rpcs3/rpcs3/util/vm_native.cpp
Nekotekina dba2baba9c Implement utils::memory_map_fd (partial)
Improve JIT profiling dump format (data + name, mmap)
Improve objdump interception util (better speed, fix bugs)
Rename spu_ubertrampoline to __ub+number
2022-01-26 15:46:16 +03:00

760 lines
19 KiB
C++

#include "stdafx.h"
#include "util/logs.hpp"
#include "util/vm.hpp"
#include "util/asm.hpp"
#ifdef _WIN32
#include "Utilities/File.h"
#include "util/dyn_lib.hpp"
#include <Windows.h>
#else
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#endif
#if defined(__FreeBSD__)
#include <sys/sysctl.h>
#include <vm/vm_param.h>
#endif
#ifdef __linux__
#include <sys/syscall.h>
#include <linux/memfd.h>
#ifdef __NR_memfd_create
#elif __x86_64__
#define __NR_memfd_create 319
#elif ARCH_ARM64
#define __NR_memfd_create 279
#endif
static int memfd_create_(const char *name, uint flags)
{
return syscall(__NR_memfd_create, name, flags);
}
#elif defined(__FreeBSD__)
# if __FreeBSD__ < 13
// XXX Drop after FreeBSD 12.* reaches EOL on 2024-06-30
#define MFD_CLOEXEC O_CLOEXEC
#define memfd_create_(name, flags) shm_open(SHM_ANON, O_RDWR | flags, 0600)
# else
#define memfd_create_ memfd_create
# endif
#endif
namespace utils
{
#ifdef MAP_NORESERVE
constexpr int c_map_noreserve = MAP_NORESERVE;
#else
constexpr int c_map_noreserve = 0;
#endif
#ifdef MADV_FREE
[[maybe_unused]] constexpr int c_madv_free = MADV_FREE;
#elif defined(MADV_DONTNEED)
[[maybe_unused]] constexpr int c_madv_free = MADV_DONTNEED;
#else
[[maybe_unused]] constexpr int c_madv_free = 0;
#endif
#ifdef MADV_HUGEPAGE
constexpr int c_madv_hugepage = MADV_HUGEPAGE;
#else
constexpr int c_madv_hugepage = 0;
#endif
#if defined(MADV_DONTDUMP) && defined(MADV_DODUMP)
constexpr int c_madv_no_dump = MADV_DONTDUMP;
constexpr int c_madv_dump = MADV_DODUMP;
#elif defined(MADV_NOCORE) && defined(MADV_CORE)
constexpr int c_madv_no_dump = MADV_NOCORE;
constexpr int c_madv_dump = MADV_CORE;
#else
constexpr int c_madv_no_dump = 0;
constexpr int c_madv_dump = 0;
#endif
#if defined(MFD_HUGETLB) && defined(MFD_HUGE_2MB)
constexpr int c_mfd_huge_2mb = MFD_HUGETLB | MFD_HUGE_2MB;
#else
constexpr int c_mfd_huge_2mb = 0;
#endif
#ifdef _WIN32
DYNAMIC_IMPORT("KernelBase.dll", VirtualAlloc2, PVOID(HANDLE Process, PVOID Base, SIZE_T Size, ULONG AllocType, ULONG Prot, MEM_EXTENDED_PARAMETER*, ULONG));
DYNAMIC_IMPORT("KernelBase.dll", MapViewOfFile3, PVOID(HANDLE Handle, HANDLE Process, PVOID Base, ULONG64 Off, SIZE_T ViewSize, ULONG AllocType, ULONG Prot, MEM_EXTENDED_PARAMETER*, ULONG));
#endif
// Convert memory protection (internal)
static auto operator +(protection prot)
{
#ifdef _WIN32
DWORD _prot = PAGE_NOACCESS;
switch (prot)
{
case protection::rw: _prot = PAGE_READWRITE; break;
case protection::ro: _prot = PAGE_READONLY; break;
case protection::no: break;
case protection::wx: _prot = PAGE_EXECUTE_READWRITE; break;
case protection::rx: _prot = PAGE_EXECUTE_READ; break;
}
#else
int _prot = PROT_NONE;
switch (prot)
{
case protection::rw: _prot = PROT_READ | PROT_WRITE; break;
case protection::ro: _prot = PROT_READ; break;
case protection::no: break;
case protection::wx: _prot = PROT_READ | PROT_WRITE | PROT_EXEC; break;
case protection::rx: _prot = PROT_READ | PROT_EXEC; break;
}
#endif
return _prot;
}
void* memory_reserve(usz size, void* use_addr)
{
#ifdef _WIN32
return ::VirtualAlloc(use_addr, size, MEM_RESERVE, PAGE_NOACCESS);
#else
if (use_addr && reinterpret_cast<uptr>(use_addr) % 0x10000)
{
return nullptr;
}
const auto orig_size = size;
if (!use_addr)
{
// Hack: Ensure aligned 64k allocations
size += 0x10000;
}
auto ptr = ::mmap(use_addr, size, PROT_NONE, MAP_ANON | MAP_PRIVATE | c_map_noreserve, -1, 0);
if (ptr == reinterpret_cast<void*>(uptr{umax}))
{
return nullptr;
}
if (use_addr && ptr != use_addr)
{
::munmap(ptr, size);
return nullptr;
}
if (!use_addr && ptr)
{
// Continuation of the hack above
const auto misalign = reinterpret_cast<uptr>(ptr) % 0x10000;
::munmap(ptr, 0x10000 - misalign);
if (misalign)
{
::munmap(static_cast<u8*>(ptr) + size - misalign, misalign);
}
ptr = static_cast<u8*>(ptr) + (0x10000 - misalign);
}
if constexpr (c_madv_hugepage != 0)
{
if (orig_size % 0x200000 == 0)
{
::madvise(ptr, orig_size, c_madv_hugepage);
}
}
if constexpr (c_madv_no_dump != 0)
{
ensure(::madvise(ptr, orig_size, c_madv_no_dump) != -1);
}
else
{
ensure(::madvise(ptr, orig_size, c_madv_free) != -1);
}
return ptr;
#endif
}
void memory_commit(void* pointer, usz size, protection prot)
{
#ifdef _WIN32
ensure(::VirtualAlloc(pointer, size, MEM_COMMIT, +prot));
#else
const u64 ptr64 = reinterpret_cast<u64>(pointer);
ensure(::mprotect(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), +prot) != -1);
if constexpr (c_madv_dump != 0)
{
ensure(::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), c_madv_dump) != -1);
}
else
{
ensure(::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), MADV_WILLNEED) != -1);
}
#endif
}
void memory_decommit(void* pointer, usz size)
{
#ifdef _WIN32
ensure(::VirtualFree(pointer, size, MEM_DECOMMIT));
#else
const u64 ptr64 = reinterpret_cast<u64>(pointer);
ensure(::mmap(pointer, size, PROT_NONE, MAP_FIXED | MAP_ANON | MAP_PRIVATE | c_map_noreserve, -1, 0) != reinterpret_cast<void*>(uptr{umax}));
if constexpr (c_madv_no_dump != 0)
{
ensure(::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), c_madv_no_dump) != -1);
}
else
{
ensure(::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), c_madv_free) != -1);
}
#endif
}
void memory_reset(void* pointer, usz size, protection prot)
{
#ifdef _WIN32
memory_decommit(pointer, size);
memory_commit(pointer, size, prot);
#else
const u64 ptr64 = reinterpret_cast<u64>(pointer);
ensure(::mmap(pointer, size, +prot, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0) != reinterpret_cast<void*>(uptr{umax}));
if constexpr (c_madv_hugepage != 0)
{
if (size % 0x200000 == 0)
{
::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), c_madv_hugepage);
}
}
if constexpr (c_madv_dump != 0)
{
ensure(::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), c_madv_dump) != -1);
}
else
{
ensure(::madvise(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), MADV_WILLNEED) != -1);
}
#endif
}
void memory_release(void* pointer, usz size)
{
#ifdef _WIN32
ensure(::VirtualFree(pointer, 0, MEM_RELEASE));
#else
ensure(::munmap(pointer, size) != -1);
#endif
}
void memory_protect(void* pointer, usz size, protection prot)
{
#ifdef _WIN32
DWORD old;
if (::VirtualProtect(pointer, size, +prot, &old))
{
return;
}
for (u64 addr = reinterpret_cast<u64>(pointer), end = addr + size; addr < end;)
{
const u64 boundary = (addr + 0x10000) & -0x10000;
const u64 block_size = std::min(boundary, end) - addr;
if (!::VirtualProtect(reinterpret_cast<LPVOID>(addr), block_size, +prot, &old))
{
fmt::throw_exception("VirtualProtect failed (%p, 0x%x, addr=0x%x, error=%#x)", pointer, size, addr, GetLastError());
}
// Next region
addr += block_size;
}
#else
const u64 ptr64 = reinterpret_cast<u64>(pointer);
ensure(::mprotect(reinterpret_cast<void*>(ptr64 & -4096), size + (ptr64 & 4095), +prot) != -1);
#endif
}
bool memory_lock(void* pointer, usz size)
{
#ifdef _WIN32
return ::VirtualLock(pointer, size);
#else
return !::mlock(pointer, size);
#endif
}
void* memory_map_fd(native_handle fd, usz size, protection prot)
{
#ifdef _WIN32
// TODO
return nullptr;
#else
const auto result = ::mmap(nullptr, size, +prot, MAP_SHARED, fd, 0);
if (result == reinterpret_cast<void*>(uptr{umax}))
{
[[unlikely]] return nullptr;
}
return result;
#endif
}
shm::shm(u32 size, u32 flags)
: m_flags(flags)
, m_size(utils::align(size, 0x10000))
{
#ifdef _WIN32
m_handle = ensure(::CreateFileMappingW(INVALID_HANDLE_VALUE, nullptr, PAGE_EXECUTE_READWRITE, 0, m_size, nullptr));
#elif defined(__linux__) || defined(__FreeBSD__)
m_file = -1;
// Try to use 2MB pages for 2M-aligned shm
if constexpr (c_mfd_huge_2mb != 0)
{
if (m_size % 0x200000 == 0 && flags & 2)
{
m_file = ::memfd_create_("2M", c_mfd_huge_2mb);
}
}
if (m_file == -1)
{
m_file = ::memfd_create_("", 0);
}
ensure(m_file >= 0);
ensure(::ftruncate(m_file, m_size) >= 0);
#else
const std::string name = "/rpcs3-mem-" + std::to_string(reinterpret_cast<u64>(this));
while ((m_file = ::shm_open(name.c_str(), O_RDWR | O_CREAT | O_EXCL, S_IWUSR | S_IRUSR)) == -1)
{
if (errno == EMFILE)
{
fmt::throw_exception("Too many open files. Raise the limit and try again.");
}
ensure(errno == EEXIST);
}
ensure(::shm_unlink(name.c_str()) >= 0);
ensure(::ftruncate(m_file, m_size) >= 0);
#endif
}
shm::shm(u64 size, const std::string& storage)
: m_size(utils::align(size, 0x10000))
{
#ifdef _WIN32
fs::file f;
// Get system version
[[maybe_unused]] static const DWORD version_major = *reinterpret_cast<const DWORD*>(__readgsqword(0x60) + 0x118);
auto set_sparse = [](HANDLE h, usz m_size) -> bool
{
FILE_SET_SPARSE_BUFFER arg{.SetSparse = true};
FILE_BASIC_INFO info0{};
ensure(GetFileInformationByHandleEx(h, FileBasicInfo, &info0, sizeof(info0)));
if ((info0.FileAttributes & FILE_ATTRIBUTE_ARCHIVE) || (~info0.FileAttributes & FILE_ATTRIBUTE_TEMPORARY))
{
info0.FileAttributes &= ~FILE_ATTRIBUTE_ARCHIVE;
info0.FileAttributes |= FILE_ATTRIBUTE_TEMPORARY;
ensure(SetFileInformationByHandle(h, FileBasicInfo, &info0, sizeof(info0)));
}
if ((info0.FileAttributes & FILE_ATTRIBUTE_SPARSE_FILE) == 0 && version_major <= 7)
{
MessageBoxW(0, L"RPCS3 needs to be restarted to create sparse file rpcs3_vm.", L"RPCS3", MB_ICONEXCLAMATION);
}
if (DWORD bytesReturned{}; (info0.FileAttributes & FILE_ATTRIBUTE_SPARSE_FILE) || DeviceIoControl(h, FSCTL_SET_SPARSE, &arg, sizeof(arg), nullptr, 0, &bytesReturned, nullptr))
{
if ((info0.FileAttributes & FILE_ATTRIBUTE_SPARSE_FILE) == 0 && version_major <= 7)
{
std::abort();
}
FILE_STANDARD_INFO info;
FILE_END_OF_FILE_INFO _eof{};
ensure(GetFileInformationByHandleEx(h, FileStandardInfo, &info, sizeof(info)));
ensure(GetFileSizeEx(h, &_eof.EndOfFile));
if (info.AllocationSize.QuadPart && _eof.EndOfFile.QuadPart == m_size)
{
// Truncate file since it may be dirty (fool-proof)
DWORD ret = 0;
FILE_ALLOCATED_RANGE_BUFFER dummy{};
dummy.Length.QuadPart = m_size;
if (!DeviceIoControl(h, FSCTL_QUERY_ALLOCATED_RANGES, &dummy, sizeof(dummy), nullptr, 0, &ret, 0) || ret)
{
_eof.EndOfFile.QuadPart = 0;
}
}
if (_eof.EndOfFile.QuadPart != m_size)
{
// Reset file size to 0 if it doesn't match
_eof.EndOfFile.QuadPart = 0;
ensure(SetFileInformationByHandle(h, FileEndOfFileInfo, &_eof, sizeof(_eof)));
}
return true;
}
return false;
};
const std::string storage2 = fs::get_temp_dir() + "rpcs3_vm_sparse.tmp";
const std::string storage3 = fs::get_cache_dir() + "rpcs3_vm_sparse.tmp";
if (!storage.empty())
{
// Explicitly specified storage
ensure(f.open(storage, fs::read + fs::write + fs::create));
}
else if (!f.open(storage2, fs::read + fs::write + fs::create) || !set_sparse(f.get_handle(), m_size))
{
// Fallback storage
ensure(f.open(storage3, fs::read + fs::write + fs::create));
}
else
{
goto check;
}
if (!set_sparse(f.get_handle(), m_size))
{
MessageBoxW(0, L"Failed to initialize sparse file.\nCan't find a filesystem with sparse file support (NTFS).", L"RPCS3", MB_ICONERROR);
}
check:
if (f.size() != m_size)
{
// Resize the file gradually (bug workaround)
for (usz i = 0; i < m_size / (1024 * 1024 * 256); i++)
{
ensure(f.trunc((i + 1) * (1024 * 1024 * 256)));
}
ensure(f.trunc(m_size));
}
m_handle = ensure(::CreateFileMappingW(f.get_handle(), nullptr, PAGE_READWRITE, 0, 0, nullptr));
#else
#ifdef __linux__
if (const char c = fs::file("/proc/sys/vm/overcommit_memory").read<char>(); c == '0' || c == '1')
{
// Simply use memfd for overcommit memory
m_file = ::memfd_create_("", 0);
ensure(m_file >= 0);
ensure(::ftruncate(m_file, m_size) >= 0);
return;
}
else
{
fprintf(stderr, "Reading /proc/sys/vm/overcommit_memory: %c", c);
}
#else
int vm_overcommit = 0;
auto vm_sz = sizeof(int);
#if defined(__NetBSD__) || defined(__APPLE__)
// Always ON
vm_overcommit = 0;
#elif defined(__FreeBSD__)
int mib[2]{CTL_VM, VM_OVERCOMMIT};
if (::sysctl(mib, 2, &vm_overcommit, &vm_sz, NULL, 0) != 0)
vm_overcommit = -1;
#else
vm_overcommit = -1;
#endif
if ((vm_overcommit & 3) == 0)
{
#if defined(__FreeBSD__)
m_file = ::memfd_create_("", 0);
ensure(m_file >= 0);
#else
const std::string name = "/rpcs3-mem2-" + std::to_string(reinterpret_cast<u64>(this));
while ((m_file = ::shm_open(name.c_str(), O_RDWR | O_CREAT | O_EXCL, S_IWUSR | S_IRUSR)) == -1)
{
if (errno == EMFILE)
{
fmt::throw_exception("Too many open files. Raise the limit and try again.");
}
ensure(errno == EEXIST);
}
ensure(::shm_unlink(name.c_str()) >= 0);
#endif
ensure(::ftruncate(m_file, m_size) >= 0);
return;
}
#endif
if (!storage.empty())
{
m_file = ::open(storage.c_str(), O_RDWR | O_CREAT, S_IWUSR | S_IRUSR);
}
else
{
m_file = ::open((fs::get_cache_dir() + "rpcs3_vm_sparse.tmp").c_str(), O_RDWR | O_CREAT, S_IWUSR | S_IRUSR);
}
ensure(m_file >= 0);
struct ::stat stats;
ensure(::fstat(m_file, &stats) >= 0);
if (!(stats.st_size ^ m_size) && !stats.st_blocks)
{
// Already initialized
return;
}
// Truncate file since it may be dirty (fool-proof)
ensure(::ftruncate(m_file, 0) >= 0);
ensure(::ftruncate(m_file, 0x100000) >= 0);
stats.st_size = 0x100000;
#ifdef SEEK_DATA
errno = EINVAL;
if (stats.st_blocks * 512 >= 0x100000 && ::lseek(m_file, 0, SEEK_DATA) ^ stats.st_size && errno != ENXIO)
{
fmt::throw_exception("Failed to initialize sparse file in '%s'\n"
"It seems this filesystem doesn't support sparse files (%d).\n",
storage.empty() ? fs::get_cache_dir().c_str() : storage.c_str(), +errno);
}
#endif
if (stats.st_size ^ m_size)
{
// Fix file size
ensure(::ftruncate(m_file, m_size) >= 0);
}
#endif
}
shm::~shm()
{
this->unmap_self();
#ifdef _WIN32
::CloseHandle(m_handle);
#else
::close(m_file);
#endif
}
u8* shm::map(void* ptr, protection prot, bool cow) const
{
#ifdef _WIN32
DWORD access = FILE_MAP_WRITE;
switch (prot)
{
case protection::rw:
case protection::ro:
case protection::no:
break;
case protection::wx:
case protection::rx:
access |= FILE_MAP_EXECUTE;
break;
}
if (cow)
{
access |= FILE_MAP_COPY;
}
if (auto ret = static_cast<u8*>(::MapViewOfFileEx(m_handle, access, 0, 0, m_size, ptr)))
{
if (prot != protection::rw && prot != protection::wx)
{
DWORD old;
if (!::VirtualProtect(ret, m_size, +prot, &old))
{
::UnmapViewOfFile(ret);
return nullptr;
}
}
return ret;
}
return nullptr;
#else
const u64 ptr64 = reinterpret_cast<u64>(ptr) & -0x10000;
if (ptr64)
{
const auto result = ::mmap(reinterpret_cast<void*>(ptr64), m_size, +prot, (cow ? MAP_PRIVATE : MAP_SHARED) | MAP_FIXED, m_file, 0);
return reinterpret_cast<u8*>(result);
}
else
{
const u64 res64 = reinterpret_cast<u64>(::mmap(reinterpret_cast<void*>(ptr64), m_size + 0xf000, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0));
const u64 aligned = utils::align(res64, 0x10000);
const auto result = ::mmap(reinterpret_cast<void*>(aligned), m_size, +prot, (cow ? MAP_PRIVATE : MAP_SHARED) | MAP_FIXED, m_file, 0);
// Now cleanup remnants
if (aligned > res64)
{
ensure(::munmap(reinterpret_cast<void*>(res64), aligned - res64) == 0);
}
if (aligned < res64 + 0xf000)
{
ensure(::munmap(reinterpret_cast<void*>(aligned + m_size), (res64 + 0xf000) - (aligned)) == 0);
}
return reinterpret_cast<u8*>(result);
}
#endif
}
u8* shm::try_map(void* ptr, protection prot, bool cow) const
{
// Non-null pointer shall be specified
const auto target = ensure(reinterpret_cast<u8*>(reinterpret_cast<u64>(ptr) & -0x10000));
#ifdef _WIN32
return this->map(target, prot, cow);
#else
const auto result = reinterpret_cast<u8*>(::mmap(reinterpret_cast<void*>(target), m_size, +prot, (cow ? MAP_PRIVATE : MAP_SHARED), m_file, 0));
if (result == reinterpret_cast<void*>(uptr{umax}))
{
[[unlikely]] return nullptr;
}
return result;
#endif
}
u8* shm::map_critical(void* ptr, protection prot, bool cow)
{
const auto target = reinterpret_cast<u8*>(reinterpret_cast<u64>(ptr) & -0x10000);
#ifdef _WIN32
::MEMORY_BASIC_INFORMATION mem;
if (!::VirtualQuery(target, &mem, sizeof(mem)) || mem.State != MEM_RESERVE || !::VirtualFree(mem.AllocationBase, 0, MEM_RELEASE))
{
return nullptr;
}
const auto base = (u8*)mem.AllocationBase;
const auto size = mem.RegionSize + (target - base);
if (base < target && !::VirtualAlloc(base, target - base, MEM_RESERVE, PAGE_NOACCESS))
{
return nullptr;
}
if (target + m_size < base + size && !::VirtualAlloc(target + m_size, base + size - target - m_size, MEM_RESERVE, PAGE_NOACCESS))
{
return nullptr;
}
#endif
return this->map(target, prot, cow);
}
u8* shm::map_self(protection prot)
{
void* ptr = m_ptr;
if (!ptr)
{
const auto mapped = this->map(nullptr, prot);
// Install mapped memory
if (!m_ptr.compare_exchange(ptr, mapped))
{
// Mapped already, nothing to do.
this->unmap(mapped);
}
else
{
ptr = mapped;
}
}
return static_cast<u8*>(ptr);
}
void shm::unmap(void* ptr) const
{
#ifdef _WIN32
::UnmapViewOfFile(ptr);
#else
::munmap(ptr, m_size);
#endif
}
void shm::unmap_critical(void* ptr)
{
const auto target = reinterpret_cast<u8*>(reinterpret_cast<u64>(ptr) & -0x10000);
#ifdef _WIN32
this->unmap(target);
::MEMORY_BASIC_INFORMATION mem, mem2;
if (!::VirtualQuery(target - 1, &mem, sizeof(mem)) || !::VirtualQuery(target + m_size, &mem2, sizeof(mem2)))
{
return;
}
if (mem.State == MEM_RESERVE && !::VirtualFree(mem.AllocationBase, 0, MEM_RELEASE))
{
return;
}
if (mem2.State == MEM_RESERVE && !::VirtualFree(mem2.AllocationBase, 0, MEM_RELEASE))
{
return;
}
const auto size1 = mem.State == MEM_RESERVE ? target - (u8*)mem.AllocationBase : 0;
const auto size2 = mem2.State == MEM_RESERVE ? mem2.RegionSize : 0;
if (!::VirtualAlloc(mem.State == MEM_RESERVE ? mem.AllocationBase : target, m_size + size1 + size2, MEM_RESERVE, PAGE_NOACCESS))
{
return;
}
#else
// This method is faster but leaves mapped remnants of the shm (until overwritten)
ensure(::mprotect(target, m_size, PROT_NONE) != -1);
#endif
}
void shm::unmap_self()
{
if (auto ptr = m_ptr.exchange(nullptr))
{
this->unmap(ptr);
}
}
}