code format

add missing MIT license
This commit is contained in:
hathach 2024-05-20 17:32:40 +07:00
parent b19295c1c1
commit 07d879378f
No known key found for this signature in database
GPG Key ID: 26FAB84F615C3C52
4 changed files with 311 additions and 227 deletions

2
.idea/cmake.xml generated
View File

@ -132,6 +132,8 @@
<configuration PROFILE_NAME="fomu" ENABLED="false" GENERATION_OPTIONS="-DBOARD=fomu" />
<configuration PROFILE_NAME="sipeed_longan_nano" ENABLED="false" GENERATION_OPTIONS="-DBOARD=sipeed_longan_nano" />
<configuration PROFILE_NAME="nanoch32v203" ENABLED="false" GENERATION_OPTIONS="-DBOARD=nanoch32v203" />
<configuration PROFILE_NAME="ch32v203_r0_1v0" ENABLED="false" GENERATION_OPTIONS="-DBOARD=ch32v203_r0_1v0" />
<configuration PROFILE_NAME="ch32v307v_r1_1v0 FullSpeed" ENABLED="false" GENERATION_OPTIONS="-DBOARD=ch32v307v_r1_1v0 -DSPEED=full" />
</configurations>
</component>
</project>

View File

@ -1,15 +1,42 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2024 Matthew Tran
* Copyright (c) 2024 hathach
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef USB_CH32_USBFS_REG_H
#define USB_CH32_USBFS_REG_H
#if (CFG_TUSB_MCU == OPT_MCU_CH32V307)
#include <ch32v30x.h>
#define USBHD_IRQn OTG_FS_IRQn
#if CFG_TUSB_MCU == OPT_MCU_CH32V307
#include <ch32v30x.h>
#define USBHD_IRQn OTG_FS_IRQn
#elif (CFG_TUSB_MCU == OPT_MCU_CH32V20X)
#include <ch32v20x.h>
#elif CFG_TUSB_MCU == OPT_MCU_CH32V20X
#include <ch32v20x.h>
#elif (CFG_TUSB_MCU == OPT_MCU_CH32F20X)
#include <ch32f20x.h>
#elif CFG_TUSB_MCU == OPT_MCU_CH32F20X
#include <ch32f20x.h>
#endif
// CTRL

View File

@ -1,9 +1,36 @@
#ifndef _USB_CH32_USBHS_REG_H
#define _USB_CH32_USBHS_REG_H
/*
* The MIT License (MIT)
*
* Copyright (c) 2024 Matthew Tran
* Copyright (c) 2024 hathach
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#if (CFG_TUSB_MCU == OPT_MCU_CH32V307)
#ifndef USB_CH32_USBHS_REG_H
#define USB_CH32_USBHS_REG_H
#if CFG_TUSB_MCU == OPT_MCU_CH32V307
#include <ch32v30x.h>
#elif (CFG_TUSB_MCU == OPT_MCU_CH32F20X)
#elif CFG_TUSB_MCU == OPT_MCU_CH32F20X
#include <ch32f20x.h>
#endif

View File

@ -1,9 +1,35 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2024 Matthew Tran
* Copyright (c) 2024 hathach
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
// Note: CH32 can have both USB FS and HS, only use this driver if CFG_TUD_MAX_SPEED is full speed
#if CFG_TUD_ENABLED && defined(TUP_USBIP_WCH_USBFS) && (CFG_TUD_MAX_SPEED == OPT_MODE_FULL_SPEED)
#include <stdio.h>
#include "device/dcd.h"
#include "ch32_usbfs_reg.h"
@ -17,301 +43,303 @@
/* private data */
struct usb_xfer {
bool valid;
uint8_t *buffer;
size_t len;
size_t processed_len;
size_t max_size;
bool valid;
uint8_t* buffer;
size_t len;
size_t processed_len;
size_t max_size;
};
static struct {
bool ep0_tog;
bool isochronous[EP_MAX];
struct usb_xfer xfer[EP_MAX][2];
TU_ATTR_ALIGNED(4) uint8_t buffer[EP_MAX][2][64];
TU_ATTR_ALIGNED(4) struct {
// OUT transfers >64 bytes will overwrite queued IN data!
uint8_t out[64];
uint8_t in[1023];
uint8_t pad;
} ep3_buffer;
bool ep0_tog;
bool isochronous[EP_MAX];
struct usb_xfer xfer[EP_MAX][2];
TU_ATTR_ALIGNED(4) uint8_t buffer[EP_MAX][2][64];
TU_ATTR_ALIGNED(4) struct {
// OUT transfers >64 bytes will overwrite queued IN data!
uint8_t out[64];
uint8_t in[1023];
uint8_t pad;
} ep3_buffer;
} data;
/* private helpers */
static void update_in(uint8_t rhport, uint8_t ep, bool force) {
struct usb_xfer *xfer = &data.xfer[ep][TUSB_DIR_IN];
if (xfer->valid) {
if (force || xfer->len) {
size_t len = TU_MIN(xfer->max_size, xfer->len);
if (ep == 0) {
memcpy(data.buffer[ep][TUSB_DIR_OUT], xfer->buffer, len); // ep0 uses same chunk
} else if (ep == 3) {
memcpy(data.ep3_buffer.in, xfer->buffer, len);
} else {
memcpy(data.buffer[ep][TUSB_DIR_IN], xfer->buffer, len);
}
xfer->buffer += len;
xfer->len -= len;
xfer->processed_len += len;
struct usb_xfer* xfer = &data.xfer[ep][TUSB_DIR_IN];
if (xfer->valid) {
if (force || xfer->len) {
size_t len = TU_MIN(xfer->max_size, xfer->len);
if (ep == 0) {
memcpy(data.buffer[ep][TUSB_DIR_OUT], xfer->buffer, len); // ep0 uses same chunk
} else if (ep == 3) {
memcpy(data.ep3_buffer.in, xfer->buffer, len);
} else {
memcpy(data.buffer[ep][TUSB_DIR_IN], xfer->buffer, len);
}
xfer->buffer += len;
xfer->len -= len;
xfer->processed_len += len;
EP_TX_LEN(ep) = len;
if (ep == 0) {
EP_TX_CTRL(0) = USBFS_EP_T_RES_ACK | (data.ep0_tog ? USBFS_EP_T_TOG : 0);
data.ep0_tog = !data.ep0_tog;
} else if (data.isochronous[ep]) {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK)) | USBFS_EP_T_RES_NYET;
} else {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK)) | USBFS_EP_T_RES_ACK;
}
} else {
xfer->valid = false;
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK)) | USBFS_EP_T_RES_NAK;
dcd_event_xfer_complete(rhport, ep | TUSB_DIR_IN_MASK, xfer->processed_len,
XFER_RESULT_SUCCESS, true);
}
EP_TX_LEN(ep) = len;
if (ep == 0) {
EP_TX_CTRL(0) = USBFS_EP_T_RES_ACK | (data.ep0_tog ? USBFS_EP_T_TOG : 0);
data.ep0_tog = !data.ep0_tog;
} else if (data.isochronous[ep]) {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK)) | USBFS_EP_T_RES_NYET;
} else {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK)) | USBFS_EP_T_RES_ACK;
}
} else {
xfer->valid = false;
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK)) | USBFS_EP_T_RES_NAK;
dcd_event_xfer_complete(
rhport, ep | TUSB_DIR_IN_MASK, xfer->processed_len,
XFER_RESULT_SUCCESS, true);
}
}
}
static void update_out(uint8_t rhport, uint8_t ep, size_t rx_len) {
struct usb_xfer *xfer = &data.xfer[ep][TUSB_DIR_OUT];
if (xfer->valid) {
size_t len = TU_MIN(xfer->max_size, TU_MIN(xfer->len, rx_len));
if (ep == 3) {
memcpy(xfer->buffer, data.ep3_buffer.out, len);
} else {
memcpy(xfer->buffer, data.buffer[ep][TUSB_DIR_OUT], len);
}
xfer->buffer += len;
xfer->len -= len;
xfer->processed_len += len;
if (xfer->len == 0 || len < xfer->max_size) {
xfer->valid = false;
dcd_event_xfer_complete(rhport, ep, xfer->processed_len, XFER_RESULT_SUCCESS, true);
}
if (ep == 0) {
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
}
struct usb_xfer* xfer = &data.xfer[ep][TUSB_DIR_OUT];
if (xfer->valid) {
size_t len = TU_MIN(xfer->max_size, TU_MIN(xfer->len, rx_len));
if (ep == 3) {
memcpy(xfer->buffer, data.ep3_buffer.out, len);
} else {
memcpy(xfer->buffer, data.buffer[ep][TUSB_DIR_OUT], len);
}
xfer->buffer += len;
xfer->len -= len;
xfer->processed_len += len;
if (xfer->len == 0 || len < xfer->max_size) {
xfer->valid = false;
dcd_event_xfer_complete(rhport, ep, xfer->processed_len, XFER_RESULT_SUCCESS, true);
}
if (ep == 0) {
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
}
}
}
/* public functions */
void dcd_init(uint8_t rhport) {
// init registers
USBOTG_FS->BASE_CTRL = USBFS_CTRL_SYS_CTRL | USBFS_CTRL_INT_BUSY | USBFS_CTRL_DMA_EN;
USBOTG_FS->UDEV_CTRL = USBFS_UDEV_CTRL_PD_DIS | USBFS_UDEV_CTRL_PORT_EN;
USBOTG_FS->DEV_ADDR = 0x00;
// init registers
USBOTG_FS->BASE_CTRL = USBFS_CTRL_SYS_CTRL | USBFS_CTRL_INT_BUSY | USBFS_CTRL_DMA_EN;
USBOTG_FS->UDEV_CTRL = USBFS_UDEV_CTRL_PD_DIS | USBFS_UDEV_CTRL_PORT_EN;
USBOTG_FS->DEV_ADDR = 0x00;
USBOTG_FS->INT_FG = 0xFF;
USBOTG_FS->INT_EN = USBFS_INT_EN_BUS_RST | USBFS_INT_EN_TRANSFER | USBFS_INT_EN_SUSPEND;
USBOTG_FS->INT_FG = 0xFF;
USBOTG_FS->INT_EN = USBFS_INT_EN_BUS_RST | USBFS_INT_EN_TRANSFER | USBFS_INT_EN_SUSPEND;
// setup endpoint 0
EP_DMA(0) = (uint32_t) &data.buffer[0][0];
EP_TX_LEN(0) = 0;
EP_TX_CTRL(0) = USBFS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
// setup endpoint 0
EP_DMA(0) = (uint32_t) &data.buffer[0][0];
EP_TX_LEN(0) = 0;
EP_TX_CTRL(0) = USBFS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
// enable other endpoints but NAK everything
USBOTG_FS->UEP4_1_MOD = 0xCC;
USBOTG_FS->UEP2_3_MOD = 0xCC;
USBOTG_FS->UEP5_6_MOD = 0xCC;
USBOTG_FS->UEP7_MOD = 0x0C;
// enable other endpoints but NAK everything
USBOTG_FS->UEP4_1_MOD = 0xCC;
USBOTG_FS->UEP2_3_MOD = 0xCC;
USBOTG_FS->UEP5_6_MOD = 0xCC;
USBOTG_FS->UEP7_MOD = 0x0C;
for (uint8_t ep = 1; ep < EP_MAX; ep++) {
EP_DMA(ep) = (uint32_t) &data.buffer[ep][0];
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBFS_EP_T_AUTO_TOG | USBFS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBFS_EP_R_AUTO_TOG | USBFS_EP_R_RES_NAK;
}
EP_DMA(3) = (uint32_t) &data.ep3_buffer.out[0];
for (uint8_t ep = 1; ep < EP_MAX; ep++) {
EP_DMA(ep) = (uint32_t) &data.buffer[ep][0];
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBFS_EP_T_AUTO_TOG | USBFS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBFS_EP_R_AUTO_TOG | USBFS_EP_R_RES_NAK;
}
EP_DMA(3) = (uint32_t) &data.ep3_buffer.out[0];
dcd_connect(rhport);
dcd_connect(rhport);
}
void dcd_int_handler(uint8_t rhport) {
(void) rhport;
uint8_t status = USBOTG_FS->INT_FG;
if (status & USBFS_INT_FG_TRANSFER) {
uint8_t ep = USBFS_INT_ST_MASK_UIS_ENDP(USBOTG_FS->INT_ST);
uint8_t token = USBFS_INT_ST_MASK_UIS_TOKEN(USBOTG_FS->INT_ST);
(void) rhport;
uint8_t status = USBOTG_FS->INT_FG;
if (status & USBFS_INT_FG_TRANSFER) {
uint8_t ep = USBFS_INT_ST_MASK_UIS_ENDP(USBOTG_FS->INT_ST);
uint8_t token = USBFS_INT_ST_MASK_UIS_TOKEN(USBOTG_FS->INT_ST);
switch (token) {
case PID_OUT: {
uint16_t rx_len = USBOTG_FS->RX_LEN;
update_out(rhport, ep, rx_len);
break;
}
switch (token) {
case PID_OUT: {
uint16_t rx_len = USBOTG_FS->RX_LEN;
update_out(rhport, ep, rx_len);
break;
}
case PID_IN:
update_in(rhport, ep, false);
break;
case PID_IN:
update_in(rhport, ep, false);
break;
case PID_SETUP:
data.ep0_tog = true;
dcd_edpt_clear_stall(rhport, tu_edpt_addr(0, TUSB_DIR_IN)); // setup clears stall
dcd_edpt_clear_stall(rhport, tu_edpt_addr(0, TUSB_DIR_OUT));
dcd_event_setup_received(rhport, &data.buffer[0][TUSB_DIR_OUT][0], true);
break;
}
USBOTG_FS->INT_FG = USBFS_INT_FG_TRANSFER;
} else if (status & USBFS_INT_FG_BUS_RST) {
data.ep0_tog = true;
data.xfer[0][TUSB_DIR_OUT].max_size = 64;
data.xfer[0][TUSB_DIR_IN].max_size = 64;
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
USBOTG_FS->DEV_ADDR = 0x00;
case PID_SETUP:
// setup clears stall
EP_TX_CTRL(0) = USBFS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
USBOTG_FS->INT_FG = USBFS_INT_FG_BUS_RST;
} else if (status & USBFS_INT_FG_SUSPEND) {
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_SUSPEND };
dcd_event_handler(&event, true);
USBOTG_FS->INT_FG = USBFS_INT_FG_SUSPEND;
data.ep0_tog = true;
dcd_event_setup_received(rhport, &data.buffer[0][TUSB_DIR_OUT][0], true);
break;
}
USBOTG_FS->INT_FG = USBFS_INT_FG_TRANSFER;
} else if (status & USBFS_INT_FG_BUS_RST) {
data.ep0_tog = true;
data.xfer[0][TUSB_DIR_OUT].max_size = 64;
data.xfer[0][TUSB_DIR_IN].max_size = 64;
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
USBOTG_FS->DEV_ADDR = 0x00;
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
USBOTG_FS->INT_FG = USBFS_INT_FG_BUS_RST;
} else if (status & USBFS_INT_FG_SUSPEND) {
dcd_event_t event = {.rhport = rhport, .event_id = DCD_EVENT_SUSPEND};
dcd_event_handler(&event, true);
USBOTG_FS->INT_FG = USBFS_INT_FG_SUSPEND;
}
}
void dcd_int_enable(uint8_t rhport) {
(void) rhport;
NVIC_EnableIRQ(USBHD_IRQn);
(void) rhport;
NVIC_EnableIRQ(USBHD_IRQn);
}
void dcd_int_disable(uint8_t rhport) {
(void) rhport;
NVIC_DisableIRQ(USBHD_IRQn);
(void) rhport;
NVIC_DisableIRQ(USBHD_IRQn);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
(void) dev_addr;
dcd_edpt_xfer(rhport, 0x80, NULL, 0); // zlp status response
(void) dev_addr;
dcd_edpt_xfer(rhport, 0x80, NULL, 0); // zlp status response
}
void dcd_remote_wakeup(uint8_t rhport) {
(void) rhport;
// TODO optional
(void) rhport;
// TODO optional
}
void dcd_connect(uint8_t rhport) {
(void) rhport;
USBOTG_FS->BASE_CTRL |= USBFS_CTRL_DEV_PUEN;
(void) rhport;
USBOTG_FS->BASE_CTRL |= USBFS_CTRL_DEV_PUEN;
}
void dcd_disconnect(uint8_t rhport) {
(void) rhport;
USBOTG_FS->BASE_CTRL &= ~USBFS_CTRL_DEV_PUEN;
(void) rhport;
USBOTG_FS->BASE_CTRL &= ~USBFS_CTRL_DEV_PUEN;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
void dcd_sof_enable(uint8_t rhport, bool en) {
(void) rhport;
(void) en;
// TODO implement later
}
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const *request) {
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
USBOTG_FS->DEV_ADDR = (uint8_t) request->wValue;
}
EP_TX_CTRL(0) = USBFS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const* request) {
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
USBOTG_FS->DEV_ADDR = (uint8_t) request->wValue;
}
EP_TX_CTRL(0) = USBFS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
(void) rhport;
uint8_t ep = tu_edpt_number(desc_ep->bEndpointAddress);
uint8_t dir = tu_edpt_dir(desc_ep->bEndpointAddress);
TU_ASSERT(ep < EP_MAX);
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) {
(void) rhport;
uint8_t ep = tu_edpt_number(desc_ep->bEndpointAddress);
uint8_t dir = tu_edpt_dir(desc_ep->bEndpointAddress);
TU_ASSERT(ep < EP_MAX);
data.isochronous[ep] = desc_ep->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS;
data.xfer[ep][dir].max_size = tu_edpt_packet_size(desc_ep);
data.isochronous[ep] = desc_ep->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS;
data.xfer[ep][dir].max_size = tu_edpt_packet_size(desc_ep);
if (ep != 0) {
if (dir == TUSB_DIR_OUT) {
if (data.isochronous[ep]) {
EP_RX_CTRL(ep) = USBFS_EP_R_AUTO_TOG | USBFS_EP_R_RES_NYET;
} else {
EP_RX_CTRL(ep) = USBFS_EP_R_AUTO_TOG | USBFS_EP_R_RES_ACK;
}
} else {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBFS_EP_T_AUTO_TOG | USBFS_EP_T_RES_NAK;
}
if (ep != 0) {
if (dir == TUSB_DIR_OUT) {
if (data.isochronous[ep]) {
EP_RX_CTRL(ep) = USBFS_EP_R_AUTO_TOG | USBFS_EP_R_RES_NYET;
} else {
EP_RX_CTRL(ep) = USBFS_EP_R_AUTO_TOG | USBFS_EP_R_RES_ACK;
}
} else {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBFS_EP_T_AUTO_TOG | USBFS_EP_T_RES_NAK;
}
return true;
}
return true;
}
void dcd_edpt_close_all(uint8_t rhport) {
(void) rhport;
// TODO optional
(void) rhport;
// TODO optional
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
(void) ep_addr;
// TODO optional
(void) rhport;
(void) ep_addr;
// TODO optional
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes) {
(void) rhport;
uint8_t ep = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
(void) rhport;
uint8_t ep = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
struct usb_xfer *xfer = &data.xfer[ep][dir];
dcd_int_disable(rhport);
xfer->valid = true;
xfer->buffer = buffer;
xfer->len = total_bytes;
xfer->processed_len = 0;
dcd_int_enable(rhport);
struct usb_xfer* xfer = &data.xfer[ep][dir];
dcd_int_disable(rhport);
xfer->valid = true;
xfer->buffer = buffer;
xfer->len = total_bytes;
xfer->processed_len = 0;
dcd_int_enable(rhport);
if (dir == TUSB_DIR_IN) {
update_in(rhport, ep, true);
}
return true;
if (dir == TUSB_DIR_IN) {
update_in(rhport, ep, true);
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t ep = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
if (ep == 0) {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(0) = USBFS_EP_R_RES_STALL;
} else {
EP_TX_LEN(0) = 0;
EP_TX_CTRL(0) = USBFS_EP_T_RES_STALL;
}
(void) rhport;
uint8_t ep = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
if (ep == 0) {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(0) = USBFS_EP_R_RES_STALL;
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep) = (EP_RX_CTRL(ep) & ~USBFS_EP_R_RES_MASK) | USBFS_EP_R_RES_STALL;
} else {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~USBFS_EP_T_RES_MASK) | USBFS_EP_T_RES_STALL;
}
EP_TX_LEN(0) = 0;
EP_TX_CTRL(0) = USBFS_EP_T_RES_STALL;
}
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep) = (EP_RX_CTRL(ep) & ~USBFS_EP_R_RES_MASK) | USBFS_EP_R_RES_STALL;
} else {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~USBFS_EP_T_RES_MASK) | USBFS_EP_T_RES_STALL;
}
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t ep = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
if (ep == 0) {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
}
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep) = (EP_RX_CTRL(ep) & ~(USBFS_EP_R_RES_MASK | USBFS_EP_R_TOG)) | USBFS_EP_R_RES_ACK;
} else {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK | USBFS_EP_T_TOG)) | USBFS_EP_T_RES_NAK;
}
(void) rhport;
uint8_t ep = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
if (ep == 0) {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(0) = USBFS_EP_R_RES_ACK;
}
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep) = (EP_RX_CTRL(ep) & ~(USBFS_EP_R_RES_MASK | USBFS_EP_R_TOG)) | USBFS_EP_R_RES_ACK;
} else {
EP_TX_CTRL(ep) = (EP_TX_CTRL(ep) & ~(USBFS_EP_T_RES_MASK | USBFS_EP_T_TOG)) | USBFS_EP_T_RES_NAK;
}
}
}
#endif // CFG_TUD_ENABLED && (CFG_TUSB_MCU == OPT_MCU_CH32V20X)
#endif