renane file

This commit is contained in:
hathach 2018-12-05 08:51:11 +07:00
parent dd9c7b4249
commit 9176b7b1da
No known key found for this signature in database
GPG Key ID: 2FA891220FBFD581
2 changed files with 407 additions and 409 deletions

View File

@ -45,8 +45,6 @@
#include "chip.h" #include "chip.h"
#define BOARD_LED0 17
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -1,407 +1,407 @@
/**************************************************************************/ /**************************************************************************/
/*! /*!
@file dcd_lpc11_13_15.c @file dcd_lpc11_13_15.c
@author hathach (tinyusb.org) @author hathach (tinyusb.org)
@section LICENSE @section LICENSE
Software License Agreement (BSD License) Software License Agreement (BSD License)
Copyright (c) 2013, hathach (tinyusb.org) Copyright (c) 2013, hathach (tinyusb.org)
All rights reserved. All rights reserved.
Redistribution and use in source and binary forms, with or without Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the 3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This file is part of the tinyusb stack. This file is part of the tinyusb stack.
*/ */
/**************************************************************************/ /**************************************************************************/
#include "tusb_option.h" #include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13XX) #if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13XX)
#include "chip.h" #include "chip.h"
#include "device/dcd.h" #include "device/dcd.h"
#include "dcd_lpc11_13_15.h" #include "dcd_lpc11_13_15.h"
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF // MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// Number of endpoints // Number of endpoints
#define EP_COUNT 10 #define EP_COUNT 10
// only SRAM1 & USB RAM can be used for transfer // only SRAM1 & USB RAM can be used for transfer
#define SRAM_REGION 0x20000000 #define SRAM_REGION 0x20000000
/* Although device controller are the same. DMA of /* Although device controller are the same. DMA of
* - LPC11u can only transfer up to nbytes = 64 * - LPC11u can only transfer up to nbytes = 64
* - LPC13 can transfer nbytes = 1023 (maximum) * - LPC13 can transfer nbytes = 1023 (maximum)
* - LPC15 can ??? * - LPC15 can ???
*/ */
enum { enum {
DMA_NBYTES_MAX = (CFG_TUSB_MCU == OPT_MCU_LPC11UXX ? 64 : 1023) DMA_NBYTES_MAX = (CFG_TUSB_MCU == OPT_MCU_LPC11UXX ? 64 : 1023)
}; };
enum { enum {
INT_SOF_MASK = BIT_(30), INT_SOF_MASK = BIT_(30),
INT_DEVICE_STATUS_MASK = BIT_(31) INT_DEVICE_STATUS_MASK = BIT_(31)
}; };
enum { enum {
CMDSTAT_DEVICE_ADDR_MASK = BIT_(7 )-1, CMDSTAT_DEVICE_ADDR_MASK = BIT_(7 )-1,
CMDSTAT_DEVICE_ENABLE_MASK = BIT_(7 ), CMDSTAT_DEVICE_ENABLE_MASK = BIT_(7 ),
CMDSTAT_SETUP_RECEIVED_MASK = BIT_(8 ), CMDSTAT_SETUP_RECEIVED_MASK = BIT_(8 ),
CMDSTAT_DEVICE_CONNECT_MASK = BIT_(16), ///< reflect the softconnect only, does not reflect the actual attached state CMDSTAT_DEVICE_CONNECT_MASK = BIT_(16), ///< reflect the softconnect only, does not reflect the actual attached state
CMDSTAT_DEVICE_SUSPEND_MASK = BIT_(17), CMDSTAT_DEVICE_SUSPEND_MASK = BIT_(17),
CMDSTAT_CONNECT_CHANGE_MASK = BIT_(24), CMDSTAT_CONNECT_CHANGE_MASK = BIT_(24),
CMDSTAT_SUSPEND_CHANGE_MASK = BIT_(25), CMDSTAT_SUSPEND_CHANGE_MASK = BIT_(25),
CMDSTAT_RESET_CHANGE_MASK = BIT_(26), CMDSTAT_RESET_CHANGE_MASK = BIT_(26),
CMDSTAT_VBUS_DEBOUNCED_MASK = BIT_(28), CMDSTAT_VBUS_DEBOUNCED_MASK = BIT_(28),
}; };
typedef struct ATTR_PACKED typedef struct ATTR_PACKED
{ {
// Bits 21:6 (aligned 64) used in conjunction with bit 31:22 of DATABUFSTART // Bits 21:6 (aligned 64) used in conjunction with bit 31:22 of DATABUFSTART
volatile uint16_t buffer_offset; volatile uint16_t buffer_offset;
volatile uint16_t nbytes : 10 ; volatile uint16_t nbytes : 10 ;
uint16_t is_iso : 1 ; uint16_t is_iso : 1 ;
uint16_t toggle_mode : 1 ; uint16_t toggle_mode : 1 ;
uint16_t toggle_reset : 1 ; uint16_t toggle_reset : 1 ;
uint16_t stall : 1 ; uint16_t stall : 1 ;
uint16_t disable : 1 ; uint16_t disable : 1 ;
volatile uint16_t active : 1 ; volatile uint16_t active : 1 ;
}ep_cmd_sts_t; }ep_cmd_sts_t;
TU_VERIFY_STATIC( sizeof(ep_cmd_sts_t) == 4, "size is not correct" ); TU_VERIFY_STATIC( sizeof(ep_cmd_sts_t) == 4, "size is not correct" );
typedef struct typedef struct
{ {
uint16_t total_bytes; uint16_t total_bytes;
uint16_t xferred_bytes; uint16_t xferred_bytes;
uint16_t nbytes; uint16_t nbytes;
}xfer_dma_t; }xfer_dma_t;
// NOTE data will be transferred as soon as dcd get request by dcd_pipe(_queue)_xfer using double buffering. // NOTE data will be transferred as soon as dcd get request by dcd_pipe(_queue)_xfer using double buffering.
// current_td is used to keep track of number of remaining & xferred bytes of the current request. // current_td is used to keep track of number of remaining & xferred bytes of the current request.
typedef struct typedef struct
{ {
// 256 byte aligned, 2 for double buffer (not used) // 256 byte aligned, 2 for double buffer (not used)
// Each cmd_sts can only transfer up to DMA_NBYTES_MAX bytes each // Each cmd_sts can only transfer up to DMA_NBYTES_MAX bytes each
ep_cmd_sts_t ep[EP_COUNT][2]; ep_cmd_sts_t ep[EP_COUNT][2];
xfer_dma_t dma[EP_COUNT]; xfer_dma_t dma[EP_COUNT];
ATTR_ALIGNED(64) uint8_t setup_packet[8]; ATTR_ALIGNED(64) uint8_t setup_packet[8];
}dcd_data_t; }dcd_data_t;
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION // INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// EP list must be 256-byte aligned // EP list must be 256-byte aligned
CFG_TUSB_MEM_SECTION ATTR_ALIGNED(256) static dcd_data_t _dcd; CFG_TUSB_MEM_SECTION ATTR_ALIGNED(256) static dcd_data_t _dcd;
static inline uint16_t get_buf_offset(void const * buffer) static inline uint16_t get_buf_offset(void const * buffer)
{ {
uint32_t addr = (uint32_t) buffer; uint32_t addr = (uint32_t) buffer;
TU_ASSERT( (addr & 0x3f) == 0, 0 ); TU_ASSERT( (addr & 0x3f) == 0, 0 );
return ( (addr >> 6) & 0xFFFFUL ) ; return ( (addr >> 6) & 0xFFFFUL ) ;
} }
static inline uint8_t ep_addr2id(uint8_t endpoint_addr) static inline uint8_t ep_addr2id(uint8_t endpoint_addr)
{ {
return 2*(endpoint_addr & 0x0F) + ((endpoint_addr & TUSB_DIR_IN_MASK) ? 1 : 0); return 2*(endpoint_addr & 0x0F) + ((endpoint_addr & TUSB_DIR_IN_MASK) ? 1 : 0);
} }
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// CONTROLLER API // CONTROLLER API
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
void tusb_hal_int_enable(uint8_t rhport) void tusb_hal_int_enable(uint8_t rhport)
{ {
(void) rhport; // discard compiler's warning (void) rhport; // discard compiler's warning
NVIC_EnableIRQ(USB0_IRQn); NVIC_EnableIRQ(USB0_IRQn);
} }
void tusb_hal_int_disable(uint8_t rhport) void tusb_hal_int_disable(uint8_t rhport)
{ {
(void) rhport; // discard compiler's warning (void) rhport; // discard compiler's warning
NVIC_DisableIRQ(USB0_IRQn); NVIC_DisableIRQ(USB0_IRQn);
} }
bool tusb_hal_init(void) bool tusb_hal_init(void)
{ {
// TODO remove // TODO remove
return true; return true;
} }
void dcd_connect(uint8_t rhport) void dcd_connect(uint8_t rhport)
{ {
(void) rhport; (void) rhport;
LPC_USB->DEVCMDSTAT |= CMDSTAT_DEVICE_CONNECT_MASK; LPC_USB->DEVCMDSTAT |= CMDSTAT_DEVICE_CONNECT_MASK;
} }
void dcd_set_config(uint8_t rhport, uint8_t config_num) void dcd_set_config(uint8_t rhport, uint8_t config_num)
{ {
} }
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{ {
(void) rhport; (void) rhport;
LPC_USB->DEVCMDSTAT &= ~CMDSTAT_DEVICE_ADDR_MASK; LPC_USB->DEVCMDSTAT &= ~CMDSTAT_DEVICE_ADDR_MASK;
LPC_USB->DEVCMDSTAT |= dev_addr; LPC_USB->DEVCMDSTAT |= dev_addr;
} }
bool dcd_init(uint8_t rhport) bool dcd_init(uint8_t rhport)
{ {
(void) rhport; (void) rhport;
// Setup PLL clock, and power // Setup PLL clock, and power
Chip_USB_Init(); Chip_USB_Init();
LPC_USB->EPLISTSTART = (uint32_t) _dcd.ep; LPC_USB->EPLISTSTART = (uint32_t) _dcd.ep;
LPC_USB->DATABUFSTART = SRAM_REGION; LPC_USB->DATABUFSTART = SRAM_REGION;
LPC_USB->INTSTAT = LPC_USB->INTSTAT; // clear all pending interrupt LPC_USB->INTSTAT = LPC_USB->INTSTAT; // clear all pending interrupt
LPC_USB->INTEN = INT_DEVICE_STATUS_MASK; LPC_USB->INTEN = INT_DEVICE_STATUS_MASK;
LPC_USB->DEVCMDSTAT |= CMDSTAT_DEVICE_ENABLE_MASK | CMDSTAT_DEVICE_CONNECT_MASK | LPC_USB->DEVCMDSTAT |= CMDSTAT_DEVICE_ENABLE_MASK | CMDSTAT_DEVICE_CONNECT_MASK |
CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK; CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK;
NVIC_EnableIRQ(USB0_IRQn); NVIC_EnableIRQ(USB0_IRQn);
return true; return true;
} }
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// DCD Endpoint Port // DCD Endpoint Port
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{ {
if ( edpt_number(ep_addr) == 0 ) if ( edpt_number(ep_addr) == 0 )
{ {
// TODO cannot able to STALL Control OUT endpoint !!!!! FIXME try some walk-around // TODO cannot able to STALL Control OUT endpoint !!!!! FIXME try some walk-around
_dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 1; _dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 1;
} }
else else
{ {
uint8_t const ep_id = ep_addr2id(ep_addr); uint8_t const ep_id = ep_addr2id(ep_addr);
_dcd.ep[ep_id][0].stall = 1; _dcd.ep[ep_id][0].stall = 1;
} }
} }
bool dcd_edpt_stalled(uint8_t rhport, uint8_t ep_addr) bool dcd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{ {
uint8_t const ep_id = ep_addr2id(ep_addr); uint8_t const ep_id = ep_addr2id(ep_addr);
return _dcd.ep[ep_id][0].stall; return _dcd.ep[ep_id][0].stall;
} }
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t edpt_addr) void dcd_edpt_clear_stall(uint8_t rhport, uint8_t edpt_addr)
{ {
uint8_t const ep_id = ep_addr2id(edpt_addr); uint8_t const ep_id = ep_addr2id(edpt_addr);
_dcd.ep[ep_id][0].stall = 0; _dcd.ep[ep_id][0].stall = 0;
_dcd.ep[ep_id][0].toggle_reset = 1; _dcd.ep[ep_id][0].toggle_reset = 1;
_dcd.ep[ep_id][0].toggle_mode = 0; _dcd.ep[ep_id][0].toggle_mode = 0;
} }
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{ {
(void) rhport; (void) rhport;
// TODO not support ISO yet // TODO not support ISO yet
if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) return false; if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) return false;
//------------- Prepare Queue Head -------------// //------------- Prepare Queue Head -------------//
uint8_t ep_id = ep_addr2id(p_endpoint_desc->bEndpointAddress); uint8_t ep_id = ep_addr2id(p_endpoint_desc->bEndpointAddress);
// Check if endpoint is available // Check if endpoint is available
TU_ASSERT( _dcd.ep[ep_id][0].disable && _dcd.ep[ep_id][1].disable ); TU_ASSERT( _dcd.ep[ep_id][0].disable && _dcd.ep[ep_id][1].disable );
tu_memclr(_dcd.ep[ep_id], 2*sizeof(ep_cmd_sts_t)); tu_memclr(_dcd.ep[ep_id], 2*sizeof(ep_cmd_sts_t));
_dcd.ep[ep_id][0].is_iso = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS); _dcd.ep[ep_id][0].is_iso = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS);
// Enable EP interrupt // Enable EP interrupt
LPC_USB->INTEN |= BIT_(ep_id); LPC_USB->INTEN |= BIT_(ep_id);
return true; return true;
} }
bool dcd_edpt_busy(uint8_t rhport, uint8_t ep_addr) bool dcd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{ {
uint8_t const ep_id = ep_addr2id(ep_addr); uint8_t const ep_id = ep_addr2id(ep_addr);
return _dcd.ep[ep_id][0].active; return _dcd.ep[ep_id][0].active;
} }
static void prepare_ep_xfer(uint8_t ep_id, uint16_t buf_offset, uint16_t total_bytes) static void prepare_ep_xfer(uint8_t ep_id, uint16_t buf_offset, uint16_t total_bytes)
{ {
uint16_t const nbytes = tu_min16(total_bytes, DMA_NBYTES_MAX); uint16_t const nbytes = tu_min16(total_bytes, DMA_NBYTES_MAX);
_dcd.dma[ep_id].nbytes = nbytes; _dcd.dma[ep_id].nbytes = nbytes;
_dcd.ep[ep_id][0].buffer_offset = buf_offset; _dcd.ep[ep_id][0].buffer_offset = buf_offset;
_dcd.ep[ep_id][0].nbytes = nbytes; _dcd.ep[ep_id][0].nbytes = nbytes;
_dcd.ep[ep_id][0].active = 1; _dcd.ep[ep_id][0].active = 1;
} }
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{ {
uint8_t const ep_id = ep_addr2id(ep_addr); uint8_t const ep_id = ep_addr2id(ep_addr);
tu_varclr(&_dcd.dma[ep_id]); tu_varclr(&_dcd.dma[ep_id]);
_dcd.dma[ep_id].total_bytes = total_bytes; _dcd.dma[ep_id].total_bytes = total_bytes;
prepare_ep_xfer(ep_id, get_buf_offset(buffer), total_bytes); prepare_ep_xfer(ep_id, get_buf_offset(buffer), total_bytes);
return true; return true;
} }
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// IRQ // IRQ
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
static void bus_reset(void) static void bus_reset(void)
{ {
tu_memclr(&_dcd, sizeof(dcd_data_t)); tu_memclr(&_dcd, sizeof(dcd_data_t));
// disable all non-control endpoints on bus reset // disable all non-control endpoints on bus reset
for(uint8_t ep_id = 2; ep_id < EP_COUNT; ep_id++) for(uint8_t ep_id = 2; ep_id < EP_COUNT; ep_id++)
{ {
_dcd.ep[ep_id][0].disable = _dcd.ep[ep_id][1].disable = 1; _dcd.ep[ep_id][0].disable = _dcd.ep[ep_id][1].disable = 1;
} }
_dcd.ep[0][1].buffer_offset = get_buf_offset(_dcd.setup_packet); _dcd.ep[0][1].buffer_offset = get_buf_offset(_dcd.setup_packet);
LPC_USB->EPINUSE = 0; LPC_USB->EPINUSE = 0;
LPC_USB->EPBUFCFG = 0; LPC_USB->EPBUFCFG = 0;
LPC_USB->EPSKIP = 0xFFFFFFFF; LPC_USB->EPSKIP = 0xFFFFFFFF;
LPC_USB->INTSTAT = LPC_USB->INTSTAT; // clear all pending interrupt LPC_USB->INTSTAT = LPC_USB->INTSTAT; // clear all pending interrupt
LPC_USB->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; // clear setup received interrupt LPC_USB->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; // clear setup received interrupt
LPC_USB->INTEN = INT_DEVICE_STATUS_MASK | BIT_(0) | BIT_(1); // enable device status & control endpoints LPC_USB->INTEN = INT_DEVICE_STATUS_MASK | BIT_(0) | BIT_(1); // enable device status & control endpoints
} }
static void process_xfer_isr(uint32_t int_status) static void process_xfer_isr(uint32_t int_status)
{ {
for(uint8_t ep_id = 0; ep_id < EP_COUNT; ep_id++ ) for(uint8_t ep_id = 0; ep_id < EP_COUNT; ep_id++ )
{ {
if ( BIT_TEST_(int_status, ep_id) ) if ( BIT_TEST_(int_status, ep_id) )
{ {
ep_cmd_sts_t * ep_cs = &_dcd.ep[ep_id][0]; ep_cmd_sts_t * ep_cs = &_dcd.ep[ep_id][0];
xfer_dma_t* xfer_dma = &_dcd.dma[ep_id]; xfer_dma_t* xfer_dma = &_dcd.dma[ep_id];
xfer_dma->xferred_bytes += xfer_dma->nbytes - ep_cs->nbytes; xfer_dma->xferred_bytes += xfer_dma->nbytes - ep_cs->nbytes;
if ( (ep_cs->nbytes == 0) && (xfer_dma->total_bytes > xfer_dma->xferred_bytes) ) if ( (ep_cs->nbytes == 0) && (xfer_dma->total_bytes > xfer_dma->xferred_bytes) )
{ {
// There is more data to transfer // There is more data to transfer
// buff_offset has been already increased by hw to correct value for next transfer // buff_offset has been already increased by hw to correct value for next transfer
prepare_ep_xfer(ep_id, ep_cs->buffer_offset, xfer_dma->total_bytes - xfer_dma->xferred_bytes); prepare_ep_xfer(ep_id, ep_cs->buffer_offset, xfer_dma->total_bytes - xfer_dma->xferred_bytes);
} }
else else
{ {
xfer_dma->total_bytes = xfer_dma->xferred_bytes; xfer_dma->total_bytes = xfer_dma->xferred_bytes;
uint8_t const ep_addr = (ep_id / 2) | ((ep_id & 0x01) ? TUSB_DIR_IN_MASK : 0); uint8_t const ep_addr = (ep_id / 2) | ((ep_id & 0x01) ? TUSB_DIR_IN_MASK : 0);
// TODO no way determine if the transfer is failed or not // TODO no way determine if the transfer is failed or not
dcd_event_xfer_complete(0, ep_addr, xfer_dma->xferred_bytes, XFER_RESULT_SUCCESS, true); dcd_event_xfer_complete(0, ep_addr, xfer_dma->xferred_bytes, XFER_RESULT_SUCCESS, true);
} }
} }
} }
} }
void USB_IRQHandler(void) void USB_IRQHandler(void)
{ {
uint32_t const dev_cmd_stat = LPC_USB->DEVCMDSTAT; uint32_t const dev_cmd_stat = LPC_USB->DEVCMDSTAT;
uint32_t int_status = LPC_USB->INTSTAT & LPC_USB->INTEN; uint32_t int_status = LPC_USB->INTSTAT & LPC_USB->INTEN;
LPC_USB->INTSTAT = int_status; // Acknowledge handled interrupt LPC_USB->INTSTAT = int_status; // Acknowledge handled interrupt
if (int_status == 0) return; if (int_status == 0) return;
//------------- Device Status -------------// //------------- Device Status -------------//
if ( int_status & INT_DEVICE_STATUS_MASK ) if ( int_status & INT_DEVICE_STATUS_MASK )
{ {
LPC_USB->DEVCMDSTAT |= CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK; LPC_USB->DEVCMDSTAT |= CMDSTAT_RESET_CHANGE_MASK | CMDSTAT_CONNECT_CHANGE_MASK | CMDSTAT_SUSPEND_CHANGE_MASK;
if ( dev_cmd_stat & CMDSTAT_RESET_CHANGE_MASK) // bus reset if ( dev_cmd_stat & CMDSTAT_RESET_CHANGE_MASK) // bus reset
{ {
bus_reset(); bus_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true); dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
} }
if (dev_cmd_stat & CMDSTAT_CONNECT_CHANGE_MASK) if (dev_cmd_stat & CMDSTAT_CONNECT_CHANGE_MASK)
{ {
// device disconnect // device disconnect
if (dev_cmd_stat & CMDSTAT_DEVICE_ADDR_MASK) if (dev_cmd_stat & CMDSTAT_DEVICE_ADDR_MASK)
{ {
// debouncing as this can be set when device is powering // debouncing as this can be set when device is powering
dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, true); dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, true);
} }
} }
// TODO support suspend & resume // TODO support suspend & resume
if (dev_cmd_stat & CMDSTAT_SUSPEND_CHANGE_MASK) if (dev_cmd_stat & CMDSTAT_SUSPEND_CHANGE_MASK)
{ {
if (dev_cmd_stat & CMDSTAT_DEVICE_SUSPEND_MASK) if (dev_cmd_stat & CMDSTAT_DEVICE_SUSPEND_MASK)
{ // suspend signal, bus idle for more than 3ms { // suspend signal, bus idle for more than 3ms
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration. // Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
if (dev_cmd_stat & CMDSTAT_DEVICE_ADDR_MASK) if (dev_cmd_stat & CMDSTAT_DEVICE_ADDR_MASK)
{ {
dcd_event_bus_signal(0, DCD_EVENT_SUSPENDED, true); dcd_event_bus_signal(0, DCD_EVENT_SUSPENDED, true);
} }
} }
} }
// else // else
// { // resume signal // { // resume signal
// dcd_event_bus_signal(0, DCD_EVENT_RESUME, true); // dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
// } // }
// } // }
} }
// Setup Receive // Setup Receive
if ( BIT_TEST_(int_status, 0) && (dev_cmd_stat & CMDSTAT_SETUP_RECEIVED_MASK) ) if ( BIT_TEST_(int_status, 0) && (dev_cmd_stat & CMDSTAT_SETUP_RECEIVED_MASK) )
{ {
// Follow UM flowchart to clear Active & Stall on both Control IN/OUT endpoints // Follow UM flowchart to clear Active & Stall on both Control IN/OUT endpoints
_dcd.ep[0][0].active = _dcd.ep[1][0].active = 0; _dcd.ep[0][0].active = _dcd.ep[1][0].active = 0;
_dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 0; _dcd.ep[0][0].stall = _dcd.ep[1][0].stall = 0;
LPC_USB->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK; LPC_USB->DEVCMDSTAT |= CMDSTAT_SETUP_RECEIVED_MASK;
dcd_event_setup_received(0, _dcd.setup_packet, true); dcd_event_setup_received(0, _dcd.setup_packet, true);
// keep waiting for next setup // keep waiting for next setup
_dcd.ep[0][1].buffer_offset = get_buf_offset(_dcd.setup_packet); _dcd.ep[0][1].buffer_offset = get_buf_offset(_dcd.setup_packet);
// clear bit0 // clear bit0
int_status = BIT_CLR_(int_status, 0); int_status = BIT_CLR_(int_status, 0);
} }
// Endpoint transfer complete interrupt // Endpoint transfer complete interrupt
process_xfer_isr(int_status); process_xfer_isr(int_status);
} }
#endif #endif