simplify btable rx/tx count/address access

This commit is contained in:
hathach 2024-07-25 19:00:59 +07:00
parent a5bc0430f7
commit 02caf00772
No known key found for this signature in database
GPG Key ID: 26FAB84F615C3C52
2 changed files with 98 additions and 58 deletions

View File

@ -129,21 +129,7 @@
// Configuration
//--------------------------------------------------------------------+
// hardware limit endpoint
#define FSDEV_EP_COUNT 8
// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
// Both of these MUST be a multiple of 2, and are in byte units.
#ifndef DCD_STM32_BTABLE_BASE
#define DCD_STM32_BTABLE_BASE 0U
#endif
#ifndef DCD_STM32_BTABLE_SIZE
#define DCD_STM32_BTABLE_SIZE (FSDEV_PMA_SIZE - DCD_STM32_BTABLE_BASE)
#endif
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_SIZE)) <= (FSDEV_PMA_SIZE), "BTABLE does not fit in PMA RAM");
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
@ -231,7 +217,7 @@ void dcd_init(uint8_t rhport) {
#if !defined(STM32G0) && !defined(STM32H5) && !defined(STM32U5)
// BTABLE register does not exist any more on STM32G0, it is fixed to USB SRAM base address
USB->BTABLE = DCD_STM32_BTABLE_BASE;
USB->BTABLE = FSDEV_BTABLE_BASE;
#endif
USB->ISTR = 0; // Clear pending interrupts
@ -289,7 +275,7 @@ static void handle_bus_reset(uint8_t rhport) {
}
// Reset PMA allocation
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8 * CFG_TUD_ENDPPOINT_MAX;
ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * FSDEV_EP_COUNT;
tusb_desc_endpoint_t ep0_desc = {
.bLength = sizeof(tusb_desc_endpoint_t),
@ -705,7 +691,7 @@ void dcd_edpt_close_all(uint8_t rhport)
}
// Reset PMA allocation
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8 * CFG_TUD_ENDPPOINT_MAX + 2 * CFG_TUD_ENDPOINT0_SIZE;
ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * CFG_TUD_ENDPPOINT_MAX + 2 * CFG_TUD_ENDPOINT0_SIZE;
}
/**

View File

@ -34,6 +34,14 @@
#include "stdint.h"
// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
// Both of these MUST be a multiple of 2, and are in byte units.
#ifndef FSDEV_BTABLE_BASE
#define FSDEV_BTABLE_BASE 0U
#endif
TU_VERIFY_STATIC(FSDEV_BTABLE_BASE % 8 == 0, "BTABLE base must be aligned to 8 bytes");
// FSDEV_PMA_SIZE is PMA buffer size in bytes.
// - 512-byte devices, access with a stride of two words (use every other 16-bit address)
// - 1024-byte devices, access with a stride of one word (use every 16-bit address)
@ -41,15 +49,50 @@
// For purposes of accessing the packet
#if FSDEV_PMA_SIZE == 512
#define FSDEV_PMA_STRIDE (2u)
#define FSDEV_PMA_STRIDE (2u) // 1x16 bit access scheme
#define pma_aligned TU_ATTR_ALIGNED(4)
#elif FSDEV_PMA_SIZE == 1024
#define FSDEV_PMA_STRIDE (1u)
#define FSDEV_PMA_STRIDE (1u) // 2x16 bit access scheme
#define pma_aligned
#elif FSDEV_PMA_SIZE == 2048
#ifndef FSDEV_BUS_32BIT
#warning "FSDEV_PMA_SIZE is 2048, but FSDEV_BUS_32BIT is not defined"
#endif
#define FSDEV_PMA_STRIDE (1u) // 32 bit access scheme
#define pma_aligned
#endif
// hardware limit endpoint
#define FSDEV_EP_COUNT 8
// Buffer Table is located in Packet Memory Area (PMA) and therefore its address access is forced to either
// 16-bit or 32-bit depending on FSDEV_BUS_32BIT.
typedef struct {
union {
struct {
volatile pma_aligned uint16_t tx_addr;
volatile pma_aligned uint16_t tx_count;
volatile pma_aligned uint16_t rx_addr;
volatile pma_aligned uint16_t rx_count;
} ep16[FSDEV_EP_COUNT];
struct {
volatile uint32_t tx_count_addr;
volatile uint32_t rx_count_addr;
} ep32[FSDEV_EP_COUNT];
};
} fsdev_btable_t;
TU_VERIFY_STATIC(sizeof(fsdev_btable_t) == FSDEV_EP_COUNT*8*FSDEV_PMA_STRIDE, "size is not correct");
TU_VERIFY_STATIC(FSDEV_BTABLE_BASE + FSDEV_EP_COUNT*8 <= FSDEV_PMA_SIZE, "BTABLE does not fit in PMA RAM");
#define FSDEV_BTABLE ((volatile fsdev_btable_t*) (USB_PMAADDR+FSDEV_BTABLE_BASE))
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
// The fsdev_bus_t type can be used for both register and PMA access necessities
// For type-safety create a new macro for the volatile address of PMAADDR
// The compiler should warn us if we cast it to a non-volatile type?
@ -110,6 +153,21 @@ TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_endpoint(USB_TypeDef * USBx
return *reg;
}
/**
* @brief Sets address in an endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpIdx Endpoint Number.
* @param bAddr Address.
* @retval None
*/
TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t bAddr) {
uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx);
regVal &= USB_EPREG_MASK;
regVal |= bAddr;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpIdx,regVal);
}
TU_ATTR_ALWAYS_INLINE static inline void pcd_set_eptype(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wType) {
uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx);
regVal &= (uint32_t)USB_EP_T_MASK;
@ -153,58 +211,47 @@ TU_ATTR_ALWAYS_INLINE static inline void pcd_clear_tx_ep_ctr(USB_TypeDef * USBx,
* @retval Counter value
*/
TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_tx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
return (pma32[2*bEpIdx] & 0x03FF0000) >> 16;
uint16_t count;
#ifdef FSDEV_BUS_32BIT
count = (FSDEV_BTABLE->ep32[bEpIdx].tx_count_addr >> 16);
#else
volatile const uint16_t *regPtr = pcd_ep_tx_cnt_ptr(USBx, bEpIdx);
return *regPtr & 0x3ffU;
count = FSDEV_BTABLE->ep16[bEpIdx].tx_count;
#endif
return count & 0x3FFU;
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_rx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
return (pma32[2*bEpIdx + 1] & 0x03FF0000) >> 16;
uint16_t count;
#ifdef FSDEV_BUS_32BIT
count = (FSDEV_BTABLE->ep32[bEpIdx].rx_count_addr >> 16);
#else
volatile const uint16_t *regPtr = pcd_ep_rx_cnt_ptr(USBx, bEpIdx);
return *regPtr & 0x3ffU;
count = FSDEV_BTABLE->ep16[bEpIdx].rx_count;
#endif
return count & 0x3FFU;
}
#define pcd_get_ep_dbuf0_cnt pcd_get_ep_tx_cnt
#define pcd_get_ep_dbuf1_cnt pcd_get_ep_rx_cnt
/**
* @brief Sets address in an endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpIdx Endpoint Number.
* @param bAddr Address.
* @retval None
*/
TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t bAddr) {
uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx);
regVal &= USB_EPREG_MASK;
regVal |= bAddr;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpIdx,regVal);
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_tx_address(USB_TypeDef * USBx, uint32_t bEpIdx) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
return pma32[2*bEpIdx] & 0x0000FFFFu ;
#ifdef FSDEV_BUS_32BIT
return FSDEV_BTABLE->ep32[bEpIdx].tx_count_addr & 0x0000FFFFu;
#else
return *pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 0u);
return FSDEV_BTABLE->ep16[bEpIdx].tx_addr;
#endif
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_rx_address(USB_TypeDef * USBx, uint32_t bEpIdx) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
return pma32[2*bEpIdx + 1] & 0x0000FFFFu;
#ifdef FSDEV_BUS_32BIT
return FSDEV_BTABLE->ep32[bEpIdx].rx_count_addr & 0x0000FFFFu;
#else
return *pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 2u);
return FSDEV_BTABLE->ep16[bEpIdx].rx_addr;
#endif
}
@ -212,20 +259,24 @@ TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_rx_address(USB_TypeDef *
#define pcd_get_ep_dbuf1_address pcd_get_ep_rx_address
TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_tx_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t addr) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
pma32[2*bEpIdx] = (pma32[2*bEpIdx] & 0xFFFF0000u) | (addr & 0x0000FFFCu);
#ifdef FSDEV_BUS_32BIT
uint32_t count_addr = FSDEV_BTABLE->ep32[bEpIdx].tx_count_addr;
count_addr = (count_addr & 0xFFFF0000u) | (addr & 0x0000FFFCu);
FSDEV_BTABLE->ep32[bEpIdx].tx_count_addr = count_addr;
#else
*pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 0u) = addr;
FSDEV_BTABLE->ep16[bEpIdx].tx_addr = addr;
#endif
}
TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_rx_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t addr) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
pma32[2*bEpIdx + 1] = (pma32[2*bEpIdx + 1] & 0xFFFF0000u) | (addr & 0x0000FFFCu);
#ifdef FSDEV_BUS_32BIT
uint32_t count_addr = FSDEV_BTABLE->ep32[bEpIdx].rx_count_addr;
count_addr = (count_addr & 0xFFFF0000u) | (addr & 0x0000FFFCu);
FSDEV_BTABLE->ep32[bEpIdx].rx_count_addr = count_addr;
#else
*pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 2u) = addr;
FSDEV_BTABLE->ep16[bEpIdx].rx_addr = addr;
#endif
}
@ -233,12 +284,15 @@ TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_rx_address(USB_TypeDef * USB
#define pcd_set_ep_dbuf1_address pcd_set_ep_rx_address
TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_tx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wCount) {
#ifdef FSDEV_BUS_32BIT
(void) USBx;
pma32[2*bEpIdx] = (pma32[2*bEpIdx] & ~0x03FF0000u) | ((wCount & 0x3FFu) << 16);
#ifdef FSDEV_BUS_32BIT
uint32_t count_addr = FSDEV_BTABLE->ep32[bEpIdx].tx_count_addr;
count_addr = (count_addr & ~0x03FF0000u) | ((wCount & 0x3FFu) << 16);
FSDEV_BTABLE->ep32[bEpIdx].tx_count_addr = count_addr;
#else
volatile uint16_t * reg = pcd_ep_tx_cnt_ptr(USBx, bEpIdx);
*reg = (uint16_t) (*reg & (uint16_t) ~0x3FFU) | (wCount & 0x3FFU);
uint16_t count = FSDEV_BTABLE->ep16[bEpIdx].tx_count;
count = (count & ~0x3FFU) | (wCount & 0x3FFU);
FSDEV_BTABLE->ep16[bEpIdx].tx_count = count;
#endif
}