#include "Controllers/XboxOneController.h" #include XboxOneController::XboxOneController(std::unique_ptr &&interface) : IController(std::move(interface)) { } XboxOneController::~XboxOneController() { Exit(); } Status XboxOneController::Initialize() { Status rc; rc = OpenInterfaces(); if (S_FAILED(rc)) return rc; rc = SendInitBytes(); if (S_FAILED(rc)) return rc; return rc; } void XboxOneController::Exit() { CloseInterfaces(); } Status XboxOneController::OpenInterfaces() { Status rc; rc = m_device->Open(); if (S_FAILED(rc)) return rc; //This will open each interface and try to acquire Xbox One controller's in and out endpoints, if it hasn't already std::vector> &interfaces = m_device->GetInterfaces(); for (auto &&interface : interfaces) { rc = interface->Open(); if (S_FAILED(rc)) return rc; //TODO: check for numEndpoints before trying to open them! if (interface->GetDescriptor()->bNumEndpoints >= 2) { IUSBEndpoint *inEndpoint = interface->GetEndpoint(IUSBEndpoint::USB_ENDPOINT_IN, 1); if (inEndpoint) { rc = inEndpoint->Open(); if (S_FAILED(rc)) return 5555; m_inPipe = inEndpoint; } IUSBEndpoint *outEndpoint = interface->GetEndpoint(IUSBEndpoint::USB_ENDPOINT_OUT, 1); if (outEndpoint) { rc = outEndpoint->Open(); if (S_FAILED(rc)) return 6666; m_outPipe = outEndpoint; } } } if (!m_inPipe || !m_outPipe) return 69; return rc; } void XboxOneController::CloseInterfaces() { m_device->Reset(); m_device->Close(); } Status XboxOneController::GetInput() { uint8_t input_bytes[64]; Status rc = m_inPipe->Read(input_bytes, sizeof(input_bytes)); if (S_FAILED(rc)) return rc; uint8_t type = input_bytes[0]; if (type == XBONEINPUT_BUTTON) //Button data { m_buttonData = *reinterpret_cast(input_bytes); } else if (type == XBONEINPUT_GUIDEBUTTON) //Guide button status { m_buttonData.sync = input_bytes[4]; //Xbox one S needs to be sent an ack report for guide buttons //TODO: needs testing if (input_bytes[1] == 0x30) { rc = WriteAckGuideReport(input_bytes[2]); if (S_FAILED(rc)) return rc; } } return rc; } Status XboxOneController::SendInitBytes() { uint8_t init_bytes[]{ 0x05, 0x20, 0x00, 0x01, 0x00}; Status rc = m_outPipe->Write(init_bytes, sizeof(init_bytes)); return rc; } float XboxOneController::NormalizeTrigger(uint16_t value) { //If the given value is below the trigger zone, save the calc and return 0, otherwise adjust the value to the deadzone return value < kTriggerDeadzone ? 0 : static_cast(value - kTriggerDeadzone) / (kTriggerMax - kTriggerDeadzone); } void XboxOneController::NormalizeAxis(int16_t x, int16_t y, int16_t deadzone, float *x_out, float *y_out) { float x_val = x; float y_val = y; // Determine how far the stick is pushed. //This will never exceed 32767 because if the stick is //horizontally maxed in one direction, vertically it must be neutral(0) and vice versa float real_magnitude = std::sqrt(x_val * x_val + y_val * y_val); // Check if the controller is outside a circular dead zone. if (real_magnitude > deadzone) { // Clip the magnitude at its expected maximum value. float magnitude = std::min(32767.0f, real_magnitude); // Adjust magnitude relative to the end of the dead zone. magnitude -= deadzone; // Normalize the magnitude with respect to its expected range giving a // magnitude value of 0.0 to 1.0 //ratio = (currentValue / maxValue) / realValue float ratio = (magnitude / (32767 - deadzone)) / real_magnitude; // Y is negated because xbox controllers have an opposite sign from // the 'standard controller' recommendations. *x_out = x_val * ratio; *y_out = y_val * ratio; } else { // If the controller is in the deadzone zero out the magnitude. *x_out = *y_out = 0.0f; } } //Pass by value should hopefully be optimized away by RVO NormalizedButtonData XboxOneController::GetNormalizedButtonData() { NormalizedButtonData normalData; normalData.bottom_action = m_buttonData.a; normalData.right_action = m_buttonData.b; normalData.left_action = m_buttonData.x; normalData.top_action = m_buttonData.y; normalData.dpad_up = m_buttonData.dpad_up; normalData.dpad_down = m_buttonData.dpad_down; normalData.dpad_left = m_buttonData.dpad_left; normalData.dpad_right = m_buttonData.dpad_right; normalData.back = m_buttonData.back; normalData.start = m_buttonData.start; normalData.left_bumper = m_buttonData.bumper_left; normalData.right_bumper = m_buttonData.bumper_right; normalData.left_stick_click = m_buttonData.stick_left_click; normalData.right_stick_click = m_buttonData.stick_right_click; normalData.capture = false; normalData.home = false; normalData.guide = m_buttonData.sync; normalData.left_trigger = NormalizeTrigger(m_buttonData.trigger_left); normalData.right_trigger = NormalizeTrigger(m_buttonData.trigger_right); NormalizeAxis(m_buttonData.stick_left_x, m_buttonData.stick_left_y, kLeftThumbDeadzone, &normalData.left_stick_x, &normalData.left_stick_y); NormalizeAxis(m_buttonData.stick_right_x, m_buttonData.stick_right_y, kRightThumbDeadzone, &normalData.right_stick_x, &normalData.right_stick_y); return normalData; } Status XboxOneController::WriteAckGuideReport(uint8_t sequence) { Status rc; uint8_t report[] = { 0x01, 0x20, sequence, 0x09, 0x00, 0x07, 0x20, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00}; rc = m_outPipe->Write(report, sizeof(report)); return rc; } Status XboxOneController::SetRumble(uint8_t strong_magnitude, uint8_t weak_magnitude) { uint8_t rumble_data[]{ 0x09, 0x00, m_rumbleDataCounter++, 0x09, 0x00, 0x0f, 0x00, 0x00, strong_magnitude, weak_magnitude, 0xff, 0x00, 0x00}; return m_outPipe->Write(rumble_data, sizeof(rumble_data)); }