#include "Controllers/Dualshock3Controller.h" #include static ControllerConfig _dualshock3ControllerConfig{}; Dualshock3Controller::Dualshock3Controller(std::unique_ptr &&interface) : IController(std::move(interface)) { } Dualshock3Controller::~Dualshock3Controller() { Exit(); } Result Dualshock3Controller::Initialize() { Result rc; rc = OpenInterfaces(); if (R_FAILED(rc)) return rc; SetLED(DS3LED_1); return rc; } void Dualshock3Controller::Exit() { CloseInterfaces(); } Result Dualshock3Controller::OpenInterfaces() { Result rc; rc = m_device->Open(); if (R_FAILED(rc)) return rc; //Open each interface, send it a setup packet and get the endpoints if it succeeds std::vector> &interfaces = m_device->GetInterfaces(); for (auto &&interface : interfaces) { rc = interface->Open(); if (R_FAILED(rc)) return rc; if (interface->GetDescriptor()->bInterfaceClass != 3) continue; if (interface->GetDescriptor()->bInterfaceProtocol != 0) continue; if (interface->GetDescriptor()->bNumEndpoints < 2) continue; //Send an initial control packet constexpr uint8_t initBytes[] = {0x42, 0x0C, 0x00, 0x00}; rc = SendCommand(interface.get(), Ds3FeatureStartDevice, initBytes, sizeof(initBytes)); if (R_FAILED(rc)) return 60; m_interface = interface.get(); if (!m_inPipe) { for (int i = 0; i != 15; ++i) { IUSBEndpoint *inEndpoint = interface->GetEndpoint(IUSBEndpoint::USB_ENDPOINT_IN, i); if (inEndpoint) { rc = inEndpoint->Open(); if (R_FAILED(rc)) return 61; m_inPipe = inEndpoint; break; } } } if (!m_outPipe) { for (int i = 0; i != 15; ++i) { IUSBEndpoint *outEndpoint = interface->GetEndpoint(IUSBEndpoint::USB_ENDPOINT_OUT, i); if (outEndpoint) { rc = outEndpoint->Open(); if (R_FAILED(rc)) return 62; m_outPipe = outEndpoint; break; } } } } if (!m_inPipe || !m_outPipe) return 69; return rc; } void Dualshock3Controller::CloseInterfaces() { //m_device->Reset(); m_device->Close(); } Result Dualshock3Controller::GetInput() { uint8_t input_bytes[49]; Result rc = m_inPipe->Read(input_bytes, sizeof(input_bytes)); if (R_FAILED(rc)) return rc; if (input_bytes[0] == Ds3InputPacket_Button) { m_buttonData = *reinterpret_cast(input_bytes); } return rc; } float Dualshock3Controller::NormalizeTrigger(uint8_t value) { uint8_t deadzone = (UINT8_MAX * _dualshock3ControllerConfig.triggerDeadzonePercent) / 100; //If the given value is below the trigger zone, save the calc and return 0, otherwise adjust the value to the deadzone return value < deadzone ? 0 : static_cast(value - deadzone) / (UINT8_MAX - deadzone); } void Dualshock3Controller::NormalizeAxis(uint8_t x, uint8_t y, uint8_t deadzonePercent, float *x_out, float *y_out) { float x_val = x - 127.0f; float y_val = 127.0f - y; // Determine how far the stick is pushed. //This will never exceed 32767 because if the stick is //horizontally maxed in one direction, vertically it must be neutral(0) and vice versa float real_magnitude = std::sqrt(x_val * x_val + y_val * y_val); float real_deadzone = (127 * deadzonePercent) / 100; // Check if the controller is outside a circular dead zone. if (real_magnitude > real_deadzone) { // Clip the magnitude at its expected maximum value. float magnitude = std::min(127.0f, real_magnitude); // Adjust magnitude relative to the end of the dead zone. magnitude -= real_deadzone; // Normalize the magnitude with respect to its expected range giving a // magnitude value of 0.0 to 1.0 //ratio = (currentValue / maxValue) / realValue float ratio = (magnitude / (127 - real_deadzone)) / real_magnitude; *x_out = x_val * ratio; *y_out = y_val * ratio; } else { // If the controller is in the deadzone zero out the magnitude. *x_out = *y_out = 0.0f; } } //Pass by value should hopefully be optimized away by RVO NormalizedButtonData Dualshock3Controller::GetNormalizedButtonData() { NormalizedButtonData normalData; normalData.triggers[0] = NormalizeTrigger(m_buttonData.trigger_left_pressure); normalData.triggers[1] = NormalizeTrigger(m_buttonData.trigger_right_pressure); NormalizeAxis(m_buttonData.stick_left_x, m_buttonData.stick_left_y, _dualshock3ControllerConfig.leftStickDeadzonePercent, &normalData.sticks[0].axis_x, &normalData.sticks[0].axis_y); NormalizeAxis(m_buttonData.stick_right_x, m_buttonData.stick_right_y, _dualshock3ControllerConfig.rightStickDeadzonePercent, &normalData.sticks[1].axis_x, &normalData.sticks[1].axis_y); bool buttons[NUM_CONTROLLERBUTTONS] = { m_buttonData.triangle, m_buttonData.circle, m_buttonData.cross, m_buttonData.square, m_buttonData.stick_left_click, m_buttonData.stick_right_click, m_buttonData.bumper_left, m_buttonData.bumper_right, normalData.triggers[0] > 0, normalData.triggers[1] > 0, m_buttonData.back, m_buttonData.start, m_buttonData.dpad_up, m_buttonData.dpad_right, m_buttonData.dpad_down, m_buttonData.dpad_left, false, m_buttonData.guide, }; for (int i = 0; i != NUM_CONTROLLERBUTTONS; ++i) { ControllerButton button = _dualshock3ControllerConfig.buttons[i]; normalData.buttons[(button != NOT_SET ? button : i)] = buttons[i]; } return normalData; } Result Dualshock3Controller::SetRumble(uint8_t strong_magnitude, uint8_t weak_magnitude) { //Not implemented yet return 9; } Result Dualshock3Controller::SendCommand(IUSBInterface *interface, Dualshock3FeatureValue feature, const void *buffer, uint16_t size) { return interface->ControlTransfer(0x21, 0x09, static_cast(feature), 0, size, buffer); } Result Dualshock3Controller::SetLED(Dualshock3LEDValue value) { const uint8_t ledPacket[]{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, static_cast(value << 1), LED_PERMANENT, LED_PERMANENT, LED_PERMANENT, LED_PERMANENT}; return SendCommand(m_interface, Ds3FeatureUnknown1, ledPacket, sizeof(ledPacket)); } void Dualshock3Controller::LoadConfig(const ControllerConfig *config) { _dualshock3ControllerConfig = *config; } ControllerConfig *Dualshock3Controller::GetConfig() { return &_dualshock3ControllerConfig; }