bugfix(ch32-hs-dcd): fix ch32 DATAx managment and long packet transmission

This commit is contained in:
dkrasutski 2023-12-30 03:04:43 +02:00 committed by hathach
parent a1abbd70cb
commit 869e5e950c
No known key found for this signature in database
GPG Key ID: 26FAB84F615C3C52
2 changed files with 194 additions and 206 deletions

View File

@ -99,12 +99,16 @@
#define USBHS_ISO_ACT_FLAG (1 << 6)
// INT_ST
#define USBHS_INT_ST_OFFSET 0x0B
#define USBHS_DEV_UIS_IS_NAK (1 << 7)
#define USBHS_DEV_UIS_TOG_OK (1 << 6)
#define MASK_UIS_TOKEN (3 << 4)
#define MASK_UIS_ENDP (0x0F)
#define MASK_UIS_H_RES (0x0F)
#define USBHS_INT_ST_OFFSET 0x0B
#define USBHS_DEV_UIS_IS_NAK (1 << 7)
#define USBHS_DEV_UIS_TOG_OK (1 << 6)
#define MASK_UIS_TOKEN (3 << 4)
#define USBHS_TOKEN_PID_OUT (0 << 4)
#define USBHS_TOKEN_PID_SOF (1 << 4)
#define USBHS_TOKEN_PID_IN (2 << 4)
#define USBHS_TOKEN_PID_SETUP (3 << 4)
#define MASK_UIS_ENDP (0x0F)
#define MASK_UIS_H_RES (0x0F)
#define USBHS_TOGGLE_OK (0x40)
#define USBHS_HOST_RES (0x0f)
@ -367,10 +371,5 @@
#define USBHS_UH_T_TOG_AUTO (1 << 5)
#define USBHS_UH_T_DATA_NO (1 << 6)
// 00: OUT, 01:SOF, 10:IN, 11:SETUP
#define PID_OUT 0
#define PID_SOF 1
#define PID_IN 2
#define PID_SETUP 3
#endif

View File

@ -2,6 +2,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2022 Greg Davill
* Copyright (c) 2023 Denis Krasutski
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -33,32 +34,99 @@
#include "device/dcd.h"
// Max number of bi-directional endpoints including EP0
#define EP_MAX 16
#define EP_MAX 16
#define CH32_USBHS_EP0_MAX_SIZE (64)
typedef struct {
uint8_t *buffer;
// tu_fifo_t * ff; // TODO support dcd_edpt_xfer_fifo API
uint16_t total_len;
uint16_t queued_len;
uint16_t max_size;
bool short_packet;
bool is_last_packet;
} xfer_ctl_t;
typedef enum {
EP_RESPONSE_ACK,
EP_RESPONSE_NAK,
} ep_response_list_t;
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
static xfer_ctl_t xfer_status[EP_MAX][2];
#define EP_TX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_TX_LEN) + (ep)*2)
#define EP_TX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_TX_CTRL) + (ep)*4)
#define EP_RX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_RX_CTRL) + (ep)*4)
#define EP_RX_MAX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_MAX_LEN) + (ep)*2)
#define EP_TX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_TX_LEN) + (ep) * 2)
#define EP_TX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_TX_CTRL) + (ep) * 4)
#define EP_RX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_RX_CTRL) + (ep) * 4)
#define EP_RX_MAX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_MAX_LEN) + (ep) * 2)
#define EP_TX_DMA_ADDR(ep) *(volatile uint32_t *)((volatile uint32_t *)&(USBHSD->UEP1_TX_DMA) + (ep - 1))
#define EP_RX_DMA_ADDR(ep) *(volatile uint32_t *)((volatile uint32_t *)&(USBHSD->UEP1_RX_DMA) + (ep - 1))
/* Endpoint Buffer */
TU_ATTR_ALIGNED(4) uint8_t EP0_DatabufHD[64]; // ep0(64)
TU_ATTR_ALIGNED(4) static uint8_t ep0_data_in_out_buffer[CH32_USBHS_EP0_MAX_SIZE];
volatile uint8_t USBHS_Dev_Endp0_Tog = 0x01;
static void ep_set_response_and_toggle(uint8_t ep_addr, ep_response_list_t response_type) {
uint8_t const ep_num = tu_edpt_number(ep_addr);
if (ep_addr & TUSB_DIR_IN_MASK) {
uint8_t response = (response_type == EP_RESPONSE_ACK) ? USBHS_EP_T_RES_ACK : USBHS_EP_T_RES_NAK;
if (ep_num == 0) {
if (response_type == EP_RESPONSE_ACK) {
if (EP_TX_LEN(ep_num) == 0) {
EP_TX_CTRL(ep_num) |= USBHS_EP_T_TOG_1;
} else {
EP_TX_CTRL(ep_num) ^= USBHS_EP_T_TOG_1;
}
}
}
EP_TX_CTRL(ep_num) = (EP_TX_CTRL(ep_num) & ~(USBHS_EP_T_RES_MASK)) | response;
} else {
uint8_t response = (response_type == EP_RESPONSE_ACK) ? USBHS_EP_R_RES_ACK : USBHS_EP_R_RES_NAK;
if (ep_num == 0) {
if (response_type == EP_RESPONSE_ACK) {
if (xfer_status[ep_num][TUSB_DIR_OUT].queued_len == 0) {
EP_RX_CTRL(ep_num) |= USBHS_EP_R_TOG_1;
}
} else {
EP_RX_CTRL(ep_num) ^= USBHS_EP_R_TOG_1;
}
}
EP_RX_CTRL(ep_num) = (EP_RX_CTRL(ep_num) & ~(USBHS_EP_R_RES_MASK)) | response;
}
}
static void xfer_data_packet(uint8_t ep_addr, xfer_ctl_t *xfer) {
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_IN) {
uint16_t remaining = xfer->total_len - xfer->queued_len;
uint16_t next_tx_size = TU_MIN(remaining, xfer->max_size);
if (ep_num == 0) {
memcpy(ep0_data_in_out_buffer, &xfer->buffer[xfer->queued_len], next_tx_size);
} else {
EP_TX_DMA_ADDR(ep_num) = (uint32_t)&xfer->buffer[xfer->queued_len];
}
EP_TX_LEN(ep_num) = next_tx_size;
xfer->queued_len += next_tx_size;
if (xfer->queued_len == xfer->total_len) {
xfer->is_last_packet = true;
}
} else { /* TUSB_DIR_OUT */
uint16_t left_to_receive = xfer->total_len - xfer->queued_len;
uint16_t max_possible_rx_size = TU_MIN(xfer->max_size, left_to_receive);
if (max_possible_rx_size == left_to_receive) {
xfer->is_last_packet = true;
}
if (ep_num > 0) {
EP_RX_DMA_ADDR(ep_num) = (uint32_t)&xfer->buffer[xfer->queued_len];
EP_RX_MAX_LEN(ep_num) = max_possible_rx_size;
}
}
ep_set_response_and_toggle(ep_addr, USBHS_EP_R_RES_ACK);
}
void dcd_init(uint8_t rhport) {
(void)rhport;
@ -80,29 +148,23 @@ void dcd_init(uint8_t rhport) {
USBHSD->INT_EN = 0;
USBHSD->INT_EN = USBHS_SETUP_ACT_EN | USBHS_TRANSFER_EN | USBHS_DETECT_EN | USBHS_SUSPEND_EN;
/* ALL endpoint enable */
USBHSD->ENDP_CONFIG = 0xffffffff;
USBHSD->ENDP_CONFIG = USBHS_EP0_T_EN | USBHS_EP0_R_EN;
USBHSD->ENDP_TYPE = 0x00;
USBHSD->BUF_MODE = 0x00;
USBHSD->UEP0_MAX_LEN = 64;
USBHSD->UEP0_DMA = (uint32_t)EP0_DatabufHD;
USBHSD->UEP0_TX_LEN = 0;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_NAK;
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK;
for (int ep = 1; ep < EP_MAX; ep++) {
for (int ep = 0; ep < EP_MAX; ep++) {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep) = 512;
EP_RX_MAX_LEN(ep) = 0;
}
USBHSD->UEP0_DMA = (uint32_t)ep0_data_in_out_buffer;
USBHSD->UEP0_MAX_LEN = CH32_USBHS_EP0_MAX_SIZE;
xfer_status[0][TUSB_DIR_OUT].max_size = CH32_USBHS_EP0_MAX_SIZE;
xfer_status[0][TUSB_DIR_IN].max_size = CH32_USBHS_EP0_MAX_SIZE;
USBHSD->DEV_AD = 0;
USBHSD->CONTROL |= USBHS_DEV_PU_EN;
}
@ -121,6 +183,16 @@ void dcd_int_disable(uint8_t rhport) {
void dcd_edpt_close_all(uint8_t rhport) {
(void)rhport;
for (size_t ep = 1; ep < EP_MAX; ep++) {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep) = 0;
}
USBHSD->ENDP_CONFIG = USBHS_EP0_T_EN | USBHS_EP0_R_EN;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
@ -130,9 +202,8 @@ void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
void dcd_remote_wakeup(uint8_t rhport) {
(void)rhport;
}
void dcd_sof_enable(uint8_t rhport, bool en)
@ -154,246 +225,164 @@ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const *req
USBHSD->DEV_AD = (uint8_t)request->wValue;
}
EP_TX_CTRL(0) = USBHS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBHS_EP_R_RES_ACK;
EP_TX_CTRL(0) = USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
EP_RX_CTRL(0) = USBHS_EP_R_RES_NAK | USBHS_EP_R_TOG_0;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_edpt) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
uint8_t const ep_num = tu_edpt_number(desc_edpt->bEndpointAddress);
tusb_dir_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(epnum < EP_MAX);
TU_ASSERT(ep_num < EP_MAX);
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, dir);
if (ep_num == 0) {
return true;
}
xfer_ctl_t *xfer = XFER_CTL_BASE(ep_num, dir);
xfer->max_size = tu_edpt_packet_size(desc_edpt);
if (epnum != 0) {
if (tu_edpt_dir(desc_edpt->bEndpointAddress) == TUSB_DIR_OUT) {
EP_RX_CTRL(epnum) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_ACK;
} else {
EP_TX_LEN(epnum) = 0;
EP_TX_CTRL(epnum) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
bool is_iso = (desc_edpt->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS);
if (dir == TUSB_DIR_OUT) {
USBHSD->ENDP_CONFIG |= (USBHS_EP0_R_EN << ep_num);
EP_RX_CTRL(ep_num) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
if (is_iso == true) {
USBHSD->ENDP_TYPE |= (USBHS_EP0_R_TYP << ep_num);
}
EP_RX_MAX_LEN(ep_num) = xfer->max_size;
} else {
USBHSD->ENDP_CONFIG |= (USBHS_EP0_T_EN << ep_num);
if (is_iso == true) {
USBHSD->ENDP_TYPE |= (USBHS_EP0_T_TYP << ep_num);
}
EP_TX_LEN(ep_num) = 0;
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
}
return true;
}
int usbd_ep_close(const uint8_t ep) {
(void)ep;
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
return 0;
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep_num) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep_num) = 0;
USBHSD->ENDP_TYPE &= ~(USBHS_EP0_R_TYP << ep_num);
USBHSD->ENDP_CONFIG &= ~(USBHS_EP0_R_EN << ep_num);
} else { // TUSB_DIR_IN
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
EP_TX_LEN(ep_num) = 0;
USBHSD->ENDP_TYPE &= ~(USBHS_EP0_T_TYP << ep_num);
USBHSD->ENDP_CONFIG &= ~(USBHS_EP0_T_EN << ep_num);
}
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (epnum == 0) {
if (dir == TUSB_DIR_OUT) {
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_STALL;
} else {
USBHSD->UEP0_TX_LEN = 0;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_STALL;
}
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep_num) = USBHS_EP_R_RES_STALL;
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(epnum) = (EP_RX_CTRL(epnum) & ~USBHS_EP_R_RES_MASK) | USBHS_EP_R_RES_STALL;
} else {
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~USBHS_EP_T_RES_MASK) | USBHS_EP_T_RES_STALL;
}
EP_TX_LEN(0) = 0;
EP_TX_CTRL(ep_num) = USBHS_EP_T_RES_STALL;
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (epnum == 0) {
if (dir == TUSB_DIR_OUT) {
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK;
} else {
}
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep_num) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(epnum) = (EP_RX_CTRL(epnum) & ~(USBHS_EP_R_RES_MASK | USBHS_EP_T_TOG_MASK)) | USBHS_EP_T_RES_ACK;
} else {
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~(USBHS_EP_T_RES_MASK | USBHS_EP_T_TOG_MASK)) | USBHS_EP_T_RES_NAK;
}
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG | USBHS_EP_R_RES_NAK;
}
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, dir);
xfer_ctl_t *xfer = XFER_CTL_BASE(ep_num, dir);
xfer->buffer = buffer;
// xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->short_packet = false;
xfer->is_last_packet = false;
// uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t short_packet_size = total_bytes % (xfer->max_size + 1);
xfer_data_packet(ep_addr, xfer);
// Zero-size packet is special case.
if (short_packet_size == 0 || (total_bytes == 0)) {
xfer->short_packet = true;
}
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
if (!total_bytes) {
xfer->short_packet = true;
if (epnum == 0) {
USBHSD->UEP0_TX_LEN = 0;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_ACK | (USBHS_Dev_Endp0_Tog ? USBHS_EP_T_TOG_1 : USBHS_EP_T_TOG_0);
USBHS_Dev_Endp0_Tog ^= 1;
} else {
EP_TX_LEN(epnum) = 0;
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~(USBHS_EP_T_RES_MASK)) | USBHS_EP_T_RES_ACK;
}
} else {
if (epnum == 0) {
xfer->queued_len += short_packet_size;
memcpy(&EP0_DatabufHD[0], buffer, short_packet_size);
USBHSD->UEP0_TX_LEN = short_packet_size;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_ACK | (USBHS_Dev_Endp0_Tog ? USBHS_EP_T_TOG_1 : USBHS_EP_T_TOG_0);
USBHS_Dev_Endp0_Tog ^= 1;
} else {
xfer->queued_len += short_packet_size;
EP_TX_DMA_ADDR(epnum) = (uint32_t)buffer;
USBHSD->ENDP_CONFIG |= (USBHS_EP0_T_EN << epnum);
EP_TX_LEN(epnum) = short_packet_size;
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~(USBHS_EP_T_RES_MASK)) | USBHS_EP_T_RES_ACK;
}
}
} else { /* TUSB_DIR_OUT */
if (epnum == 0) {
uint32_t read_count = USBHSD->RX_LEN;
read_count = TU_MIN(read_count, total_bytes);
if ((total_bytes == 8)) {
read_count = 8;
memcpy(buffer, &EP0_DatabufHD[0], 8);
} else {
memcpy(buffer, &EP0_DatabufHD[0], read_count);
}
} else {
EP_RX_DMA_ADDR(epnum) = (uint32_t)xfer->buffer;
USBHSD->ENDP_CONFIG |= (USBHS_EP0_R_EN << epnum);
}
// usbd_ep_read(ep_addr, buffer, total_bytes, &ret_bytes);
}
return true;
}
static void receive_packet(xfer_ctl_t *xfer, uint16_t xfer_size) {
// xfer->queued_len = xfer->total_len - remaining;
uint16_t remaining = xfer->total_len - xfer->queued_len;
uint16_t to_recv_size;
if (remaining <= xfer->max_size) {
// Avoid buffer overflow.
to_recv_size = (xfer_size > remaining) ? remaining : xfer_size;
} else {
// Room for full packet, choose recv_size based on what the microcontroller
// claims.
to_recv_size = (xfer_size > xfer->max_size) ? xfer->max_size : xfer_size;
}
if (to_recv_size) {
}
xfer->queued_len += xfer_size;
// Per USB spec, a short OUT packet (including length 0) is always
// indicative of the end of a transfer (at least for ctl, bulk, int).
xfer->short_packet = (xfer_size < xfer->max_size);
}
void dcd_int_handler(uint8_t rhport) {
(void)rhport;
uint32_t end_num, rx_token;
uint8_t intflag = 0;
uint8_t int_flag = USBHSD->INT_FG;
uint8_t int_status = USBHSD->INT_ST;
intflag = USBHSD->INT_FG;
if (int_flag & USBHS_TRANSFER_FLAG) {
if (intflag & USBHS_TRANSFER_FLAG) {
uint8_t ep_num = int_status & MASK_UIS_ENDP;
uint8_t rx_token = int_status & MASK_UIS_TOKEN;
end_num = (USBHSD->INT_ST) & MASK_UIS_ENDP;
rx_token = (((USBHSD->INT_ST) & MASK_UIS_TOKEN) >> 4) & 0x03;
uint8_t ep_addr = (rx_token == USBHS_TOKEN_PID_IN) ? (TUSB_DIR_IN_MASK | ep_num) : ep_num;
uint8_t endp = end_num | (rx_token == PID_IN ? TUSB_DIR_IN_MASK : 0);
xfer_ctl_t *xfer = XFER_CTL_BASE(ep_num, tu_edpt_dir(ep_addr));
xfer_ctl_t *xfer = XFER_CTL_BASE(end_num, tu_edpt_dir(endp));
if (rx_token == PID_SOF) {
dcd_event_sof(rhport, USBHSD->FRAME_NO, true);
} else if (rx_token == PID_OUT) {
if (rx_token == USBHS_TOKEN_PID_OUT) {
uint16_t rx_len = USBHSD->RX_LEN;
receive_packet(xfer, rx_len);
if (xfer->short_packet || (xfer->queued_len == xfer->total_len)) {
xfer->short_packet = false;
dcd_event_xfer_complete(0, endp, xfer->queued_len, XFER_RESULT_SUCCESS, true);
if (ep_num == 0) {
memcpy(&xfer->buffer[xfer->queued_len], ep0_data_in_out_buffer, rx_len);
}
if (end_num == 0) {
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK | USBHS_EP_R_TOG_0;
xfer->queued_len += rx_len;
if (rx_len < xfer->max_size) {
xfer->is_last_packet = true;
}
} else if (rx_token == PID_IN) {
if (xfer->short_packet || (xfer->queued_len == xfer->total_len)) {
xfer->short_packet = false;
xfer->total_len = 0;
dcd_event_xfer_complete(0, endp, xfer->queued_len, XFER_RESULT_SUCCESS, true);
} else if (rx_token == USBHS_TOKEN_PID_IN) {
// Do nothing, no need to update xfer->is_last_packet, it is already updated in xfer_data_packet
// Common processing below
}
EP_TX_CTRL(end_num) = (EP_TX_CTRL(end_num) & ~(USBHS_EP_T_RES_MASK)) | USBHS_EP_T_RES_NAK;
if (end_num == 0) {
}
} else {
dcd_edpt_xfer(0, endp, xfer->buffer + xfer->queued_len, xfer->total_len - xfer->queued_len);
}
if (xfer->is_last_packet == true) {
ep_set_response_and_toggle(ep_addr, EP_RESPONSE_NAK);
dcd_event_xfer_complete(0, ep_addr, xfer->queued_len, XFER_RESULT_SUCCESS, true);
} else {
/* prepare next part of packet to xref */
xfer_data_packet(ep_addr, xfer);
}
USBHSD->INT_FG = USBHS_TRANSFER_FLAG; /* Clear flag */
} else if (intflag & USBHS_SETUP_FLAG) {
USBHS_Dev_Endp0_Tog = 1;
dcd_event_setup_received(0, EP0_DatabufHD, true);
} else if (int_flag & USBHS_SETUP_FLAG) {
ep_set_response_and_toggle(0x80, EP_RESPONSE_NAK);
ep_set_response_and_toggle(0x00, EP_RESPONSE_NAK);
dcd_event_setup_received(0, ep0_data_in_out_buffer, true);
USBHSD->INT_FG = USBHS_SETUP_FLAG; /* Clear flag */
} else if (intflag & USBHS_DETECT_FLAG) {
USBHS_Dev_Endp0_Tog = 1;
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN].max_size = 64;
} else if (int_flag & USBHS_DETECT_FLAG) {
dcd_event_bus_reset(0, TUSB_SPEED_HIGH, true);
USBHSD->DEV_AD = 0;
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK | USBHS_EP_R_TOG_0;
EP_RX_CTRL(0) = USBHS_EP_R_RES_ACK | USBHS_EP_R_TOG_0;
EP_TX_CTRL(0) = USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
USBHSD->INT_FG = USBHS_DETECT_FLAG; /* Clear flag */
} else if (intflag & USBHS_SUSPEND_FLAG) {
} else if (int_flag & USBHS_SUSPEND_FLAG) {
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_SUSPEND };
dcd_event_handler(&event, true);