rpcs3/rpcs3/util/logs.cpp
DH cccfb89aa0 [Config] Use std::less<> for std::map<...>
Reduces amount of string copies
[Utilities] fmt::replace_all: avoid creation of temporary strings
2021-12-02 21:36:57 +03:00

685 lines
14 KiB
C++

#include "util/logs.hpp"
#include "Utilities/File.h"
#include "Utilities/mutex.h"
#include "Utilities/Thread.h"
#include "Utilities/StrFmt.h"
#include <cstring>
#include <cstdarg>
#include <string>
#include <unordered_map>
#include <thread>
#include <chrono>
#include <cstring>
#include <cerrno>
using namespace std::literals::chrono_literals;
#ifdef _WIN32
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
#else
#include <sys/mman.h>
#include <sys/stat.h>
#endif
#include <zlib.h>
static std::string default_string()
{
if (thread_ctrl::is_main())
{
return {};
}
return fmt::format("TID: %s", std::this_thread::get_id());
}
// Thread-specific log prefix provider
thread_local std::string(*g_tls_log_prefix)() = &default_string;
// Another thread-specific callback
thread_local void(*g_tls_log_control)(const char* fmt, u64 progress) = [](const char*, u64){};
template<>
void fmt_class_string<logs::level>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](auto lev)
{
switch (lev)
{
case logs::level::always: return "Nothing";
case logs::level::fatal: return "Fatal";
case logs::level::error: return "Error";
case logs::level::todo: return "TODO";
case logs::level::success: return "Success";
case logs::level::warning: return "Warning";
case logs::level::notice: return "Notice";
case logs::level::trace: return "Trace";
}
return unknown;
});
}
namespace logs
{
static_assert(std::is_empty_v<message> && sizeof(message) == 1);
static_assert(sizeof(channel) == alignof(channel));
static_assert(uchar(level::always) == 0);
static_assert(uchar(level::fatal) == 1);
static_assert(uchar(level::trace) == 7);
static_assert((offsetof(channel, fatal) & 7) == 1);
static_assert((offsetof(channel, trace) & 7) == 7);
// Memory-mapped buffer size
constexpr u64 s_log_size = 32 * 1024 * 1024;
class file_writer
{
std::thread m_writer{};
fs::file m_fout{};
fs::file m_fout2{};
u64 m_max_size{};
std::unique_ptr<uchar[]> m_fptr{};
z_stream m_zs{};
shared_mutex m_m{};
alignas(128) atomic_t<u64> m_buf{0}; // MSB (40 bit): push begin, LSB (24 bis): push size
alignas(128) atomic_t<u64> m_out{0}; // Amount of bytes written to file
uchar m_zout[65536]{};
// Write buffered logs immediately
bool flush(u64 bufv);
public:
file_writer(const std::string& name, u64 max_size);
virtual ~file_writer();
// Append raw data
void log(const char* text, usz size);
};
struct file_listener final : file_writer, public listener
{
file_listener(const std::string& path, u64 max_size);
~file_listener() override = default;
void log(u64 stamp, const message& msg, const std::string& prefix, const std::string& text) override;
};
struct root_listener final : public listener
{
root_listener() = default;
~root_listener() override = default;
// Encode level, current thread name, channel name and write log message
void log(u64, const message&, const std::string&, const std::string&) override
{
// Do nothing
}
// Channel registry
std::unordered_multimap<std::string, channel*> channels{};
// Messages for delayed listener initialization
std::vector<stored_message> messages{};
};
static root_listener* get_logger()
{
// Use magic static
static root_listener logger{};
return &logger;
}
static u64 get_stamp()
{
static struct time_initializer
{
#ifdef _WIN32
LARGE_INTEGER freq;
LARGE_INTEGER start;
time_initializer()
{
QueryPerformanceFrequency(&freq);
QueryPerformanceCounter(&start);
}
#else
steady_clock::time_point start = steady_clock::now();
#endif
u64 get() const
{
#ifdef _WIN32
LARGE_INTEGER now;
QueryPerformanceCounter(&now);
const LONGLONG diff = now.QuadPart - start.QuadPart;
return diff / freq.QuadPart * 1'000'000 + diff % freq.QuadPart * 1'000'000 / freq.QuadPart;
#else
return (steady_clock::now() - start).count() / 1000;
#endif
}
} timebase{};
return timebase.get();
}
// Channel registry mutex
static shared_mutex g_mutex;
// Must be set to true in main()
static atomic_t<bool> g_init{false};
void reset()
{
std::lock_guard lock(g_mutex);
for (auto&& pair : get_logger()->channels)
{
pair.second->enabled.release(level::notice);
}
}
void silence()
{
std::lock_guard lock(g_mutex);
for (auto&& pair : get_logger()->channels)
{
pair.second->enabled.release(level::always);
}
}
void set_level(const std::string& ch_name, level value)
{
std::lock_guard lock(g_mutex);
auto found = get_logger()->channels.equal_range(ch_name);
while (found.first != found.second)
{
found.first->second->enabled.release(value);
found.first++;
}
}
level get_level(const std::string& ch_name)
{
std::lock_guard lock(g_mutex);
auto found = get_logger()->channels.equal_range(ch_name);
if (found.first != found.second)
{
return found.first->second->enabled.observe();
}
else
{
return level::always;
}
}
void set_channel_levels(const std::map<std::string, logs::level, std::less<>>& map)
{
for (auto&& pair : map)
{
logs::set_level(pair.first, pair.second);
}
}
std::vector<std::string> get_channels()
{
std::vector<std::string> result;
std::lock_guard lock(g_mutex);
for (auto&& p : get_logger()->channels)
{
// Copy names removing duplicates
if (result.empty() || result.back() != p.first)
{
result.push_back(p.first);
}
}
return result;
}
// Must be called in main() to stop accumulating messages in g_messages
void set_init(std::initializer_list<stored_message> init_msg)
{
if (!g_init)
{
std::lock_guard lock(g_mutex);
// Prepend main messages
for (const auto& msg : init_msg)
{
get_logger()->broadcast(msg);
}
// Send initial messages
for (const auto& msg : get_logger()->messages)
{
get_logger()->broadcast(msg);
}
// Clear it
get_logger()->messages.clear();
g_init = true;
}
}
}
logs::listener::~listener()
{
// Shut up all channels on exit
if (auto logger = get_logger())
{
if (logger == this)
{
return;
}
for (auto&& pair : logger->channels)
{
pair.second->enabled.release(level::always);
}
}
}
void logs::listener::add(logs::listener* _new)
{
// Get first (main) listener
listener* lis = get_logger();
std::lock_guard lock(g_mutex);
// Install new listener at the end of linked list
listener* null = nullptr;
while (lis->m_next || !lis->m_next.compare_exchange(null, _new))
{
lis = lis->m_next;
null = nullptr;
}
}
void logs::listener::broadcast(const logs::stored_message& msg) const
{
for (auto lis = m_next.load(); lis; lis = lis->m_next)
{
lis->log(msg.stamp, msg.m, msg.prefix, msg.text);
}
}
logs::registerer::registerer(channel& _ch)
{
std::lock_guard lock(g_mutex);
get_logger()->channels.emplace(_ch.name, &_ch);
}
void logs::message::broadcast(const char* fmt, const fmt_type_info* sup, ...) const
{
// Get timestamp
const u64 stamp = get_stamp();
// Notify start operation
g_tls_log_control(fmt, 0);
// Get text, extract va_args
/*constinit thread_local*/ std::string text;
/*constinit thread_local*/ std::basic_string<u64> args;
static constexpr fmt_type_info empty_sup{};
usz args_count = 0;
for (auto v = sup; v && v->fmt_string; v++)
args_count++;
text.reserve(50000);
args.resize(args_count);
va_list c_args;
va_start(c_args, sup);
for (u64& arg : args)
arg = va_arg(c_args, u64);
va_end(c_args);
fmt::raw_append(text, fmt, sup ? sup : &empty_sup, args.data());
std::string prefix = g_tls_log_prefix();
// Get first (main) listener
listener* lis = get_logger();
if (!g_init)
{
std::lock_guard lock(g_mutex);
if (!g_init)
{
while (lis)
{
lis->log(stamp, *this, prefix, text);
lis = lis->m_next;
}
// Store message additionally
get_logger()->messages.emplace_back(stored_message{*this, stamp, std::move(prefix), text});
}
}
// Send message to all listeners
while (lis)
{
lis->log(stamp, *this, prefix, text);
lis = lis->m_next;
}
// Notify end operation
g_tls_log_control(fmt, -1);
}
logs::file_writer::file_writer(const std::string& name, u64 max_size)
: m_max_size(max_size)
{
if (!name.empty() && max_size)
{
// Initialize ringbuffer
m_fptr = std::make_unique<uchar[]>(s_log_size);
// Actual log file (allowed to fail)
if (!m_fout.open(name, fs::rewrite))
{
fprintf(stderr, "Log file open failed: %s (error %d)\n", name.c_str(), errno);
}
// Compressed log, make it inaccessible (foolproof)
if (m_fout2.open(name + ".gz", fs::rewrite + fs::unread))
{
#ifndef _MSC_VER
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
#endif
if (deflateInit2(&m_zs, 9, Z_DEFLATED, 16 + 15, 9, Z_DEFAULT_STRATEGY) != Z_OK)
#ifndef _MSC_VER
#pragma GCC diagnostic pop
#endif
m_fout2.close();
}
if (!m_fout2)
{
fprintf(stderr, "Log file open failed: %s.gz (error %d)\n", name.c_str(), errno);
}
#ifdef _WIN32
// Autodelete compressed log file
FILE_DISPOSITION_INFO disp;
disp.DeleteFileW = true;
SetFileInformationByHandle(m_fout2.get_handle(), FileDispositionInfo, &disp, sizeof(disp));
#endif
}
else
{
return;
}
m_writer = std::thread([this]()
{
thread_ctrl::scoped_priority low_prio(-1);
while (true)
{
const u64 bufv = m_buf;
if (bufv & 0xffffff)
{
// Wait if threads are writing logs
std::this_thread::yield();
continue;
}
if (!flush(bufv))
{
if (m_out == umax)
{
break;
}
std::this_thread::sleep_for(10ms);
}
}
});
}
logs::file_writer::~file_writer()
{
if (!m_fptr)
{
return;
}
// Stop writer thread
while (m_out << 24 < m_buf)
{
std::this_thread::yield();
}
m_out = -1;
m_writer.join();
if (m_fout2)
{
m_zs.avail_in = 0;
m_zs.next_in = nullptr;
do
{
m_zs.avail_out = sizeof(m_zout);
m_zs.next_out = m_zout;
if (deflate(&m_zs, Z_FINISH) == Z_STREAM_ERROR || m_fout2.write(m_zout, sizeof(m_zout) - m_zs.avail_out) != sizeof(m_zout) - m_zs.avail_out)
{
break;
}
}
while (m_zs.avail_out == 0);
deflateEnd(&m_zs);
}
#ifdef _WIN32
// Cancel compressed log file autodeletion
FILE_DISPOSITION_INFO disp;
disp.DeleteFileW = false;
SetFileInformationByHandle(m_fout2.get_handle(), FileDispositionInfo, &disp, sizeof(disp));
#else
// Restore compressed log file permissions
::fchmod(m_fout2.get_handle(), S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
#endif
}
bool logs::file_writer::flush(u64 bufv)
{
std::lock_guard lock(m_m);
const u64 st = +m_out;
const u64 end = std::min<u64>((st + s_log_size) & ~(s_log_size - 1), bufv >> 24);
if (end > st)
{
// Avoid writing too big fragments
const u64 size = std::min<u64>(end - st, sizeof(m_zout) / 2);
// Write uncompressed
if (m_fout && st < m_max_size && m_fout.write(m_fptr.get() + st % s_log_size, size) != size)
{
m_fout.close();
}
// Write compressed
if (m_fout2 && st < m_max_size)
{
m_zs.avail_in = static_cast<uInt>(size);
m_zs.next_in = m_fptr.get() + st % s_log_size;
do
{
m_zs.avail_out = sizeof(m_zout);
m_zs.next_out = m_zout;
if (deflate(&m_zs, Z_NO_FLUSH) == Z_STREAM_ERROR || m_fout2.write(m_zout, sizeof(m_zout) - m_zs.avail_out) != sizeof(m_zout) - m_zs.avail_out)
{
deflateEnd(&m_zs);
m_fout2.close();
break;
}
}
while (m_zs.avail_out == 0);
}
m_out += size;
return true;
}
return false;
}
void logs::file_writer::log(const char* text, usz size)
{
if (!m_fptr)
{
return;
}
// TODO: write bigger fragment directly in blocking manner
while (size && size <= 0xffffff)
{
u64 bufv = 0;
const auto pos = m_buf.atomic_op([&](u64& v) -> uchar*
{
const u64 v1 = v >> 24;
const u64 v2 = v & 0xffffff;
if (v2 + size > 0xffffff || v1 + v2 + size >= m_out + s_log_size) [[unlikely]]
{
bufv = v;
return nullptr;
}
v += size;
return m_fptr.get() + (v1 + v2) % s_log_size;
});
if (!pos) [[unlikely]]
{
if ((bufv & 0xffffff) + size > 0xffffff || bufv & 0xffffff)
{
// Concurrency limit reached
std::this_thread::yield();
}
else
{
// Queue is full, need to write out
flush(bufv);
}
continue;
}
if (pos + size > m_fptr.get() + s_log_size)
{
const auto frag = m_fptr.get() + s_log_size - pos;
std::memcpy(pos, text, frag);
std::memcpy(m_fptr.get(), text + frag, size - frag);
}
else
{
std::memcpy(pos, text, size);
}
m_buf += (u64{size} << 24) - size;
break;
}
}
logs::file_listener::file_listener(const std::string& path, u64 max_size)
: file_writer(path, max_size)
, listener()
{
// Write UTF-8 BOM
file_writer::log("\xEF\xBB\xBF", 3);
}
void logs::file_listener::log(u64 stamp, const logs::message& msg, const std::string& prefix, const std::string& _text)
{
/*constinit thread_local*/ std::string text;
text.reserve(50000);
// Used character: U+00B7 (Middle Dot)
switch (msg)
{
case level::always: text = reinterpret_cast<const char*>(u8"·A "); break;
case level::fatal: text = reinterpret_cast<const char*>(u8"·F "); break;
case level::error: text = reinterpret_cast<const char*>(u8"·E "); break;
case level::todo: text = reinterpret_cast<const char*>(u8"·U "); break;
case level::success: text = reinterpret_cast<const char*>(u8"·S "); break;
case level::warning: text = reinterpret_cast<const char*>(u8"·W "); break;
case level::notice: text = reinterpret_cast<const char*>(u8"·! "); break;
case level::trace: text = reinterpret_cast<const char*>(u8"·T "); break;
}
// Print µs timestamp
const u64 hours = stamp / 3600'000'000;
const u64 mins = (stamp % 3600'000'000) / 60'000'000;
const u64 secs = (stamp % 60'000'000) / 1'000'000;
const u64 frac = (stamp % 1'000'000);
fmt::append(text, "%u:%02u:%02u.%06u ", hours, mins, secs, frac);
if (stamp == 0)
{
// Workaround for first special messages to keep backward compatibility
text.clear();
}
if (!prefix.empty())
{
text += "{";
text += prefix;
text += "} ";
}
if (stamp && msg->name && '\0' != *msg->name)
{
text += msg->name;
text += msg == level::todo ? " TODO: " : ": ";
}
else if (msg == level::todo)
{
text += "TODO: ";
}
text += _text;
text += '\n';
file_writer::log(text.data(), text.size());
}
std::unique_ptr<logs::listener> logs::make_file_listener(const std::string& path, u64 max_size)
{
std::unique_ptr<logs::listener> result = std::make_unique<logs::file_listener>(path, max_size);
// Register file listener
result->add(result.get());
return result;
}