mirror of
https://github.com/hathach/tinyusb.git
synced 2025-03-19 19:21:05 +00:00
Implementation done, yet to be tested.
This commit is contained in:
parent
62a8e39c9b
commit
349c0f640e
@ -2,6 +2,7 @@
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
||||
* Copyright (c) 2020 Reinhard Panhuber
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
@ -64,51 +65,288 @@ bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_si
|
||||
f->item_size = item_size;
|
||||
f->overwritable = overwritable;
|
||||
|
||||
f->rd_idx = f->wr_idx = f->count = 0;
|
||||
f->non_used_index_space = ((2^16)-1) % depth;
|
||||
f->max_pointer_idx = ((2^16)-1) - f->non_used_index_space;
|
||||
|
||||
f->rd_idx = f->wr_idx = 0;
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO: To be changed!!
|
||||
static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
|
||||
{
|
||||
return (idx < depth) ? idx : (idx-depth);
|
||||
}
|
||||
|
||||
// retrieve data from fifo
|
||||
static inline void _ff_pull(tu_fifo_t* f, void * buffer, uint16_t n)
|
||||
// send one item to FIFO WITHOUT updating write pointer
|
||||
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n, uint16_t wRel)
|
||||
{
|
||||
memcpy(buffer,
|
||||
f->buffer + (f->rd_idx * f->item_size),
|
||||
f->item_size*n);
|
||||
|
||||
f->rd_idx = _ff_mod(f->rd_idx + n, f->depth);
|
||||
f->count -= n;
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, n*f->item_size);
|
||||
}
|
||||
|
||||
// send data to fifo
|
||||
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
|
||||
// send n items to FIFO WITHOUT updating write pointer
|
||||
static void _ff_push_n(tu_fifo_t* f, void const * data, uint16_t n, uint16_t wRel)
|
||||
{
|
||||
memcpy(f->buffer + (f->wr_idx * f->item_size),
|
||||
data,
|
||||
f->item_size*n);
|
||||
|
||||
f->wr_idx = _ff_mod(f->wr_idx + n, f->depth);
|
||||
|
||||
if (tu_fifo_full(f))
|
||||
if(wRel + n <= f->depth) // Linear mode only
|
||||
{
|
||||
f->rd_idx = f->wr_idx; // keep the full state (rd == wr && count = depth)
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, n*f->item_size);
|
||||
}
|
||||
else // Wrap around
|
||||
{
|
||||
uint16_t nLin = f->depth - wRel;
|
||||
|
||||
// Write data to linear part of buffer
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, nLin*f->item_size);
|
||||
|
||||
// Write data wrapped around
|
||||
memcpy(f->buffer, data + nLin*f->item_size, (n - nLin) * f->item_size);
|
||||
}
|
||||
}
|
||||
|
||||
// get one item from FIFO WITHOUT updating write pointer
|
||||
static inline void _ff_pull(tu_fifo_t* f, void const * p_buffer, uint16_t rRel)
|
||||
{
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), f->item_size);
|
||||
}
|
||||
|
||||
// get n items from FIFO WITHOUT updating write pointer
|
||||
static void _ff_pull_n(tu_fifo_t* f, void const * p_buffer, uint16_t n, uint16_t rRel)
|
||||
{
|
||||
if(rRel + n <= f->depth) // Linear mode only
|
||||
{
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), n*f->item_size);
|
||||
}
|
||||
else // Wrap around
|
||||
{
|
||||
uint16_t nLin = f->depth - rRel;
|
||||
|
||||
// Read data from linear part of buffer
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), nLin*f->item_size);
|
||||
|
||||
// Read data wrapped part
|
||||
memcpy(p_buffer + nLin*f->item_size, f->buffer, (n - nLin) * f->item_size);
|
||||
}
|
||||
}
|
||||
|
||||
// Advance an absolute pointer
|
||||
static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t pos)
|
||||
{
|
||||
// We limit the index space of p such that a correct wrap around happens
|
||||
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
||||
if ((p > p + pos) || (p + pos >= f->max_pointer_idx))
|
||||
{
|
||||
p = (p + pos) + f->non_used_index_space;
|
||||
}
|
||||
else
|
||||
{
|
||||
f->count += n;
|
||||
p += pos;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
// get relative from absolute pointer
|
||||
static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p, uint16_t pos)
|
||||
{
|
||||
return _ff_mod(advance_pointer(f, p, pos), f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = wAbs-rAbs;
|
||||
|
||||
// In case we have non-power of two depth we need a further modification
|
||||
if (rAbs > wAbs) cnt -= f->non_used_index_space;
|
||||
|
||||
return cnt;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return wAbs == rAbs;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
||||
// EXAMPLE with buffer depth: 100
|
||||
// Maximum index space: (2^16)-1) - ((2^16)-1) % depth = 65500
|
||||
// If you produce 65500 / 100 = 655 buffer overflows, the write pointer will overflow as well and
|
||||
// the check _tu_fifo_overflow() will not give you a valid result! Avoid such nasty things!
|
||||
// Use _tu_fifo_correct_read_pointer() if overflow happened to set read pointer to correct index
|
||||
// for reading latest items!
|
||||
static inline bool _tu_fifo_overflow(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w
|
||||
// For more details see _tu_fifo_overflow()!
|
||||
static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
|
||||
{
|
||||
tu_fifo_lock(f);
|
||||
f->rd_idx = advance_pointer(f, f->wr_idx, 1);
|
||||
tu_fifo_unlock(f);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static bool _tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
||||
|
||||
// Skip beginning of buffer
|
||||
if (cnt == 0 || pos >= cnt) return false;
|
||||
|
||||
uint16_t rRel = get_relative_pointer(f, rAbs, pos);
|
||||
|
||||
// Peek data
|
||||
_ff_pull(f, p_buffer, rRel);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static uint16_t _tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
||||
|
||||
// Skip beginning of buffer
|
||||
if (cnt == 0 || pos >= cnt) return 0;
|
||||
|
||||
// Check if we can read something at and after pos - if too less is available we read what remains
|
||||
cnt -= pos;
|
||||
if (cnt < n) {
|
||||
if (cnt == 0) return 0;
|
||||
n = cnt;
|
||||
}
|
||||
|
||||
uint16_t rRel = get_relative_pointer(f, rAbs, pos);
|
||||
|
||||
// Peek data
|
||||
_ff_pull_n(f, p_buffer, n, rRel);
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return f->depth - _tu_fifo_count(f, wAbs, rAbs);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one element out of the RX buffer.
|
||||
@brief Get number of items in FIFO.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_count(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_count(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if FIFO is empty.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_empty(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_empty(f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if FIFO is full.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_full(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Get remaining space in FIFO.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if overflow happened.
|
||||
|
||||
BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
||||
EXAMPLE with buffer depth: 100
|
||||
Maximum index space: (2^16)-1) - ((2^16)-1) % depth = 65500
|
||||
If you produce 65500 / 100 = 655 buffer overflows, the write pointer will overflow as well and
|
||||
the check _tu_fifo_overflow() will not give you a valid result! Avoid such nasty things!
|
||||
Use tu_fifo_correct_read_pointer() if overflow happened to set read pointer to correct index
|
||||
for reading latest items!
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns True if overflow happened
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_overflow(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_overflow(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
// Only use in case tu_fifo_overflow() returned true!
|
||||
void tu_fifo_correct_read_pointer(tu_fifo_t* f)
|
||||
{
|
||||
_tu_fifo_correct_read_pointer(f, f->wr_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one element out of the buffer.
|
||||
|
||||
This function will return the element located at the array index of the
|
||||
read pointer, and then increment the read pointer index. If the read
|
||||
@ -120,19 +358,22 @@ static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
|
||||
Pointer to the place holder for data read from the buffer
|
||||
|
||||
@returns TRUE if the queue is not empty
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
||||
{
|
||||
if( tu_fifo_empty(f) ) return false;
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
|
||||
tu_fifo_lock(f);
|
||||
uint16_t r = f->rd_idx;
|
||||
|
||||
_ff_pull(f, buffer, 1);
|
||||
// Peek the data
|
||||
bool ret = _tu_fifo_peek_at(f, 0, buffer, f->wr_idx, r);
|
||||
|
||||
// Advance pointer
|
||||
f->rd_idx = advance_pointer(f, r, ret);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
@ -149,35 +390,21 @@ bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
||||
Number of element that buffer can afford
|
||||
|
||||
@returns number of items read from the FIFO
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * buffer, uint16_t count)
|
||||
uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t count)
|
||||
{
|
||||
if(tu_fifo_empty(f)) return 0;
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
|
||||
tu_fifo_lock(f);
|
||||
uint16_t r = f->rd_idx;
|
||||
|
||||
// Limit up to fifo's count
|
||||
if(count > f->count) count = f->count;
|
||||
// Peek the data
|
||||
count = _tu_fifo_peek_at_n(f, 0, buffer, count, f->wr_idx, r);
|
||||
|
||||
if(count + f->rd_idx <= f->depth)
|
||||
{
|
||||
_ff_pull(f, buffer, count);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t const part1 = f->depth - f->rd_idx;
|
||||
|
||||
// Part 1: from rd_idx to end
|
||||
_ff_pull(f, buffer, part1);
|
||||
buffer = ((uint8_t*) buffer) + part1*f->item_size;
|
||||
|
||||
// Part 2: start to remaining
|
||||
_ff_pull(f, buffer, count-part1);
|
||||
}
|
||||
// Advance read pointer
|
||||
f->rd_idx = advance_pointer(f, r, count);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
@ -193,28 +420,37 @@ uint16_t tu_fifo_read_n (tu_fifo_t* f, void * buffer, uint16_t count)
|
||||
Pointer to the place holder for data read from the buffer
|
||||
|
||||
@returns TRUE if the queue is not empty
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
|
||||
{
|
||||
if ( pos >= f->count ) return false;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
// rd_idx is pos=0
|
||||
uint16_t index = _ff_mod(f->rd_idx + pos, f->depth);
|
||||
memcpy(p_buffer,
|
||||
f->buffer + (index * f->item_size),
|
||||
f->item_size);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
return _tu_fifo_peek_at(f, pos, p_buffer, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Write one element into the RX buffer.
|
||||
@brief Read n items without removing it from the FIFO
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] pos
|
||||
Position to read from in the FIFO buffer
|
||||
@param[in] p_buffer
|
||||
Pointer to the place holder for data read from the buffer
|
||||
@param[in] n
|
||||
Number of items to peek
|
||||
|
||||
@returns Number of bytes written to p_buffer
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t n)
|
||||
{
|
||||
return _tu_fifo_peek_at_n(f, pos, p_buffer, n, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Write one element into the buffer.
|
||||
|
||||
This function will write one element into the array index specified by
|
||||
the write pointer and increment the write index. If the write index
|
||||
@ -227,15 +463,23 @@ bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
|
||||
|
||||
@returns TRUE if the data was written to the FIFO (overwrittable
|
||||
FIFO will always return TRUE)
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_write (tu_fifo_t* f, const void * data)
|
||||
bool tu_fifo_write(tu_fifo_t* f, const void * data)
|
||||
{
|
||||
if ( tu_fifo_full(f) && !f->overwritable ) return false;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
_ff_push(f, data, 1);
|
||||
uint16_t w = f->wr_idx;
|
||||
|
||||
if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
|
||||
|
||||
uint16_t wRel = get_relative_pointer(f, w, 0);
|
||||
|
||||
// Write data
|
||||
_ff_push(f, data, wRel);
|
||||
|
||||
// Advance pointer
|
||||
f->wr_idx = advance_pointer(f, w, 1);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
@ -255,47 +499,42 @@ bool tu_fifo_write (tu_fifo_t* f, const void * data)
|
||||
@param[in] count
|
||||
Number of element
|
||||
@return Number of written elements
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t count)
|
||||
{
|
||||
if ( count == 0 ) return 0;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
uint16_t w = f->wr_idx, r = f->rd_idx;
|
||||
uint8_t const* buf8 = (uint8_t const*) data;
|
||||
|
||||
if (!f->overwritable)
|
||||
{
|
||||
// Not overwritable limit up to full
|
||||
count = tu_min16(count, tu_fifo_remaining(f));
|
||||
count = tu_min16(count, _tu_fifo_remaining(f, w, r));
|
||||
}
|
||||
else if (count > f->depth)
|
||||
{
|
||||
// Only copy last part
|
||||
buf8 = buf8 + (count - f->depth) * f->item_size;
|
||||
count = f->depth;
|
||||
f->wr_idx = 0;
|
||||
f->rd_idx = 0;
|
||||
f->count = 0;
|
||||
|
||||
// We start writing at the read pointer's position since we fill the complete
|
||||
// buffer and we do not want to modify the read pointer within a write function!
|
||||
// This would end up in a race condition with read functions!
|
||||
f->wr_idx = r;
|
||||
}
|
||||
|
||||
if (count + f->wr_idx <= f->depth )
|
||||
{
|
||||
_ff_push(f, buf8, count);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t const part1 = f->depth - f->wr_idx;
|
||||
uint16_t wRel = get_relative_pointer(f, w, 0);
|
||||
|
||||
// Part 1: from wr_idx to end
|
||||
_ff_push(f, buf8, part1);
|
||||
buf8 += part1*f->item_size;
|
||||
// Write data
|
||||
_ff_push_n(f, buf8, count, wRel);
|
||||
|
||||
// Advance pointer
|
||||
f->wr_idx = advance_pointer(f, w, count);
|
||||
|
||||
// Part 2: start to remaining
|
||||
_ff_push(f, buf8, count-part1);
|
||||
}
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return count;
|
||||
@ -307,13 +546,13 @@ uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_clear(tu_fifo_t *f)
|
||||
{
|
||||
tu_fifo_lock(f);
|
||||
|
||||
f->rd_idx = f->wr_idx = f->count = 0;
|
||||
f->rd_idx = f->wr_idx = 0;
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
|
@ -52,14 +52,16 @@
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint8_t* buffer ; ///< buffer pointer
|
||||
uint16_t depth ; ///< max items
|
||||
uint16_t item_size ; ///< size of each item
|
||||
bool overwritable ;
|
||||
uint8_t* buffer ; ///< buffer pointer
|
||||
uint16_t depth ; ///< max items
|
||||
uint16_t item_size ; ///< size of each item
|
||||
bool overwritable ;
|
||||
|
||||
volatile uint16_t count ; ///< number of items in queue
|
||||
volatile uint16_t wr_idx ; ///< write pointer
|
||||
volatile uint16_t rd_idx ; ///< read pointer
|
||||
uint16_t non_used_index_space ; ///< required for non-power-of-two buffer length
|
||||
uint16_t max_pointer_idx ; ///< maximum absolute pointer index
|
||||
|
||||
volatile uint16_t wr_idx ; ///< write pointer
|
||||
volatile uint16_t rd_idx ; ///< read pointer
|
||||
|
||||
#if CFG_FIFO_MUTEX
|
||||
tu_fifo_mutex_t mutex;
|
||||
@ -67,13 +69,15 @@ typedef struct
|
||||
|
||||
} tu_fifo_t;
|
||||
|
||||
#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
|
||||
uint8_t _name##_buf[_depth*sizeof(_type)]; \
|
||||
tu_fifo_t _name = { \
|
||||
.buffer = _name##_buf, \
|
||||
.depth = _depth, \
|
||||
.item_size = sizeof(_type), \
|
||||
.overwritable = _overwritable, \
|
||||
#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
|
||||
uint8_t _name##_buf[_depth*sizeof(_type)]; \
|
||||
tu_fifo_t _name = { \
|
||||
.buffer = _name##_buf, \
|
||||
.depth = _depth, \
|
||||
.item_size = sizeof(_type), \
|
||||
.overwritable = _overwritable, \
|
||||
.non_used_index_space = (2^16-1) % _depth, \
|
||||
.max_pointer_idx = (2^16-1) - ((2^16-1) % _depth), \
|
||||
}
|
||||
|
||||
bool tu_fifo_clear(tu_fifo_t *f);
|
||||
@ -86,39 +90,28 @@ static inline void tu_fifo_config_mutex(tu_fifo_t *f, tu_fifo_mutex_t mutex_hdl)
|
||||
}
|
||||
#endif
|
||||
|
||||
bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
|
||||
uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t count);
|
||||
bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
|
||||
uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t count);
|
||||
|
||||
bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
|
||||
bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
|
||||
|
||||
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
|
||||
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
|
||||
uint16_t tu_fifo_peek_at_n (tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t n);
|
||||
|
||||
uint16_t tu_fifo_count (tu_fifo_t* f);
|
||||
void tu_fifo_correct_read_pointer (tu_fifo_t* f);
|
||||
bool tu_fifo_empty (tu_fifo_t* f);
|
||||
bool tu_fifo_full (tu_fifo_t* f);
|
||||
uint16_t tu_fifo_remaining (tu_fifo_t* f);
|
||||
bool tu_fifo_overflow (tu_fifo_t* f);
|
||||
void tu_fifo_correct_read_pointer (tu_fifo_t* f);
|
||||
|
||||
static inline bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer)
|
||||
{
|
||||
return tu_fifo_peek_at(f, 0, p_buffer);
|
||||
}
|
||||
|
||||
static inline bool tu_fifo_empty(tu_fifo_t* f)
|
||||
{
|
||||
return (f->count == 0);
|
||||
}
|
||||
|
||||
static inline bool tu_fifo_full(tu_fifo_t* f)
|
||||
{
|
||||
return (f->count == f->depth);
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_count(tu_fifo_t* f)
|
||||
{
|
||||
return f->count;
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
||||
{
|
||||
return f->depth - f->count;
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_depth(tu_fifo_t* f)
|
||||
{
|
||||
return f->depth;
|
||||
|
Loading…
x
Reference in New Issue
Block a user