 - Audio Formats) -#if CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING || CFG_TUD_AUDIO_ENABLE_TYPE_I_DECODING +#if CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING || CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL || CFG_TUD_AUDIO_ENABLE_TYPE_I_DECODING if (tu_desc_type(p_desc) == TUSB_DESC_CS_INTERFACE && tu_desc_subtype(p_desc) == AUDIO_CS_AS_INTERFACE_FORMAT_TYPE && ((audio_desc_type_I_format_t const * )p_desc)->bFormatType == AUDIO_FORMAT_TYPE_I) { #if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_ENABLE_EP_OUT @@ -2475,7 +2564,7 @@ static void audiod_parse_for_AS_params(audiod_function_t* audio, uint8_t const * } #endif -#if CFG_TUD_AUDIO_ENABLE_EP_OUT +#if CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_DECODING if (as_itf == audio->ep_out_as_intf_num) { audio->n_bytes_per_sampe_rx = ((audio_desc_type_I_format_t const * )p_desc)->bSubslotSize; @@ -2491,6 +2580,96 @@ static void audiod_parse_for_AS_params(audiod_function_t* audio, uint8_t const * } #endif +#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL + +static bool audiod_calc_tx_packet_sz(audiod_function_t* audio) +{ + TU_VERIFY(audio->format_type_tx == AUDIO_FORMAT_TYPE_I); + TU_VERIFY(audio->n_channels_tx); + TU_VERIFY(audio->n_bytes_per_sampe_tx); + TU_VERIFY(audio->interval_tx); + TU_VERIFY(audio->sample_rate_tx); + + const uint8_t interval = (tud_speed_get() == TUSB_SPEED_FULL) ? audio->interval_tx : 1 << (audio->interval_tx - 1); + + const uint16_t sample_normimal = (uint16_t)(audio->sample_rate_tx * interval / ((tud_speed_get() == TUSB_SPEED_FULL) ? 1000 : 8000)); + const uint16_t sample_reminder = (uint16_t)(audio->sample_rate_tx * interval % ((tud_speed_get() == TUSB_SPEED_FULL) ? 1000 : 8000)); + + const uint16_t packet_sz_tx_min = (uint16_t)((sample_normimal - 1) * audio->n_channels_tx * audio->n_bytes_per_sampe_tx); + const uint16_t packet_sz_tx_norm = (uint16_t)(sample_normimal * audio->n_channels_tx * audio->n_bytes_per_sampe_tx); + const uint16_t packet_sz_tx_max = (uint16_t)((sample_normimal + 1) * audio->n_channels_tx * audio->n_bytes_per_sampe_tx); + + // Endpoint size must larger than packet size + TU_ASSERT(packet_sz_tx_max <= audio->ep_in_sz); + + // Frmt20.pdf 2.3.1.1 USB Packets + if (sample_reminder) + { + // All virtual frame packets must either contain INT(nav) audio slots (small VFP) or INT(nav)+1 (large VFP) audio slots + audio->packet_sz_tx[0] = packet_sz_tx_norm; + audio->packet_sz_tx[1] = packet_sz_tx_norm; + audio->packet_sz_tx[2] = packet_sz_tx_max; + } else + { + // In the case where nav = INT(nav), ni may vary between INT(nav)-1 (small VFP), INT(nav) + // (medium VFP) and INT(nav)+1 (large VFP). + audio->packet_sz_tx[0] = packet_sz_tx_min; + audio->packet_sz_tx[1] = packet_sz_tx_norm; + audio->packet_sz_tx[2] = packet_sz_tx_max; + } + + return true; +} + +static uint16_t audiod_tx_packet_size(const uint16_t* norminal_size, uint16_t data_count, uint16_t fifo_depth, uint16_t max_depth) +{ + // Flow control need a FIFO size of at least 4*Navg + if(norminal_size[1] && norminal_size[1] <= fifo_depth * 4) + { + // Use blackout to prioritize normal size packet + static int ctrl_blackout = 0; + uint16_t packet_size; + uint16_t slot_size = norminal_size[2] - norminal_size[1]; + if (data_count < norminal_size[0]) + { + // If you get here frequently, then your I2S clock deviation is too big ! + packet_size = 0; + } else + if (data_count < fifo_depth / 2 - slot_size && !ctrl_blackout) + { + packet_size = norminal_size[0]; + ctrl_blackout = 10; + } else + if (data_count > fifo_depth / 2 + slot_size && !ctrl_blackout) + { + packet_size = norminal_size[2]; + if(norminal_size[0] == norminal_size[1]) + { + // nav > INT(nav), eg. 44.1k, 88.2k + ctrl_blackout = 0; + } else + { + // nav = INT(nav), eg. 48k, 96k + ctrl_blackout = 10; + } + } else + { + packet_size = norminal_size[1]; + if (ctrl_blackout) + { + ctrl_blackout--; + } + } + // Normally this cap is not necessary + return tu_min16(packet_size, max_depth); + } else + { + return tu_min16(data_count, max_depth); + } +} + +#endif + #if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP bool tud_audio_n_fb_set(uint8_t func_id, uint32_t feedback) diff --git a/src/class/audio/audio_device.h b/src/class/audio/audio_device.h index 7c88b99fc..ef3e12a06 100644 --- a/src/class/audio/audio_device.h +++ b/src/class/audio/audio_device.h @@ -181,6 +181,11 @@ #endif #endif +// (For TYPE-I format only) Flow control is necessary to allow IN ep send correct amount of data, unless it's a virtual device where data is perfectly synchronized to USB clock. +#ifndef CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL +#define CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL 1 +#endif + // Enable/disable feedback EP (required for asynchronous RX applications) #ifndef CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP #define CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP 0 // Feedback - 0 or 1 @@ -392,6 +397,7 @@ tu_fifo_t* tud_audio_n_get_tx_support_ff (uint8_t func_id, uint8_t ff_i uint16_t tud_audio_int_ctr_n_write (uint8_t func_id, uint8_t const* buffer, uint16_t len); #endif + //--------------------------------------------------------------------+ // Application API (Interface0) //--------------------------------------------------------------------+