1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2025-01-27 21:35:19 +00:00
Nekotekina d4c17ecda5 Simplify communication with thread pool
Add "entry_point" member to "thread_base".
Don't use "m_thread" to exchange values.
2020-11-23 11:32:34 +03:00

524 lines
11 KiB
C++

#pragma once
#include "types.h"
#include "util/atomic.hpp"
#include "util/shared_cptr.hpp"
#include <string>
#include <memory>
#include <string_view>
#include "mutex.h"
#include "lockless.h"
// Report error and call std::abort(), defined in main.cpp
[[noreturn]] void report_fatal_error(const std::string&);
// Hardware core layout
enum class native_core_arrangement : u32
{
undefined,
generic,
intel_ht,
amd_ccx
};
enum class thread_class : u32
{
general,
rsx,
spu,
ppu
};
enum class thread_state : u32
{
created = 0, // Initial state
aborting = 1, // The thread has been joined in the destructor or explicitly aborted
errored = 2, // Set after the emergency_exit call
finished = 3, // Final state, always set at the end of thread execution
mask = 3
};
class need_wakeup {};
template <class Context>
class named_thread;
template <typename T>
struct result_storage
{
static_assert(std::is_default_constructible_v<T> && noexcept(T()));
alignas(T) std::byte data[sizeof(T)];
static constexpr bool empty = false;
using type = T;
T* get()
{
return reinterpret_cast<T*>(&data);
}
const T* get() const
{
return reinterpret_cast<const T*>(&data);
}
void destroy() noexcept
{
get()->~T();
}
};
template <>
struct result_storage<void>
{
static constexpr bool empty = true;
using type = void;
};
template <class Context, typename... Args>
using result_storage_t = result_storage<std::invoke_result_t<Context, Args...>>;
template <typename T, typename = void>
struct thread_thread_name : std::bool_constant<false> {};
template <typename T>
struct thread_thread_name<T, std::void_t<decltype(named_thread<T>::thread_name)>> : std::bool_constant<true> {};
// Thread base class
class thread_base
{
public:
// Native thread entry point function type
#ifdef _WIN32
using native_entry = uint(__stdcall*)(void* arg);
#else
using native_entry = void*(*)(void* arg);
#endif
const native_entry entry_point;
private:
// Thread handle (platform-specific)
atomic_t<u64> m_thread{0};
// Thread state and cycles
atomic_t<u64> m_sync{0};
// Thread name
stx::atomic_cptr<std::string> m_tname;
// Start thread
void start();
// Called at the thread start
void initialize(void (*error_cb)());
// Called at the thread end, returns self handle
u64 finalize(thread_state result) noexcept;
// Cleanup after possibly deleting the thread instance
static native_entry finalize(u64 _self) noexcept;
// Set name for debugger
static void set_name(std::string);
// Make entry point
static native_entry make_trampoline(u64(*)(thread_base*));
friend class thread_ctrl;
template <class Context>
friend class named_thread;
protected:
thread_base(native_entry, std::string_view name);
~thread_base();
public:
// Get CPU cycles since last time this function was called. First call returns 0.
u64 get_cycles();
// Wait for the thread (it does NOT change thread state, and can be called from multiple threads)
bool join() const;
// Notify the thread
void notify();
// Get thread id
u64 get_native_id() const;
};
// Collection of global function for current thread
class thread_ctrl final
{
// Current thread
static thread_local thread_base* g_tls_this_thread;
// Error handling details
static thread_local void(*g_tls_error_callback)();
// Target cpu core layout
static atomic_t<native_core_arrangement> g_native_core_layout;
// Internal waiting function, may throw. Infinite value is -1.
static void _wait_for(u64 usec, bool alert);
friend class thread_base;
// Optimized get_name() for logging
static std::string get_name_cached();
public:
// Get current thread name
static std::string get_name()
{
return *g_tls_this_thread->m_tname.load();
}
// Get thread name
template <typename T>
static std::string get_name(const named_thread<T>& thread)
{
return *static_cast<const thread_base&>(thread).m_tname.load();
}
// Set current thread name (not recommended)
static void set_name(std::string_view name)
{
g_tls_this_thread->m_tname.store(stx::shared_cptr<std::string>::make(name));
}
// Set thread name (not recommended)
template <typename T>
static void set_name(named_thread<T>& thread, std::string_view name)
{
static_cast<thread_base&>(thread).m_tname.store(stx::shared_cptr<std::string>::make(name));
}
template <typename T>
static u64 get_cycles(named_thread<T>& thread)
{
return static_cast<thread_base&>(thread).get_cycles();
}
template <typename T>
static void notify(named_thread<T>& thread)
{
static_cast<thread_base&>(thread).notify();
}
template <typename T>
static u64 get_native_id(named_thread<T>& thread)
{
return static_cast<thread_base&>(thread).get_native_id();
}
// Read current state
static inline thread_state state()
{
return static_cast<thread_state>(g_tls_this_thread->m_sync & 3);
}
// Wait once with timeout. May spuriously return false.
static inline void wait_for(u64 usec, bool alert = true)
{
_wait_for(usec, alert);
}
// Wait.
static inline void wait()
{
_wait_for(-1, true);
}
// Exit.
[[noreturn]] static void emergency_exit(std::string_view reason);
// Get current thread (may be nullptr)
static thread_base* get_current()
{
return g_tls_this_thread;
}
// Detect layout
static void detect_cpu_layout();
// Returns a core affinity mask. Set whether to generate the high priority set or not
static u64 get_affinity_mask(thread_class group);
// Sets the native thread priority
static void set_native_priority(int priority);
// Sets the preferred affinity mask for this thread
static void set_thread_affinity_mask(u64 mask);
// Get process affinity mask
static u64 get_process_affinity_mask();
// Miscellaneous
static u64 get_thread_affinity_mask();
// Get current thread stack addr and size
static std::pair<void*, std::size_t> get_thread_stack();
private:
// Miscellaneous
static const u64 process_affinity_mask;
};
// Derived from the callable object Context, possibly a lambda
template <class Context>
class named_thread final : public Context, result_storage_t<Context>, thread_base
{
using result = result_storage_t<Context>;
using thread = thread_base;
static u64 entry_point(thread_base* _base)
{
return static_cast<named_thread*>(_base)->entry_point2();
}
u64 entry_point2()
{
thread::initialize([]()
{
if constexpr (!result::empty)
{
// Construct using default constructor in the case of failure
new (static_cast<result*>(static_cast<named_thread*>(thread_ctrl::get_current()))->get()) typename result::type();
}
});
if constexpr (result::empty)
{
// No result
Context::operator()();
}
else
{
// Construct the result using placement new (copy elision should happen)
new (result::get()) typename result::type(Context::operator()());
}
return thread::finalize(thread_state::finished);
}
static inline thread::native_entry trampoline = thread::make_trampoline(entry_point);
friend class thread_ctrl;
public:
// Default constructor
template <bool Valid = std::is_default_constructible_v<Context> && thread_thread_name<Context>(), typename = std::enable_if_t<Valid>>
named_thread()
: Context()
, thread(trampoline, Context::thread_name)
{
thread::start();
}
// Normal forwarding constructor
template <typename... Args, typename = std::enable_if_t<std::is_constructible_v<Context, Args&&...>>>
named_thread(std::string_view name, Args&&... args)
: Context(std::forward<Args>(args)...)
, thread(trampoline, name)
{
thread::start();
}
// Lambda constructor, also the implicit deduction guide candidate
named_thread(std::string_view name, Context&& f)
: Context(std::forward<Context>(f))
, thread(trampoline, name)
{
thread::start();
}
named_thread(const named_thread&) = delete;
named_thread& operator=(const named_thread&) = delete;
// Wait for the completion and access result (if not void)
[[nodiscard]] decltype(auto) operator()()
{
thread::join();
if constexpr (!result::empty)
{
return *result::get();
}
}
// Wait for the completion and access result (if not void)
[[nodiscard]] decltype(auto) operator()() const
{
thread::join();
if constexpr (!result::empty)
{
return *result::get();
}
}
// Access thread state
operator thread_state() const
{
return static_cast<thread_state>(thread::m_sync.load() & 3);
}
// Try to abort by assigning thread_state::aborting (UB if assigning different state)
named_thread& operator=(thread_state s)
{
ASSUME(s == thread_state::aborting);
if (s == thread_state::aborting && thread::m_sync.fetch_op([](u64& v){ return !(v & 3) && (v |= 1); }).second)
{
if (s == thread_state::aborting)
{
thread::m_sync.notify_one(1);
}
if constexpr (std::is_base_of_v<need_wakeup, Context>)
{
this->wake_up();
}
}
return *this;
}
// Context type doesn't need virtual destructor
~named_thread()
{
// Assign aborting state forcefully
operator=(thread_state::aborting);
thread::join();
if constexpr (!result::empty)
{
result::destroy();
}
}
};
// Group of named threads, similar to named_thread
template <class Context>
class named_thread_group final
{
using Thread = named_thread<Context>;
const u32 m_count;
Thread* m_threads;
void init_threads()
{
m_threads = static_cast<Thread*>(::operator new(sizeof(Thread) * m_count, std::align_val_t{alignof(Thread)}));
}
public:
// Lambda constructor, also the implicit deduction guide candidate
named_thread_group(std::string_view name, u32 count, const Context& f)
: m_count(count)
, m_threads(nullptr)
{
if (count == 0)
{
return;
}
init_threads();
// Create all threads
for (u32 i = 0; i < m_count; i++)
{
new (static_cast<void*>(m_threads + i)) Thread(std::string(name) + std::to_string(i + 1), f);
}
}
// Default constructor
named_thread_group(std::string_view name, u32 count)
: m_count(count)
, m_threads(nullptr)
{
if (count == 0)
{
return;
}
init_threads();
// Create all threads
for (u32 i = 0; i < m_count; i++)
{
new (static_cast<void*>(m_threads + i)) Thread(std::string(name) + std::to_string(i + 1));
}
}
named_thread_group(const named_thread_group&) = delete;
named_thread_group& operator=(const named_thread_group&) = delete;
// Wait for completion
bool join() const
{
bool result = true;
for (u32 i = 0; i < m_count; i++)
{
std::as_const(*std::launder(m_threads + i))();
if (std::as_const(*std::launder(m_threads + i)) != thread_state::finished)
result = false;
}
return result;
}
// Join and access specific thread
auto operator[](u32 index) const
{
return std::as_const(*std::launder(m_threads + index))();
}
// Join and access specific thread
auto operator[](u32 index)
{
return (*std::launder(m_threads + index))();
}
// Dumb iterator
auto begin()
{
return std::launder(m_threads);
}
// Dumb iterator
auto end()
{
return m_threads + m_count;
}
u32 size() const
{
return m_count;
}
~named_thread_group()
{
// Destroy all threads (it should join them)
for (u32 i = 0; i < m_count; i++)
{
std::launder(m_threads + i)->~Thread();
}
::operator delete(static_cast<void*>(m_threads), std::align_val_t{alignof(Thread)});
}
};