1
0
mirror of https://github.com/hathach/tinyusb.git synced 2025-04-02 13:20:20 +00:00

minor space format dwc2 driver

This commit is contained in:
hathach 2023-10-30 22:22:27 +07:00
parent a4c542a7b4
commit 305ef5d48a
No known key found for this signature in database
GPG Key ID: F5D50C6D51D17CBA

@ -103,20 +103,17 @@ static bool _out_ep_closed; // Flag to check if RX FIFO si
static bool _sof_en; static bool _sof_en;
// Calculate the RX FIFO size according to recommendations from reference manual // Calculate the RX FIFO size according to recommendations from reference manual
static inline uint16_t calc_grxfsiz(uint16_t max_ep_size, uint8_t ep_count) static inline uint16_t calc_grxfsiz(uint16_t max_ep_size, uint8_t ep_count) {
{
return 15 + 2 * (max_ep_size / 4) + 2 * ep_count; return 15 + 2 * (max_ep_size / 4) + 2 * ep_count;
} }
static void update_grxfsiz(uint8_t rhport) static void update_grxfsiz(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count; uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
// Determine largest EP size for RX FIFO // Determine largest EP size for RX FIFO
uint16_t max_epsize = 0; uint16_t max_epsize = 0;
for (uint8_t epnum = 0; epnum < ep_count; epnum++) for (uint8_t epnum = 0; epnum < ep_count; epnum++) {
{
max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size); max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size);
} }
@ -125,8 +122,7 @@ static void update_grxfsiz(uint8_t rhport)
} }
// Start of Bus Reset // Start of Bus Reset
static void bus_reset(uint8_t rhport) static void bus_reset(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count; uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
@ -139,8 +135,7 @@ static void bus_reset(uint8_t rhport)
dwc2->dcfg &= ~DCFG_DAD_Msk; dwc2->dcfg &= ~DCFG_DAD_Msk;
// 1. NAK for all OUT endpoints // 1. NAK for all OUT endpoints
for ( uint8_t n = 0; n < ep_count; n++ ) for (uint8_t n = 0; n < ep_count; n++) {
{
dwc2->epout[n].doepctl |= DOEPCTL_SNAK; dwc2->epout[n].doepctl |= DOEPCTL_SNAK;
} }
@ -218,24 +213,22 @@ static void bus_reset(uint8_t rhport)
dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT; dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
} }
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes) static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets,
{ uint16_t total_bytes) {
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// EP0 is limited to one packet each xfer // EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done // We use multiple transaction of xfer->max_size length to get a whole transfer done
if ( epnum == 0 ) if (epnum == 0) {
{
xfer_ctl_t* const xfer = XFER_CTL_BASE(epnum, dir); xfer_ctl_t* const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size); total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes; ep0_pending[dir] -= total_bytes;
} }
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here. // IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if ( dir == TUSB_DIR_IN ) if (dir == TUSB_DIR_IN) {
{
dwc2_epin_t* epin = dwc2->epin; dwc2_epin_t* epin = dwc2->epin;
// A full IN transfer (multiple packets, possibly) triggers XFRC. // A full IN transfer (multiple packets, possibly) triggers XFRC.
@ -245,20 +238,16 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK; epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
// For ISO endpoint set correct odd/even bit for next frame. // For ISO endpoint set correct odd/even bit for next frame.
if ( (epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1 ) if ((epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
{
// Take odd/even bit from frame counter. // Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos)); uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk); epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
} }
// Enable fifo empty interrupt only if there are something to put in the fifo. // Enable fifo empty interrupt only if there are something to put in the fifo.
if ( total_bytes != 0 ) if (total_bytes != 0) {
{
dwc2->diepempmsk |= (1 << epnum); dwc2->diepempmsk |= (1 << epnum);
} }
} } else {
else
{
dwc2_epout_t* epout = dwc2->epout; dwc2_epout_t* epout = dwc2->epout;
// A full OUT transfer (multiple packets, possibly) triggers XFRC. // A full OUT transfer (multiple packets, possibly) triggers XFRC.
@ -268,8 +257,7 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK; epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
if ((epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 && if ((epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 &&
XFER_CTL_BASE(epnum, dir)->interval == 1 ) XFER_CTL_BASE(epnum, dir)->interval == 1) {
{
// Take odd/even bit from frame counter. // Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos)); uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk); epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
@ -281,78 +269,21 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
/* Controller API /* Controller API
*------------------------------------------------------------------*/ *------------------------------------------------------------------*/
#if CFG_TUSB_DEBUG >= DWC2_DEBUG #if CFG_TUSB_DEBUG >= DWC2_DEBUG
void print_dwc2_info(dwc2_regs_t * dwc2)
{
dwc2_ghwcfg2_t const * hw_cfg2 = &dwc2->ghwcfg2_bm;
dwc2_ghwcfg3_t const * hw_cfg3 = &dwc2->ghwcfg3_bm;
dwc2_ghwcfg4_t const * hw_cfg4 = &dwc2->ghwcfg4_bm;
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl); void print_dwc2_info(dwc2_regs_t* dwc2) {
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg); // print guid, gsnpsid, ghwcfg1, ghwcfg2, ghwcfg3, ghwcfg4
// TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg); // use dwc2_info.py/md for bit-field value and comparison with other ports
TU_LOG_HEX(DWC2_DEBUG, dwc2->guid); volatile uint32_t const* p = (volatile uint32_t const*) &dwc2->guid;
TU_LOG_HEX(DWC2_DEBUG, dwc2->gsnpsid); TU_LOG(DWC2_DEBUG, "guid, gsnpsid, ghwcfg1, ghwcfg2, ghwcfg3, ghwcfg4\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg1); for (size_t i = 0; i < 5; i++) {
TU_LOG(DWC2_DEBUG, "0x%08lX, ", p[i]);
// HW configure 2
TU_LOG(DWC2_DEBUG, "\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg2);
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->op_mode );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->arch );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->point2point );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->hs_phy_type );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->fs_phy_type );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_dev_ep );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_host_ch );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->period_channel_support );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->enable_dynamic_fifo );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->mul_cpu_int );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->nperiod_tx_q_depth );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->host_period_tx_q_depth );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->dev_token_q_depth );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->otg_enable_ic_usb );
// HW configure 3
TU_LOG(DWC2_DEBUG, "\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg3);
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->xfer_size_width );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->packet_size_width );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->i2c_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->vendor_ctrl_itf );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->optional_feature_removed );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->synch_reset );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_adp_support );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable_hsic );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->battery_charger_support );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->lpm_mode );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->total_fifo_size );
// HW configure 4
TU_LOG(DWC2_DEBUG, "\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg4);
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_period_in_ep );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->power_optimized );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ahb_freq_min );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->hibernation );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->service_interval_mode );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ipg_isoc_en );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->acg_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->utmi_phy_data_width );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dev_ctrl_ep_num );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->iddg_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->vbus_valid_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->a_valid_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->b_valid_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dedicated_fifos );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_in_eps );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_desc_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_dynamic );
} }
TU_LOG(DWC2_DEBUG, "0x%08lX\r\n", p[5]);
}
#endif #endif
static void reset_core(dwc2_regs_t * dwc2) static void reset_core(dwc2_regs_t* dwc2) {
{
// reset core // reset core
dwc2->grstctl |= GRSTCTL_CSRST; dwc2->grstctl |= GRSTCTL_CSRST;
@ -366,8 +297,7 @@ static void reset_core(dwc2_regs_t * dwc2)
// wait for device mode ? // wait for device mode ?
} }
static bool phy_hs_supported(dwc2_regs_t * dwc2) static bool phy_hs_supported(dwc2_regs_t* dwc2) {
{
// note: esp32 incorrect report its hs_phy_type as utmi // note: esp32 incorrect report its hs_phy_type as utmi
#if TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3) #if TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3)
return false; return false;
@ -376,8 +306,7 @@ static bool phy_hs_supported(dwc2_regs_t * dwc2)
#endif #endif
} }
static void phy_fs_init(dwc2_regs_t * dwc2) static void phy_fs_init(dwc2_regs_t* dwc2) {
{
TU_LOG(DWC2_DEBUG, "Fullspeed PHY init\r\n"); TU_LOG(DWC2_DEBUG, "Fullspeed PHY init\r\n");
// Select FS PHY // Select FS PHY
@ -401,15 +330,13 @@ static void phy_fs_init(dwc2_regs_t * dwc2)
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_FS << DCFG_DSPD_Pos); dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_FS << DCFG_DSPD_Pos);
} }
static void phy_hs_init(dwc2_regs_t * dwc2) static void phy_hs_init(dwc2_regs_t* dwc2) {
{
uint32_t gusbcfg = dwc2->gusbcfg; uint32_t gusbcfg = dwc2->gusbcfg;
// De-select FS PHY // De-select FS PHY
gusbcfg &= ~GUSBCFG_PHYSEL; gusbcfg &= ~GUSBCFG_PHYSEL;
if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) {
{
TU_LOG(DWC2_DEBUG, "Highspeed ULPI PHY init\r\n"); TU_LOG(DWC2_DEBUG, "Highspeed ULPI PHY init\r\n");
// Select ULPI // Select ULPI
@ -423,8 +350,7 @@ static void phy_hs_init(dwc2_regs_t * dwc2)
// Disable FS/LS ULPI // Disable FS/LS ULPI
gusbcfg &= ~(GUSBCFG_ULPIFSLS | GUSBCFG_ULPICSM); gusbcfg &= ~(GUSBCFG_ULPIFSLS | GUSBCFG_ULPICSM);
}else } else {
{
TU_LOG(DWC2_DEBUG, "Highspeed UTMI+ PHY init\r\n"); TU_LOG(DWC2_DEBUG, "Highspeed UTMI+ PHY init\r\n");
// Select UTMI+ with 8-bit interface // Select UTMI+ with 8-bit interface
@ -465,8 +391,7 @@ static void phy_hs_init(dwc2_regs_t * dwc2)
dwc2->dcfg = dcfg; dwc2->dcfg = dcfg;
} }
static bool check_dwc2(dwc2_regs_t * dwc2) static bool check_dwc2(dwc2_regs_t* dwc2) {
{
#if CFG_TUSB_DEBUG >= DWC2_DEBUG #if CFG_TUSB_DEBUG >= DWC2_DEBUG
print_dwc2_info(dwc2); print_dwc2_info(dwc2);
#endif #endif
@ -481,28 +406,22 @@ static bool check_dwc2(dwc2_regs_t * dwc2)
return true; return true;
} }
void dcd_init (uint8_t rhport) void dcd_init(uint8_t rhport) {
{
// Programming model begins in the last section of the chapter on the USB // Programming model begins in the last section of the chapter on the USB
// peripheral in each Reference Manual. // peripheral in each Reference Manual.
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// Check Synopsys ID register, failed if controller clock/power is not enabled // Check Synopsys ID register, failed if controller clock/power is not enabled
TU_VERIFY(check_dwc2(dwc2), ); if (!check_dwc2(dwc2)) return;
dcd_disconnect(rhport); dcd_disconnect(rhport);
// max number of endpoints & total_fifo_size are: // max number of endpoints & total_fifo_size are:
// hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size // hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size
if( phy_hs_supported(dwc2) ) if (phy_hs_supported(dwc2)) {
{ phy_hs_init(dwc2); // Highspeed
// Highspeed } else {
phy_hs_init(dwc2); phy_fs_init(dwc2); // core does not support highspeed or hs phy is not present
}else
{
// core does not support highspeed or hs-phy is not present
phy_fs_init(dwc2);
} }
// Restart PHY clock // Restart PHY clock
@ -554,18 +473,15 @@ void dcd_init (uint8_t rhport)
dcd_connect(rhport); dcd_connect(rhport);
} }
void dcd_int_enable (uint8_t rhport) void dcd_int_enable(uint8_t rhport) {
{
dwc2_dcd_int_enable(rhport); dwc2_dcd_int_enable(rhport);
} }
void dcd_int_disable (uint8_t rhport) void dcd_int_disable(uint8_t rhport) {
{
dwc2_dcd_int_disable(rhport); dwc2_dcd_int_disable(rhport);
} }
void dcd_set_address (uint8_t rhport, uint8_t dev_addr) void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos); dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);
@ -573,8 +489,7 @@ void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
} }
void dcd_remote_wakeup(uint8_t rhport) void dcd_remote_wakeup(uint8_t rhport) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
@ -592,35 +507,29 @@ void dcd_remote_wakeup(uint8_t rhport)
dwc2->dctl &= ~DCTL_RWUSIG; dwc2->dctl &= ~DCTL_RWUSIG;
} }
void dcd_connect(uint8_t rhport) void dcd_connect(uint8_t rhport) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dctl &= ~DCTL_SDIS; dwc2->dctl &= ~DCTL_SDIS;
} }
void dcd_disconnect(uint8_t rhport) void dcd_disconnect(uint8_t rhport) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dctl |= DCTL_SDIS; dwc2->dctl |= DCTL_SDIS;
} }
// Be advised: audio, video and possibly other iso-ep classes use dcd_sof_enable() to enable/disable its corresponding ISR on purpose! // Be advised: audio, video and possibly other iso-ep classes use dcd_sof_enable() to enable/disable its corresponding ISR on purpose!
void dcd_sof_enable(uint8_t rhport, bool en) void dcd_sof_enable(uint8_t rhport, bool en) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
_sof_en = en; _sof_en = en;
if (en) if (en) {
{
dwc2->gintsts = GINTSTS_SOF; dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM; dwc2->gintmsk |= GINTMSK_SOFM;
} } else {
else
{
dwc2->gintmsk &= ~GINTMSK_SOFM; dwc2->gintmsk &= ~GINTMSK_SOFM;
} }
} }
@ -629,8 +538,7 @@ void dcd_sof_enable(uint8_t rhport, bool en)
/* DCD Endpoint port /* DCD Endpoint port
*------------------------------------------------------------------*/ *------------------------------------------------------------------*/
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
@ -647,14 +555,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
uint16_t const fifo_size = tu_div_ceil(xfer->max_size, 4); uint16_t const fifo_size = tu_div_ceil(xfer->max_size, 4);
if(dir == TUSB_DIR_OUT) if (dir == TUSB_DIR_OUT) {
{
// Calculate required size of RX FIFO // Calculate required size of RX FIFO
uint16_t const sz = calc_grxfsiz(4 * fifo_size, ep_count); uint16_t const sz = calc_grxfsiz(4 * fifo_size, ep_count);
// If size_rx needs to be extended check if possible and if so enlarge it // If size_rx needs to be extended check if possible and if so enlarge it
if (dwc2->grxfsiz < sz) if (dwc2->grxfsiz < sz) {
{
TU_ASSERT(sz + _allocated_fifo_words_tx <= _dwc2_controller[rhport].ep_fifo_size / 4); TU_ASSERT(sz + _allocated_fifo_words_tx <= _dwc2_controller[rhport].ep_fifo_size / 4);
// Enlarge RX FIFO // Enlarge RX FIFO
@ -667,9 +573,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
(xfer->max_size << DOEPCTL_MPSIZ_Pos); (xfer->max_size << DOEPCTL_MPSIZ_Pos);
dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum); dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
} } else {
else
{
// "USB Data FIFOs" section in reference manual // "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture // Peripheral FIFO architecture
// //
@ -696,11 +600,13 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
_allocated_fifo_words_tx += fifo_size; _allocated_fifo_words_tx += fifo_size;
TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %lu", fifo_size*4, _dwc2_controller[rhport].ep_fifo_size-_allocated_fifo_words_tx*4); TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %lu", fifo_size * 4,
_dwc2_controller[rhport].ep_fifo_size - _allocated_fifo_words_tx * 4);
// DIEPTXF starts at FIFO #1. // DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words. // Both TXFD and TXSA are in unit of 32-bit words.
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | (_dwc2_controller[rhport].ep_fifo_size/4 - _allocated_fifo_words_tx); dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) |
(_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
dwc2->epin[epnum].diepctl |= (1 << DIEPCTL_USBAEP_Pos) | dwc2->epin[epnum].diepctl |= (1 << DIEPCTL_USBAEP_Pos) |
(epnum << DIEPCTL_TXFNUM_Pos) | (epnum << DIEPCTL_TXFNUM_Pos) |
@ -715,16 +621,14 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
} }
// Close all non-control endpoints, cancel all pending transfers if any. // Close all non-control endpoints, cancel all pending transfers if any.
void dcd_edpt_close_all (uint8_t rhport) void dcd_edpt_close_all(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count; uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
// Disable non-control interrupt // Disable non-control interrupt
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos); dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
for(uint8_t n = 1; n < ep_count; n++) for (uint8_t n = 1; n < ep_count; n++) {
{
// disable OUT endpoint // disable OUT endpoint
dwc2->epout[n].doepctl = 0; dwc2->epout[n].doepctl = 0;
xfer_status[n][TUSB_DIR_OUT].max_size = 0; xfer_status[n][TUSB_DIR_OUT].max_size = 0;
@ -738,8 +642,7 @@ void dcd_edpt_close_all (uint8_t rhport)
_allocated_fifo_words_tx = 16; _allocated_fifo_words_tx = 16;
} }
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
{
uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr);
@ -749,15 +652,12 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
xfer->total_len = total_bytes; xfer->total_len = total_bytes;
// EP0 can only handle one packet // EP0 can only handle one packet
if(epnum == 0) if (epnum == 0) {
{
ep0_pending[dir] = total_bytes; ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer // Schedule the first transaction for EP0 transfer
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]); edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
} } else {
else
{
uint16_t num_packets = (total_bytes / xfer->max_size); uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t const short_packet_size = total_bytes % xfer->max_size; uint16_t const short_packet_size = total_bytes % xfer->max_size;
@ -775,8 +675,7 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
// bytes should be written and second to keep the return value free to give back a boolean // bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available // success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer! // into the USB buffer!
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t total_bytes) {
{
// USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1 // USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
TU_ASSERT(ff->item_size == 1); TU_ASSERT(ff->item_size == 1);
@ -800,8 +699,7 @@ bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
return true; return true;
} }
static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall) static void dcd_edpt_disable(uint8_t rhport, uint8_t ep_addr, bool stall) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
@ -809,17 +707,13 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr);
if ( dir == TUSB_DIR_IN ) if (dir == TUSB_DIR_IN) {
{
dwc2_epin_t* epin = dwc2->epin; dwc2_epin_t* epin = dwc2->epin;
// Only disable currently enabled non-control endpoint // Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA) ) if ((epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA)) {
{
epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0); epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
} } else {
else
{
// Stop transmitting packets and NAK IN xfers. // Stop transmitting packets and NAK IN xfers.
epin[epnum].diepctl |= DIEPCTL_SNAK; epin[epnum].diepctl |= DIEPCTL_SNAK;
while ((epin[epnum].diepint & DIEPINT_INEPNE) == 0) {} while ((epin[epnum].diepint & DIEPINT_INEPNE) == 0) {}
@ -834,18 +728,13 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
// Flush the FIFO, and wait until we have confirmed it cleared. // Flush the FIFO, and wait until we have confirmed it cleared.
dwc2->grstctl = ((epnum << GRSTCTL_TXFNUM_Pos) | GRSTCTL_TXFFLSH); dwc2->grstctl = ((epnum << GRSTCTL_TXFNUM_Pos) | GRSTCTL_TXFFLSH);
while ((dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0) {} while ((dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0) {}
} } else {
else
{
dwc2_epout_t* epout = dwc2->epout; dwc2_epout_t* epout = dwc2->epout;
// Only disable currently enabled non-control endpoint // Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA) ) if ((epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA)) {
{
epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0; epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0;
} } else {
else
{
// Asserting GONAK is required to STALL an OUT endpoint. // Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never // anyway, and it can't be cleared by user code. If this while loop never
@ -868,8 +757,7 @@ static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
/** /**
* Close an endpoint. * Close an endpoint.
*/ */
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr) void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const epnum = tu_edpt_number(ep_addr);
@ -880,28 +768,23 @@ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
// Update max_size // Update max_size
xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation
if (dir == TUSB_DIR_IN) if (dir == TUSB_DIR_IN) {
{
uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos; uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos; uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos;
// For now only the last opened endpoint can be closed without fuss. // For now only the last opened endpoint can be closed without fuss.
TU_ASSERT(fifo_start == _dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx,); TU_ASSERT(fifo_start == _dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx,);
_allocated_fifo_words_tx -= fifo_size; _allocated_fifo_words_tx -= fifo_size;
} } else {
else
{
_out_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty _out_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
} }
} }
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
{
dcd_edpt_disable(rhport, ep_addr, true); dcd_edpt_disable(rhport, ep_addr, true);
} }
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
@ -910,13 +793,10 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr);
// Clear stall and reset data toggle // Clear stall and reset data toggle
if ( dir == TUSB_DIR_IN ) if (dir == TUSB_DIR_IN) {
{
dwc2->epin[epnum].diepctl &= ~DIEPCTL_STALL; dwc2->epin[epnum].diepctl &= ~DIEPCTL_STALL;
dwc2->epin[epnum].diepctl |= DIEPCTL_SD0PID_SEVNFRM; dwc2->epin[epnum].diepctl |= DIEPCTL_SD0PID_SEVNFRM;
} } else {
else
{
dwc2->epout[epnum].doepctl &= ~DOEPCTL_STALL; dwc2->epout[epnum].doepctl &= ~DOEPCTL_STALL;
dwc2->epout[epnum].doepctl |= DOEPCTL_SD0PID_SEVNFRM; dwc2->epout[epnum].doepctl |= DOEPCTL_SD0PID_SEVNFRM;
} }
@ -925,8 +805,7 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
/*------------------------------------------------------------------*/ /*------------------------------------------------------------------*/
// Read a single data packet from receive FIFO // Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len) static void read_fifo_packet(uint8_t rhport, uint8_t* dst, uint16_t len) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
@ -934,16 +813,14 @@ static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
// Reading full available 32 bit words from fifo // Reading full available 32 bit words from fifo
uint16_t full_words = len >> 2; uint16_t full_words = len >> 2;
while(full_words--) while (full_words--) {
{
tu_unaligned_write32(dst, *rx_fifo); tu_unaligned_write32(dst, *rx_fifo);
dst += 4; dst += 4;
} }
// Read the remaining 1-3 bytes from fifo // Read the remaining 1-3 bytes from fifo
uint8_t const bytes_rem = len & 0x03; uint8_t const bytes_rem = len & 0x03;
if ( bytes_rem != 0 ) if (bytes_rem != 0) {
{
uint32_t const tmp = *rx_fifo; uint32_t const tmp = *rx_fifo;
dst[0] = tu_u32_byte0(tmp); dst[0] = tu_u32_byte0(tmp);
if (bytes_rem > 1) dst[1] = tu_u32_byte1(tmp); if (bytes_rem > 1) dst[1] = tu_u32_byte1(tmp);
@ -952,8 +829,7 @@ static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
} }
// Write a single data packet to EPIN FIFO // Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const * src, uint16_t len) static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const* src, uint16_t len) {
{
(void) rhport; (void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
@ -961,16 +837,14 @@ static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const *
// Pushing full available 32 bit words to fifo // Pushing full available 32 bit words to fifo
uint16_t full_words = len >> 2; uint16_t full_words = len >> 2;
while(full_words--) while (full_words--) {
{
*tx_fifo = tu_unaligned_read32(src); *tx_fifo = tu_unaligned_read32(src);
src += 4; src += 4;
} }
// Write the remaining 1-3 bytes into fifo // Write the remaining 1-3 bytes into fifo
uint8_t const bytes_rem = len & 0x03; uint8_t const bytes_rem = len & 0x03;
if ( bytes_rem ) if (bytes_rem) {
{
uint32_t tmp_word = src[0]; uint32_t tmp_word = src[0];
if (bytes_rem > 1) tmp_word |= (src[1] << 8); if (bytes_rem > 1) tmp_word |= (src[1] << 8);
if (bytes_rem > 2) tmp_word |= (src[2] << 16); if (bytes_rem > 2) tmp_word |= (src[2] << 16);
@ -979,8 +853,7 @@ static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const *
} }
} }
static void handle_rxflvl_irq(uint8_t rhport) static void handle_rxflvl_irq(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
volatile uint32_t const* rx_fifo = dwc2->fifo[0]; volatile uint32_t const* rx_fifo = dwc2->fifo[0];
@ -1003,10 +876,10 @@ static void handle_rxflvl_irq(uint8_t rhport)
// TU_LOG(DWC2_DEBUG, " daint = %08lX, doepint = %04X\r\n", (unsigned long) dwc2->daint, (unsigned int) epout->doepint); // TU_LOG(DWC2_DEBUG, " daint = %08lX, doepint = %04X\r\n", (unsigned long) dwc2->daint, (unsigned int) epout->doepint);
//#endif //#endif
switch ( pktsts ) switch (pktsts) {
{
// Global OUT NAK: do nothing // Global OUT NAK: do nothing
case GRXSTS_PKTSTS_GLOBALOUTNAK: break; case GRXSTS_PKTSTS_GLOBALOUTNAK:
break;
case GRXSTS_PKTSTS_SETUPRX: case GRXSTS_PKTSTS_SETUPRX:
// Setup packet received // Setup packet received
@ -1022,19 +895,15 @@ static void handle_rxflvl_irq(uint8_t rhport)
epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos); epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
break; break;
case GRXSTS_PKTSTS_OUTRX: case GRXSTS_PKTSTS_OUTRX: {
{
// Out packet received // Out packet received
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT); xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Read packet off RxFIFO // Read packet off RxFIFO
if ( xfer->ff ) if (xfer->ff) {
{
// Ring buffer // Ring buffer
tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt); tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt);
} } else {
else
{
// Linear buffer // Linear buffer
read_fifo_packet(rhport, xfer->buffer, bcnt); read_fifo_packet(rhport, xfer->buffer, bcnt);
@ -1043,11 +912,9 @@ static void handle_rxflvl_irq(uint8_t rhport)
} }
// Truncate transfer length in case of short packet // Truncate transfer length in case of short packet
if ( bcnt < xfer->max_size ) if (bcnt < xfer->max_size) {
{
xfer->total_len -= (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos; xfer->total_len -= (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos;
if ( epnum == 0 ) if (epnum == 0) {
{
xfer->total_len -= ep0_pending[TUSB_DIR_OUT]; xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0; ep0_pending[TUSB_DIR_OUT] = 0;
} }
@ -1062,12 +929,10 @@ static void handle_rxflvl_irq(uint8_t rhport)
// XFRC complete is additionally generated when // XFRC complete is additionally generated when
// - setup packet is received // - setup packet is received
// - complete the data stage of control write is complete // - complete the data stage of control write is complete
if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) {
{
uint32_t doepint = epout->doepint; uint32_t doepint = epout->doepint;
if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR)) if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR)) {
{
// skip this "no-data" transfer complete event // skip this "no-data" transfer complete event
// Note: STPKTRX will be clear later by setup received handler // Note: STPKTRX will be clear later by setup received handler
uint32_t clear_flags = DOEPINT_XFRC; uint32_t clear_flags = DOEPINT_XFRC;
@ -1087,29 +952,24 @@ static void handle_rxflvl_irq(uint8_t rhport)
} }
} }
static void handle_epout_irq (uint8_t rhport) static void handle_epout_irq(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count; uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
// DAINT for a given EP clears when DOEPINTx is cleared. // DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared. // OEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < ep_count; n++ ) for (uint8_t n = 0; n < ep_count; n++) {
{ if (dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + n)) {
if ( dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + n) )
{
dwc2_epout_t* epout = &dwc2->epout[n]; dwc2_epout_t* epout = &dwc2->epout[n];
uint32_t const doepint = epout->doepint; uint32_t const doepint = epout->doepint;
// SETUP packet Setup Phase done. // SETUP packet Setup Phase done.
if ( doepint & DOEPINT_STUP ) if (doepint & DOEPINT_STUP) {
{
uint32_t clear_flag = DOEPINT_STUP; uint32_t clear_flag = DOEPINT_STUP;
// STPKTRX is only available for version from 3_00a // STPKTRX is only available for version from 3_00a
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) {
{
clear_flag |= DOEPINT_STPKTRX; clear_flag |= DOEPINT_STPKTRX;
} }
@ -1118,20 +978,16 @@ static void handle_epout_irq (uint8_t rhport)
} }
// OUT XFER complete // OUT XFER complete
if ( epout->doepint & DOEPINT_XFRC ) if (epout->doepint & DOEPINT_XFRC) {
{
epout->doepint = DOEPINT_XFRC; epout->doepint = DOEPINT_XFRC;
xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT); xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
// EP0 can only handle one packet // EP0 can only handle one packet
if ( (n == 0) && ep0_pending[TUSB_DIR_OUT] ) if ((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
{
// Schedule another packet to be received. // Schedule another packet to be received.
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]); edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} } else {
else
{
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true); dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
} }
} }
@ -1139,40 +995,32 @@ static void handle_epout_irq (uint8_t rhport)
} }
} }
static void handle_epin_irq (uint8_t rhport) static void handle_epin_irq(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count; uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
dwc2_epin_t* epin = dwc2->epin; dwc2_epin_t* epin = dwc2->epin;
// DAINT for a given EP clears when DIEPINTx is cleared. // DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared. // IEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < ep_count; n++ ) for (uint8_t n = 0; n < ep_count; n++) {
{ if (dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n)) {
if ( dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n) )
{
// IN XFER complete (entire xfer). // IN XFER complete (entire xfer).
xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_IN); xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
if ( epin[n].diepint & DIEPINT_XFRC ) if (epin[n].diepint & DIEPINT_XFRC) {
{
epin[n].diepint = DIEPINT_XFRC; epin[n].diepint = DIEPINT_XFRC;
// EP0 can only handle one packet // EP0 can only handle one packet
if ( (n == 0) && ep0_pending[TUSB_DIR_IN] ) if ((n == 0) && ep0_pending[TUSB_DIR_IN]) {
{
// Schedule another packet to be transmitted. // Schedule another packet to be transmitted.
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]); edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
} } else {
else
{
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true); dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
} }
} }
// XFER FIFO empty // XFER FIFO empty
if ( (epin[n].diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n)) ) if ((epin[n].diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n))) {
{
// diepint's TXFE bit is read-only, software cannot clear it. // diepint's TXFE bit is read-only, software cannot clear it.
// It will only be cleared by hardware when written bytes is more than // It will only be cleared by hardware when written bytes is more than
// - 64 bytes or // - 64 bytes or
@ -1181,8 +1029,7 @@ static void handle_epin_irq (uint8_t rhport)
uint16_t remaining_packets = (epin[n].dieptsiz & DIEPTSIZ_PKTCNT_Msk) >> DIEPTSIZ_PKTCNT_Pos; uint16_t remaining_packets = (epin[n].dieptsiz & DIEPTSIZ_PKTCNT_Msk) >> DIEPTSIZ_PKTCNT_Pos;
// Process every single packet (only whole packets can be written to fifo) // Process every single packet (only whole packets can be written to fifo)
for ( uint16_t i = 0; i < remaining_packets; i++ ) for (uint16_t i = 0; i < remaining_packets; i++) {
{
uint16_t const remaining_bytes = (epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos; uint16_t const remaining_bytes = (epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos;
// Packet can not be larger than ep max size // Packet can not be larger than ep max size
@ -1193,13 +1040,10 @@ static void handle_epin_irq (uint8_t rhport)
if (packet_size > ((epin[n].dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2)) break; if (packet_size > ((epin[n].dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2)) break;
// Push packet to Tx-FIFO // Push packet to Tx-FIFO
if ( xfer->ff ) if (xfer->ff) {
{
volatile uint32_t* tx_fifo = dwc2->fifo[n]; volatile uint32_t* tx_fifo = dwc2->fifo[n];
tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size); tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size);
} } else {
else
{
write_fifo_packet(rhport, n, xfer->buffer, packet_size); write_fifo_packet(rhport, n, xfer->buffer, packet_size);
// Increment pointer to xfer data // Increment pointer to xfer data
@ -1208,8 +1052,7 @@ static void handle_epin_irq (uint8_t rhport)
} }
// Turn off TXFE if all bytes are written. // Turn off TXFE if all bytes are written.
if ( ((epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0 ) if (((epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0) {
{
dwc2->diepempmsk &= ~(1 << n); dwc2->diepempmsk &= ~(1 << n);
} }
} }
@ -1217,29 +1060,25 @@ static void handle_epin_irq (uint8_t rhport)
} }
} }
void dcd_int_handler(uint8_t rhport) void dcd_int_handler(uint8_t rhport) {
{
dwc2_regs_t* dwc2 = DWC2_REG(rhport); dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint32_t const int_mask = dwc2->gintmsk; uint32_t const int_mask = dwc2->gintmsk;
uint32_t const int_status = dwc2->gintsts & int_mask; uint32_t const int_status = dwc2->gintsts & int_mask;
if(int_status & GINTSTS_USBRST) if (int_status & GINTSTS_USBRST) {
{
// USBRST is start of reset. // USBRST is start of reset.
dwc2->gintsts = GINTSTS_USBRST; dwc2->gintsts = GINTSTS_USBRST;
bus_reset(rhport); bus_reset(rhport);
} }
if(int_status & GINTSTS_ENUMDNE) if (int_status & GINTSTS_ENUMDNE) {
{
// ENUMDNE is the end of reset where speed of the link is detected // ENUMDNE is the end of reset where speed of the link is detected
dwc2->gintsts = GINTSTS_ENUMDNE; dwc2->gintsts = GINTSTS_ENUMDNE;
tusb_speed_t speed; tusb_speed_t speed;
switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos) switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos) {
{
case DSTS_ENUMSPD_HS: case DSTS_ENUMSPD_HS:
speed = TUSB_SPEED_HIGH; speed = TUSB_SPEED_HIGH;
break; break;
@ -1258,14 +1097,12 @@ void dcd_int_handler(uint8_t rhport)
dcd_event_bus_reset(rhport, speed, true); dcd_event_bus_reset(rhport, speed, true);
} }
if(int_status & GINTSTS_USBSUSP) if (int_status & GINTSTS_USBSUSP) {
{
dwc2->gintsts = GINTSTS_USBSUSP; dwc2->gintsts = GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
} }
if(int_status & GINTSTS_WKUINT) if (int_status & GINTSTS_WKUINT) {
{
dwc2->gintsts = GINTSTS_WKUINT; dwc2->gintsts = GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
} }
@ -1273,30 +1110,24 @@ void dcd_int_handler(uint8_t rhport)
// TODO check GINTSTS_DISCINT for disconnect detection // TODO check GINTSTS_DISCINT for disconnect detection
// if(int_status & GINTSTS_DISCINT) // if(int_status & GINTSTS_DISCINT)
if(int_status & GINTSTS_OTGINT) if (int_status & GINTSTS_OTGINT) {
{
// OTG INT bit is read-only // OTG INT bit is read-only
uint32_t const otg_int = dwc2->gotgint; uint32_t const otg_int = dwc2->gotgint;
if (otg_int & GOTGINT_SEDET) if (otg_int & GOTGINT_SEDET) {
{
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true); dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
} }
dwc2->gotgint = otg_int; dwc2->gotgint = otg_int;
} }
if(int_status & GINTSTS_SOF) if (int_status & GINTSTS_SOF) {
{
dwc2->gotgint = GINTSTS_SOF; dwc2->gotgint = GINTSTS_SOF;
if (_sof_en) if (_sof_en) {
{
uint32_t frame = (dwc2->dsts & (DSTS_FNSOF)) >> 8; uint32_t frame = (dwc2->dsts & (DSTS_FNSOF)) >> 8;
dcd_event_sof(rhport, frame, true); dcd_event_sof(rhport, frame, true);
} } else {
else
{
// Disable SOF interrupt if SOF was not explicitly enabled. SOF was used for remote wakeup detection // Disable SOF interrupt if SOF was not explicitly enabled. SOF was used for remote wakeup detection
dwc2->gintmsk &= ~GINTMSK_SOFM; dwc2->gintmsk &= ~GINTMSK_SOFM;
} }
@ -1305,22 +1136,19 @@ void dcd_int_handler(uint8_t rhport)
} }
// RxFIFO non-empty interrupt handling. // RxFIFO non-empty interrupt handling.
if(int_status & GINTSTS_RXFLVL) if (int_status & GINTSTS_RXFLVL) {
{
// RXFLVL bit is read-only // RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO // Mask out RXFLVL while reading data from FIFO
dwc2->gintmsk &= ~GINTMSK_RXFLVLM; dwc2->gintmsk &= ~GINTMSK_RXFLVLM;
// Loop until all available packets were handled // Loop until all available packets were handled
do do {
{
handle_rxflvl_irq(rhport); handle_rxflvl_irq(rhport);
} while (dwc2->gotgint & GINTSTS_RXFLVL); } while (dwc2->gotgint & GINTSTS_RXFLVL);
// Manage RX FIFO size // Manage RX FIFO size
if (_out_ep_closed) if (_out_ep_closed) {
{
update_grxfsiz(rhport); update_grxfsiz(rhport);
// Disable flag // Disable flag
@ -1331,15 +1159,13 @@ void dcd_int_handler(uint8_t rhport)
} }
// OUT endpoint interrupt handling. // OUT endpoint interrupt handling.
if(int_status & GINTSTS_OEPINT) if (int_status & GINTSTS_OEPINT) {
{
// OEPINT is read-only, clear using DOEPINTn // OEPINT is read-only, clear using DOEPINTn
handle_epout_irq(rhport); handle_epout_irq(rhport);
} }
// IN endpoint interrupt handling. // IN endpoint interrupt handling.
if(int_status & GINTSTS_IEPINT) if (int_status & GINTSTS_IEPINT) {
{
// IEPINT bit read-only, clear using DIEPINTn // IEPINT bit read-only, clear using DIEPINTn
handle_epin_irq(rhport); handle_epin_irq(rhport);
} }