mirror of
https://github.com/hathach/tinyusb.git
synced 2025-03-25 23:38:06 +00:00
Merge pull request #516 from PanRe/tusb_fifo_unmaksed_pointers
Tusb fifo unmaksed pointers
This commit is contained in:
commit
0686bd9369
@ -2,6 +2,7 @@
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
||||
* Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
@ -57,6 +58,8 @@ static void tu_fifo_unlock(tu_fifo_t *f)
|
||||
|
||||
bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
|
||||
{
|
||||
if (depth > 0x8000) return false; // Maximum depth is 2^15 items
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
f->buffer = (uint8_t*) buffer;
|
||||
@ -64,55 +67,328 @@ bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_si
|
||||
f->item_size = item_size;
|
||||
f->overwritable = overwritable;
|
||||
|
||||
f->rd_idx = f->wr_idx = f->count = 0;
|
||||
f->max_pointer_idx = 2*depth - 1; // Limit index space to 2*depth - this allows for a fast "modulo" calculation but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable only if overflow happens once (important for unsupervised DMA applications)
|
||||
f->non_used_index_space = 0xFFFF - f->max_pointer_idx;
|
||||
|
||||
f->rd_idx = f->wr_idx = 0;
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Static functions are intended to work on local variables
|
||||
|
||||
static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
|
||||
{
|
||||
return (idx < depth) ? idx : (idx-depth);
|
||||
while ( idx >= depth) idx -= depth;
|
||||
return idx;
|
||||
}
|
||||
|
||||
// retrieve data from fifo
|
||||
static inline void _ff_pull(tu_fifo_t* f, void * buffer, uint16_t n)
|
||||
// send one item to FIFO WITHOUT updating write pointer
|
||||
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t wRel)
|
||||
{
|
||||
memcpy(buffer,
|
||||
f->buffer + (f->rd_idx * f->item_size),
|
||||
f->item_size*n);
|
||||
|
||||
f->rd_idx = _ff_mod(f->rd_idx + n, f->depth);
|
||||
f->count -= n;
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, f->item_size);
|
||||
}
|
||||
|
||||
// send data to fifo
|
||||
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
|
||||
// send n items to FIFO WITHOUT updating write pointer
|
||||
static void _ff_push_n(tu_fifo_t* f, void const * data, uint16_t n, uint16_t wRel)
|
||||
{
|
||||
memcpy(f->buffer + (f->wr_idx * f->item_size),
|
||||
data,
|
||||
f->item_size*n);
|
||||
|
||||
f->wr_idx = _ff_mod(f->wr_idx + n, f->depth);
|
||||
|
||||
if (tu_fifo_full(f))
|
||||
if(wRel + n <= f->depth) // Linear mode only
|
||||
{
|
||||
f->rd_idx = f->wr_idx; // keep the full state (rd == wr && count = depth)
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, n*f->item_size);
|
||||
}
|
||||
else // Wrap around
|
||||
{
|
||||
uint16_t nLin = f->depth - wRel;
|
||||
|
||||
// Write data to linear part of buffer
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, nLin*f->item_size);
|
||||
|
||||
// Write data wrapped around
|
||||
memcpy(f->buffer, data + nLin*f->item_size, (n - nLin) * f->item_size);
|
||||
}
|
||||
}
|
||||
|
||||
// get one item from FIFO WITHOUT updating read pointer
|
||||
static inline void _ff_pull(tu_fifo_t* f, void * p_buffer, uint16_t rRel)
|
||||
{
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), f->item_size);
|
||||
}
|
||||
|
||||
// get n items from FIFO WITHOUT updating read pointer
|
||||
static void _ff_pull_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t rRel)
|
||||
{
|
||||
if(rRel + n <= f->depth) // Linear mode only
|
||||
{
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), n*f->item_size);
|
||||
}
|
||||
else // Wrap around
|
||||
{
|
||||
uint16_t nLin = f->depth - rRel;
|
||||
|
||||
// Read data from linear part of buffer
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), nLin*f->item_size);
|
||||
|
||||
// Read data wrapped part
|
||||
memcpy(p_buffer + nLin*f->item_size, f->buffer, (n - nLin) * f->item_size);
|
||||
}
|
||||
}
|
||||
|
||||
// Advance an absolute pointer
|
||||
static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
||||
{
|
||||
// We limit the index space of p such that a correct wrap around happens
|
||||
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
||||
if ((p > p + offset) || (p + offset > f->max_pointer_idx))
|
||||
{
|
||||
p = (p + offset) + f->non_used_index_space;
|
||||
}
|
||||
else
|
||||
{
|
||||
f->count += n;
|
||||
p += offset;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
// Backward an absolute pointer
|
||||
static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
||||
{
|
||||
// We limit the index space of p such that a correct wrap around happens
|
||||
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
||||
if ((p < p - offset) || (p - offset > f->max_pointer_idx))
|
||||
{
|
||||
p = (p - offset) - f->non_used_index_space;
|
||||
}
|
||||
else
|
||||
{
|
||||
p -= offset;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
// get relative from absolute pointer
|
||||
static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
||||
{
|
||||
return _ff_mod(advance_pointer(f, p, offset), f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = wAbs-rAbs;
|
||||
|
||||
// In case we have non-power of two depth we need a further modification
|
||||
if (rAbs > wAbs) cnt -= f->non_used_index_space;
|
||||
|
||||
return cnt;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return wAbs == rAbs;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
||||
// Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
|
||||
// write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
|
||||
// write pointer wraps and you pointer states are messed up. This can only happen if you
|
||||
// use DMAs, write functions do not allow such an error.
|
||||
static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w
|
||||
// For more details see _tu_fifo_overflow()!
|
||||
static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
|
||||
{
|
||||
f->rd_idx = backward_pointer(f, wAbs, f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// Must be protected by mutexes since in case of an overflow read pointer gets modified
|
||||
static bool _tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
||||
|
||||
// Check overflow and correct if required
|
||||
if (cnt > f->depth)
|
||||
{
|
||||
_tu_fifo_correct_read_pointer(f, wAbs);
|
||||
cnt = f->depth;
|
||||
}
|
||||
|
||||
// Skip beginning of buffer
|
||||
if (cnt == 0 || offset >= cnt) return false;
|
||||
|
||||
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
|
||||
|
||||
// Peek data
|
||||
_ff_pull(f, p_buffer, rRel);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// Must be protected by mutexes since in case of an overflow read pointer gets modified
|
||||
static uint16_t _tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
||||
|
||||
// Check overflow and correct if required
|
||||
if (cnt > f->depth)
|
||||
{
|
||||
_tu_fifo_correct_read_pointer(f, wAbs);
|
||||
rAbs = f->rd_idx;
|
||||
cnt = f->depth;
|
||||
}
|
||||
|
||||
// Skip beginning of buffer
|
||||
if (cnt == 0 || offset >= cnt) return 0;
|
||||
|
||||
// Check if we can read something at and after offset - if too less is available we read what remains
|
||||
cnt -= offset;
|
||||
if (cnt < n) {
|
||||
if (cnt == 0) return 0;
|
||||
n = cnt;
|
||||
}
|
||||
|
||||
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
|
||||
|
||||
// Peek data
|
||||
_ff_pull_n(f, p_buffer, n, rRel);
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return f->depth - _tu_fifo_count(f, wAbs, rAbs);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one element out of the RX buffer.
|
||||
@brief Get number of items in FIFO.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_count(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_count(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if FIFO is empty.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_empty(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_empty(f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if FIFO is full.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_full(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Get remaining space in FIFO.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if overflow happened.
|
||||
|
||||
BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
||||
Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
|
||||
write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
|
||||
write pointer wraps and you pointer states are messed up. This can only happen if you
|
||||
use DMAs, write functions do not allow such an error. Avoid such nasty things!
|
||||
|
||||
All reading functions (read, peek) check for overflows and correct read pointer on their own such
|
||||
that latest items are read.
|
||||
If required (e.g. for DMA use) you can also correct the read pointer by
|
||||
tu_fifo_correct_read_pointer().
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns True if overflow happened
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_overflowed(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
// Only use in case tu_fifo_overflow() returned true!
|
||||
void tu_fifo_correct_read_pointer(tu_fifo_t* f)
|
||||
{
|
||||
tu_fifo_lock(f);
|
||||
_tu_fifo_correct_read_pointer(f, f->wr_idx);
|
||||
tu_fifo_unlock(f);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one element out of the buffer.
|
||||
|
||||
This function will return the element located at the array index of the
|
||||
read pointer, and then increment the read pointer index. If the read
|
||||
pointer exceeds the maximum buffer size, it will roll over to zero.
|
||||
read pointer, and then increment the read pointer index.
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -120,26 +396,27 @@ static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
|
||||
Pointer to the place holder for data read from the buffer
|
||||
|
||||
@returns TRUE if the queue is not empty
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
||||
{
|
||||
if( tu_fifo_empty(f) ) return false;
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
|
||||
tu_fifo_lock(f);
|
||||
// Peek the data
|
||||
bool ret = _tu_fifo_peek_at(f, 0, buffer, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
|
||||
|
||||
_ff_pull(f, buffer, 1);
|
||||
// Advance pointer
|
||||
f->rd_idx = advance_pointer(f, f->rd_idx, ret);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief This function will read n elements from the array index specified by
|
||||
the read pointer and increment the read index. If the read index
|
||||
exceeds the max buffer size, then it will roll over to zero.
|
||||
the read pointer and increment the read index.
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -149,76 +426,76 @@ bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
||||
Number of element that buffer can afford
|
||||
|
||||
@returns number of items read from the FIFO
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * buffer, uint16_t count)
|
||||
uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t count)
|
||||
{
|
||||
if(tu_fifo_empty(f)) return 0;
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
|
||||
tu_fifo_lock(f);
|
||||
// Peek the data
|
||||
count = _tu_fifo_peek_at_n(f, 0, buffer, count, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
|
||||
|
||||
// Limit up to fifo's count
|
||||
if(count > f->count) count = f->count;
|
||||
|
||||
if(count + f->rd_idx <= f->depth)
|
||||
{
|
||||
_ff_pull(f, buffer, count);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t const part1 = f->depth - f->rd_idx;
|
||||
|
||||
// Part 1: from rd_idx to end
|
||||
_ff_pull(f, buffer, part1);
|
||||
buffer = ((uint8_t*) buffer) + part1*f->item_size;
|
||||
|
||||
// Part 2: start to remaining
|
||||
_ff_pull(f, buffer, count-part1);
|
||||
}
|
||||
// Advance read pointer
|
||||
f->rd_idx = advance_pointer(f, f->rd_idx, count);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one item without removing it from the FIFO
|
||||
@brief Read one item without removing it from the FIFO.
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] pos
|
||||
Position to read from in the FIFO buffer
|
||||
@param[in] offset
|
||||
Position to read from in the FIFO buffer with respect to read pointer
|
||||
@param[in] p_buffer
|
||||
Pointer to the place holder for data read from the buffer
|
||||
|
||||
@returns TRUE if the queue is not empty
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
|
||||
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer)
|
||||
{
|
||||
if ( pos >= f->count ) return false;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
// rd_idx is pos=0
|
||||
uint16_t index = _ff_mod(f->rd_idx + pos, f->depth);
|
||||
memcpy(p_buffer,
|
||||
f->buffer + (index * f->item_size),
|
||||
f->item_size);
|
||||
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
bool ret = _tu_fifo_peek_at(f, offset, p_buffer, f->wr_idx, f->rd_idx);
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Write one element into the RX buffer.
|
||||
@brief Read n items without removing it from the FIFO
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] offset
|
||||
Position to read from in the FIFO buffer with respect to read pointer
|
||||
@param[in] p_buffer
|
||||
Pointer to the place holder for data read from the buffer
|
||||
@param[in] n
|
||||
Number of items to peek
|
||||
|
||||
@returns Number of bytes written to p_buffer
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n)
|
||||
{
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
bool ret = _tu_fifo_peek_at_n(f, offset, p_buffer, n, f->wr_idx, f->rd_idx);
|
||||
tu_fifo_unlock(f);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Write one element into the buffer.
|
||||
|
||||
This function will write one element into the array index specified by
|
||||
the write pointer and increment the write index. If the write index
|
||||
exceeds the max buffer size, then it will roll over to zero.
|
||||
the write pointer and increment the write index.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -227,15 +504,23 @@ bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
|
||||
|
||||
@returns TRUE if the data was written to the FIFO (overwrittable
|
||||
FIFO will always return TRUE)
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_write (tu_fifo_t* f, const void * data)
|
||||
bool tu_fifo_write(tu_fifo_t* f, const void * data)
|
||||
{
|
||||
if ( tu_fifo_full(f) && !f->overwritable ) return false;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
_ff_push(f, data, 1);
|
||||
uint16_t w = f->wr_idx;
|
||||
|
||||
if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
|
||||
|
||||
uint16_t wRel = get_relative_pointer(f, w, 0);
|
||||
|
||||
// Write data
|
||||
_ff_push(f, data, wRel);
|
||||
|
||||
// Advance pointer
|
||||
f->wr_idx = advance_pointer(f, w, 1);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
@ -245,8 +530,7 @@ bool tu_fifo_write (tu_fifo_t* f, const void * data)
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief This function will write n elements into the array index specified by
|
||||
the write pointer and increment the write index. If the write index
|
||||
exceeds the max buffer size, then it will roll over to zero.
|
||||
the write pointer and increment the write index.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -255,47 +539,42 @@ bool tu_fifo_write (tu_fifo_t* f, const void * data)
|
||||
@param[in] count
|
||||
Number of element
|
||||
@return Number of written elements
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t count)
|
||||
{
|
||||
if ( count == 0 ) return 0;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
uint16_t w = f->wr_idx, r = f->rd_idx;
|
||||
uint8_t const* buf8 = (uint8_t const*) data;
|
||||
|
||||
if (!f->overwritable)
|
||||
{
|
||||
// Not overwritable limit up to full
|
||||
count = tu_min16(count, tu_fifo_remaining(f));
|
||||
count = tu_min16(count, _tu_fifo_remaining(f, w, r));
|
||||
}
|
||||
else if (count > f->depth)
|
||||
{
|
||||
// Only copy last part
|
||||
buf8 = buf8 + (count - f->depth) * f->item_size;
|
||||
count = f->depth;
|
||||
f->wr_idx = 0;
|
||||
f->rd_idx = 0;
|
||||
f->count = 0;
|
||||
|
||||
// We start writing at the read pointer's position since we fill the complete
|
||||
// buffer and we do not want to modify the read pointer within a write function!
|
||||
// This would end up in a race condition with read functions!
|
||||
f->wr_idx = r;
|
||||
}
|
||||
|
||||
if (count + f->wr_idx <= f->depth )
|
||||
{
|
||||
_ff_push(f, buf8, count);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t const part1 = f->depth - f->wr_idx;
|
||||
uint16_t wRel = get_relative_pointer(f, w, 0);
|
||||
|
||||
// Part 1: from wr_idx to end
|
||||
_ff_push(f, buf8, part1);
|
||||
buf8 += part1*f->item_size;
|
||||
// Write data
|
||||
_ff_push_n(f, buf8, count, wRel);
|
||||
|
||||
// Advance pointer
|
||||
f->wr_idx = advance_pointer(f, w, count);
|
||||
|
||||
// Part 2: start to remaining
|
||||
_ff_push(f, buf8, count-part1);
|
||||
}
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return count;
|
||||
@ -303,19 +582,59 @@ uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Clear the fifo read and write pointers and set length to zero
|
||||
@brief Clear the fifo read and write pointers
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
*/
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_clear(tu_fifo_t *f)
|
||||
{
|
||||
tu_fifo_lock(f);
|
||||
|
||||
f->rd_idx = f->wr_idx = f->count = 0;
|
||||
|
||||
f->rd_idx = f->wr_idx = 0;
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Advance write pointer - intended to be used in combination with DMA.
|
||||
It is possible to fill the FIFO by use of a DMA in circular mode. Within
|
||||
DMA ISRs you may update the write pointer to be able to read from the FIFO.
|
||||
As long as the DMA is the only process writing into the FIFO this is safe
|
||||
to use.
|
||||
|
||||
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] n
|
||||
Number of items the write pointer moves forward
|
||||
*/
|
||||
/******************************************************************************/
|
||||
void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n)
|
||||
{
|
||||
f->wr_idx = advance_pointer(f, f->wr_idx, n);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Advance read pointer - intended to be used in combination with DMA.
|
||||
It is possible to read from the FIFO by use of a DMA in linear mode. Within
|
||||
DMA ISRs you may update the read pointer to be able to again write into the
|
||||
FIFO. As long as the DMA is the only process reading from the FIFO this is
|
||||
safe to use.
|
||||
|
||||
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] n
|
||||
Number of items the read pointer moves forward
|
||||
*/
|
||||
/******************************************************************************/
|
||||
void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n)
|
||||
{
|
||||
f->rd_idx = advance_pointer(f, f->rd_idx, n);
|
||||
}
|
||||
|
@ -31,6 +31,15 @@
|
||||
#ifndef _TUSB_FIFO_H_
|
||||
#define _TUSB_FIFO_H_
|
||||
|
||||
// Due to the use of unmasked pointers, this FIFO does not suffer from loosing
|
||||
// one item slice. Furthermore, write and read operations are completely
|
||||
// decoupled as write and read functions do not modify a common state. Henceforth,
|
||||
// writing or reading from the FIFO within an ISR is safe as long as no other
|
||||
// process (thread or ISR) interferes.
|
||||
// Also, this FIFO is ready to be used in combination with a DMA as the write and
|
||||
// read pointers can be updated from within a DMA ISR. Overflows are detectable
|
||||
// within a certain number (see tu_fifo_overflow()).
|
||||
|
||||
// mutex is only needed for RTOS
|
||||
// for OS None, we don't get preempted
|
||||
#define CFG_FIFO_MUTEX (CFG_TUSB_OS != OPT_OS_NONE)
|
||||
@ -39,7 +48,7 @@
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if CFG_FIFO_MUTEX
|
||||
@ -52,14 +61,16 @@
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
uint8_t* buffer ; ///< buffer pointer
|
||||
uint16_t depth ; ///< max items
|
||||
uint16_t item_size ; ///< size of each item
|
||||
bool overwritable ;
|
||||
uint8_t* buffer ; ///< buffer pointer
|
||||
uint16_t depth ; ///< max items
|
||||
uint16_t item_size ; ///< size of each item
|
||||
bool overwritable ;
|
||||
|
||||
volatile uint16_t count ; ///< number of items in queue
|
||||
volatile uint16_t wr_idx ; ///< write pointer
|
||||
volatile uint16_t rd_idx ; ///< read pointer
|
||||
uint16_t non_used_index_space ; ///< required for non-power-of-two buffer length
|
||||
uint16_t max_pointer_idx ; ///< maximum absolute pointer index
|
||||
|
||||
volatile uint16_t wr_idx ; ///< write pointer
|
||||
volatile uint16_t rd_idx ; ///< read pointer
|
||||
|
||||
#if CFG_FIFO_MUTEX
|
||||
tu_fifo_mutex_t mutex;
|
||||
@ -67,14 +78,16 @@ typedef struct
|
||||
|
||||
} tu_fifo_t;
|
||||
|
||||
#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
|
||||
uint8_t _name##_buf[_depth*sizeof(_type)]; \
|
||||
tu_fifo_t _name = { \
|
||||
.buffer = _name##_buf, \
|
||||
.depth = _depth, \
|
||||
.item_size = sizeof(_type), \
|
||||
.overwritable = _overwritable, \
|
||||
}
|
||||
#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
|
||||
uint8_t _name##_buf[_depth*sizeof(_type)]; \
|
||||
tu_fifo_t _name = { \
|
||||
.buffer = _name##_buf, \
|
||||
.depth = _depth, \
|
||||
.item_size = sizeof(_type), \
|
||||
.overwritable = _overwritable, \
|
||||
.max_pointer_idx = 2*_depth-1, \
|
||||
.non_used_index_space = 0xFFFF - 2*_depth-1, \
|
||||
}
|
||||
|
||||
bool tu_fifo_clear(tu_fifo_t *f);
|
||||
bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable);
|
||||
@ -86,46 +99,39 @@ static inline void tu_fifo_config_mutex(tu_fifo_t *f, tu_fifo_mutex_t mutex_hdl)
|
||||
}
|
||||
#endif
|
||||
|
||||
bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
|
||||
uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t count);
|
||||
bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
|
||||
uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t count);
|
||||
|
||||
bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
|
||||
bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
|
||||
|
||||
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
|
||||
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
|
||||
uint16_t tu_fifo_peek_at_n (tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t n);
|
||||
|
||||
uint16_t tu_fifo_count (tu_fifo_t* f);
|
||||
bool tu_fifo_empty (tu_fifo_t* f);
|
||||
bool tu_fifo_full (tu_fifo_t* f);
|
||||
uint16_t tu_fifo_remaining (tu_fifo_t* f);
|
||||
bool tu_fifo_overflowed (tu_fifo_t* f);
|
||||
void tu_fifo_correct_read_pointer (tu_fifo_t* f);
|
||||
|
||||
// Pointer modifications intended to be used in combinations with DMAs.
|
||||
// USE WITH CARE - NO SAFTY CHECKS CONDUCTED HERE! NOT MUTEX PROTECTED!
|
||||
void tu_fifo_advance_write_pointer (tu_fifo_t *f, uint16_t n);
|
||||
void tu_fifo_advance_read_pointer (tu_fifo_t *f, uint16_t n);
|
||||
|
||||
static inline bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer)
|
||||
{
|
||||
return tu_fifo_peek_at(f, 0, p_buffer);
|
||||
}
|
||||
|
||||
static inline bool tu_fifo_empty(tu_fifo_t* f)
|
||||
{
|
||||
return (f->count == 0);
|
||||
}
|
||||
|
||||
static inline bool tu_fifo_full(tu_fifo_t* f)
|
||||
{
|
||||
return (f->count == f->depth);
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_count(tu_fifo_t* f)
|
||||
{
|
||||
return f->count;
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
||||
{
|
||||
return f->depth - f->count;
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_depth(tu_fifo_t* f)
|
||||
{
|
||||
return f->depth;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _TUSB_FIFO_H_ */
|
||||
|
Loading…
x
Reference in New Issue
Block a user