rpcs3/rpcs3/Emu/NP/np_handler.cpp
2020-03-04 13:55:35 +00:00

406 lines
9.6 KiB
C++

#include "stdafx.h"
#include <thread>
#include "Emu/system_config.h"
#include "np_handler.h"
#include "Emu/Cell/PPUModule.h"
#include "Emu/Cell/Modules/sceNp.h"
#include "Emu/Cell/Modules/sceNp2.h"
#include "Emu/Cell/Modules/cellNetCtl.h"
#include "Utilities/StrUtil.h"
#include "Emu/Cell/Modules/cellSysutil.h"
#include "Emu/IdManager.h"
#ifdef _WIN32
#include <winsock2.h>
#include <WS2tcpip.h>
#else
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#endif
extern logs::channel sys_net;
extern logs::channel sceNp2;
extern logs::channel sceNp;
np_handler::np_handler()
{
is_connected = (g_cfg.net.net_active == np_internet_status::enabled);
is_psn_active = (g_cfg.net.psn_status >= np_psn_status::fake);
// Validate IP/Get from host?
if (get_net_status() == CELL_NET_CTL_STATE_IPObtained)
{
// cur_ip = g_cfg.net.ip_address;
// Attempt to get actual IP address
const char* google_dns_server = "8.8.8.8";
const int dns_port = 53;
struct sockaddr_in serv;
const int sock = socket(AF_INET, SOCK_DGRAM, 0);
ASSERT(sock >= 0);
memset(&serv, 0, sizeof(serv));
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = inet_addr(google_dns_server);
serv.sin_port = std::bit_cast<u16, be_t<u16>>(dns_port); // htons(dns_port)
int err = connect(sock, reinterpret_cast<const struct sockaddr*>(&serv), sizeof(serv));
if (err < 0)
{
sys_net.error("Failed to connect to google dns for IP discovery");
is_connected = false;
cur_ip = "0.0.0.0";
}
else
{
struct sockaddr_in name;
socklen_t namelen = sizeof(name);
err = getsockname(sock, reinterpret_cast<struct sockaddr*>(&name), &namelen);
char buffer[80];
const char* p = inet_ntop(AF_INET, &name.sin_addr, buffer, 80);
if (p == nullptr)
{
sys_net.error("Failed to convert address for IP discovery");
is_connected = false;
cur_ip = "0.0.0.0";
}
cur_ip = p;
struct in_addr addr;
inet_pton(AF_INET, cur_ip.c_str(), &addr);
cur_addr = addr.s_addr;
}
#ifdef _WIN32
closesocket(sock);
#else
close(sock);
#endif
// Convert dns address
std::string s_dns = g_cfg.net.dns;
in_addr conv;
if (!inet_pton(AF_INET, s_dns.c_str(), &conv))
{
sys_net.error("Provided IP(%s) address for DNS is invalid!", s_dns);
is_connected = false;
conv.s_addr = 0;
cur_ip = "0.0.0.0";
}
dns = conv.s_addr;
// Init switch map for dns
auto swaps = fmt::split(g_cfg.net.swap_list, {"&&"});
for (std::size_t i = 0; i < swaps.size(); i++)
{
auto host_and_ip = fmt::split(swaps[i], {"="});
if (host_and_ip.size() != 2)
continue;
in_addr conv;
if (!inet_pton(AF_INET, host_and_ip[1].c_str(), &conv))
{
sys_net.error("IP(%s) provided for %s in the switch list is invalid!", host_and_ip[1], host_and_ip[0]);
conv.s_addr = 0;
}
switch_map[host_and_ip[0]] = conv.s_addr;
}
}
else
{
cur_ip = "0.0.0.0";
dns = 0;
}
}
void np_handler::init_NP(u32 poolsize, vm::ptr<void> poolptr)
{
// Init memory pool
mpool = poolptr;
mpool_size = poolsize;
mpool_avail = poolsize;
mpool_allocs.clear();
memset(&npid, 0, sizeof(npid));
memset(&online_name, 0, sizeof(online_name));
memset(&avatar_url, 0, sizeof(avatar_url));
if (g_cfg.net.psn_status >= np_psn_status::fake)
{
std::string s_npid = g_cfg.net.psn_npid;
ASSERT(s_npid != ""); // It should be generated in settings window if empty
strncpy(npid.handle.data, s_npid.c_str(), sizeof(npid.handle.data));
}
switch (g_cfg.net.psn_status)
{
case np_psn_status::disabled:
break;
case np_psn_status::fake:
{
strncpy(online_name.data, "RPCS3's user", sizeof(online_name.data));
strncpy(avatar_url.data, "https://i.imgur.com/AfWIyQP.jpg", sizeof(avatar_url.data));
break;
}
default:
break;
}
}
void np_handler::terminate_NP()
{
is_psn_active = false;
// Reset memory pool
mpool.set(0);
mpool_size = 0;
mpool_avail = 0;
mpool_allocs.clear();
}
vm::addr_t np_handler::allocate(u32 size)
{
// Align allocs
const u32 alloc_size = ::align(size, 4);
if (alloc_size > mpool_avail)
{
sceNp.error("Not enough memory available in NP pool!");
return vm::cast<u32>(0);
}
u32 last_free = 0;
bool found_space = false;
for (auto& a : mpool_allocs)
{
if ((a.first - last_free) >= alloc_size)
{
found_space = true;
break;
}
last_free = a.first + a.second;
}
if (!found_space)
{
if ((mpool_size - last_free) < alloc_size)
{
sceNp.error("Not enough memory available in NP pool(continuous block)!");
return vm::cast<u32>(0);
}
}
mpool_allocs.emplace(last_free, alloc_size);
mpool_avail -= alloc_size;
memset((static_cast<u8*>(mpool.get_ptr())) + last_free, 0, alloc_size);
return vm::cast(mpool.addr() + last_free);
}
void np_handler::operator()()
{
}
s32 np_handler::get_net_status() const
{
return is_connected ? CELL_NET_CTL_STATE_IPObtained : CELL_NET_CTL_STATE_Disconnected;
}
s32 np_handler::get_psn_status() const
{
return is_psn_active ? SCE_NP_MANAGER_STATUS_ONLINE : SCE_NP_MANAGER_STATUS_OFFLINE;
}
const std::string& np_handler::get_ip() const
{
return cur_ip;
}
u32 np_handler::get_dns() const
{
return dns;
}
const SceNpId& np_handler::get_npid() const
{
return npid;
}
const SceNpOnlineId& np_handler::get_online_id() const
{
return npid.handle;
}
const SceNpOnlineName& np_handler::get_online_name() const
{
return online_name;
}
const SceNpAvatarUrl& np_handler::get_avatar_url() const
{
return avatar_url;
}
void np_handler::add_dns_spy(u32 sock)
{
dns_spylist.emplace(std::make_pair(sock, std::queue<std::vector<u8>>()));
}
void np_handler::remove_dns_spy(u32 sock)
{
dns_spylist.erase(sock);
}
bool np_handler::is_dns(u32 sock) const
{
return dns_spylist.count(sock) != 0;
}
bool np_handler::is_dns_queue(u32 sock) const
{
return !dns_spylist.at(sock).empty();
}
std::vector<u8> np_handler::get_dns_packet(u32 sock)
{
auto ret_vec = std::move(dns_spylist.at(sock).front());
dns_spylist.at(sock).pop();
return ret_vec;
}
s32 np_handler::analyze_dns_packet(s32 s, const u8* buf, u32 len)
{
if (sys_net.enabled == logs::level::trace)
{
std::string datrace;
const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
for (u32 index = 0; index < len; index++)
{
if ((index % 16) == 0)
datrace += '\n';
datrace += hex[(buf[index] >> 4) & 15];
datrace += hex[(buf[index]) & 15];
datrace += ' ';
}
sys_net.trace("DNS REQUEST: %s", datrace);
}
struct dns_header
{
u16 id; // identification number
u8 rd : 1; // recursion desired
u8 tc : 1; // truncated message
u8 aa : 1; // authoritive answer
u8 opcode : 4; // purpose of message
u8 qr : 1; // query/response flag
u8 rcode : 4; // response code
u8 cd : 1; // checking disabled
u8 ad : 1; // authenticated data
u8 z : 1; // its z! reserved
u8 ra : 1; // recursion available
be_t<u16> q_count; // number of question entries
be_t<u16> ans_count; // number of answer entries
be_t<u16> auth_count; // number of authority entries
be_t<u16> add_count; // number of resource entries
};
if (len < sizeof(dns_header))
return -1;
const dns_header* dhead = reinterpret_cast<const dns_header*>(buf);
// We are only looking for queries not truncated(todo?), only handle one dns query at a time(todo?)
if (dhead->qr != 0 || dhead->tc != 0 || dhead->q_count != 1 || dhead->ans_count != 0 || dhead->auth_count != 0 || dhead->add_count != 0)
return -1;
// Get the actual address
u8 count = 0;
std::string host{};
for (u32 i = sizeof(dns_header); (i < len) && buf[i] != 0; i++)
{
if (count == 0)
{
count = buf[i];
if (i != sizeof(dns_header))
{
host += '.';
}
}
else
{
host += static_cast<char>(buf[i]);
count--;
}
}
sys_net.warning("DNS query for %s", host);
if (switch_map.count(host))
{
// design fake packet
std::vector<u8> fake(len);
memcpy(fake.data(), buf, len);
dns_header* fake_header = reinterpret_cast<dns_header*>(fake.data());
fake_header->qr = 1;
fake_header->ra = 1;
fake_header->ans_count = 1;
fake.insert(fake.end(), {0xC0, 0x0C}); // Ref to name in header
fake.insert(fake.end(), {0x00, 0x01}); // IPv4
fake.insert(fake.end(), {0x00, 0x01}); // Class?
fake.insert(fake.end(), {0x00, 0x00, 0x00, 0x3B}); // TTL
fake.insert(fake.end(), {0x00, 0x04}); // Size of data
u32 ip = switch_map[host];
u8* ptr_ip = reinterpret_cast<u8*>(&ip);
fake.insert(fake.end(), ptr_ip, ptr_ip + 4); // IP
sys_net.warning("Solving %s to %d.%d.%d.%d", host, ptr_ip[0], ptr_ip[1], ptr_ip[2], ptr_ip[3]);
dns_spylist[s].push(std::move(fake));
return len;
}
return -1;
}
s32 np_handler::create_score_context(vm::cptr<SceNpCommunicationId> communicationId, vm::cptr<SceNpCommunicationPassphrase> passphrase)
{
return static_cast<s32>(idm::make<score_ctx>(communicationId, passphrase));
}
bool np_handler::destroy_score_context(s32 ctx_id)
{
return idm::remove<score_ctx>(static_cast<u32>(ctx_id));
}
u16 np_handler::create_match2_context(vm::cptr<SceNpCommunicationId> communicationId, vm::cptr<SceNpCommunicationPassphrase> passphrase)
{
return static_cast<u16>(idm::make<match2_ctx>(communicationId, passphrase));
}
bool np_handler::destroy_match2_context(u16 ctx_id)
{
return idm::remove<match2_ctx>(static_cast<u32>(ctx_id));
}
s32 np_handler::create_lookup_context(vm::cptr<SceNpCommunicationId> communicationId)
{
return static_cast<s32>(idm::make<lookup_ctx>(communicationId));
}
bool np_handler::destroy_lookup_context(s32 ctx_id)
{
return idm::remove<match2_ctx>(static_cast<u32>(ctx_id));
}