rpcs3/Utilities/Thread.cpp
2016-08-10 14:17:07 +03:00

2310 lines
51 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/RawSPUThread.h"
#include "Thread.h"
#ifdef _WIN32
#include <Windows.h>
#include <Psapi.h>
#else
#ifdef __APPLE__
#define _XOPEN_SOURCE
#define __USE_GNU
#endif
#include <errno.h>
#include <signal.h>
#include <ucontext.h>
#endif
static void report_fatal_error(const std::string& msg)
{
std::string _msg = msg + "\n"
"HOW TO REPORT ERRORS: Check the FAQ, README, other sources.\n"
"Please, don't send incorrect reports. Thanks for understanding.\n";
#ifdef _WIN32
_msg += "Press (Ctrl+C) to copy this message.";
MessageBoxA(0, _msg.c_str(), "Fatal error", MB_ICONERROR); // TODO: unicode message
#else
std::printf("Fatal error: \n%s", _msg.c_str());
#endif
}
[[noreturn]] void catch_all_exceptions()
{
try
{
throw;
}
catch (const std::exception& e)
{
report_fatal_error("Unhandled exception of type '"s + typeid(e).name() + "': "s + e.what());
}
catch (...)
{
report_fatal_error("Unhandled exception (unknown)");
}
std::abort();
}
enum x64_reg_t : u32
{
X64R_RAX = 0,
X64R_RCX,
X64R_RDX,
X64R_RBX,
X64R_RSP,
X64R_RBP,
X64R_RSI,
X64R_RDI,
X64R_R8,
X64R_R9,
X64R_R10,
X64R_R11,
X64R_R12,
X64R_R13,
X64R_R14,
X64R_R15,
X64R_XMM0 = 0,
X64R_XMM1,
X64R_XMM2,
X64R_XMM3,
X64R_XMM4,
X64R_XMM5,
X64R_XMM6,
X64R_XMM7,
X64R_XMM8,
X64R_XMM9,
X64R_XMM10,
X64R_XMM11,
X64R_XMM12,
X64R_XMM13,
X64R_XMM14,
X64R_XMM15,
X64R_AL,
X64R_CL,
X64R_DL,
X64R_BL,
X64R_AH,
X64R_CH,
X64R_DH,
X64R_BH,
X64_NOT_SET,
X64_IMM8,
X64_IMM16,
X64_IMM32,
X64_BIT_O = 0x90,
X64_BIT_NO,
X64_BIT_C,
X64_BIT_NC,
X64_BIT_Z,
X64_BIT_NZ,
X64_BIT_BE,
X64_BIT_NBE,
X64_BIT_S,
X64_BIT_NS,
X64_BIT_P,
X64_BIT_NP,
X64_BIT_L,
X64_BIT_NL,
X64_BIT_LE,
X64_BIT_NLE,
X64R_ECX = X64R_CL,
};
enum x64_op_t : u32
{
X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register
X64OP_LOAD_BE,
X64OP_LOAD_CMP,
X64OP_LOAD_TEST,
X64OP_STORE, // take the value from x64 register or an immediate and use it
X64OP_STORE_BE,
X64OP_MOVS,
X64OP_STOS,
X64OP_XCHG,
X64OP_CMPXCHG,
X64OP_AND, // lock and [mem], ...
X64OP_OR, // lock or [mem], ...
X64OP_XOR, // lock xor [mem], ...
X64OP_INC, // lock inc [mem]
X64OP_DEC, // lock dec [mem]
X64OP_ADD, // lock add [mem], ...
X64OP_ADC, // lock adc [mem], ...
X64OP_SUB, // lock sub [mem], ...
X64OP_SBB, // lock sbb [mem], ...
};
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length)
{
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
out_length = 0;
u8 rex = 0, pg2 = 0;
bool oso = false, lock = false, repne = false, repe = false;
enum : u8
{
LOCK = 0xf0,
REPNE = 0xf2,
REPE = 0xf3,
};
// check prefixes:
for (;; code++, out_length++)
{
switch (const u8 prefix = *code)
{
case LOCK: // group 1
{
if (lock)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length);
}
lock = true;
continue;
}
case REPNE: // group 1
{
if (repne)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length);
}
repne = true;
continue;
}
case REPE: // group 1
{
if (repe)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length);
}
repe = true;
continue;
}
case 0x2e: // group 2
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
{
if (pg2)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2);
}
else
{
pg2 = prefix; // probably, segment register
}
continue;
}
case 0x66: // group 3
{
if (oso)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length);
}
oso = true;
continue;
}
case 0x67: // group 4
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix);
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
return;
}
default:
{
if ((prefix & 0xf0) == 0x40) // check REX prefix
{
if (rex)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex);
}
else
{
rex = prefix;
}
continue;
}
}
}
break;
}
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX);
};
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0);
};
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL);
};
auto get_op_size = [](const u8 rex, const bool oso) -> size_t
{
return rex & 8 ? 8 : (oso ? 2 : 4);
};
auto get_modRM_size = [](const u8* code) -> size_t
{
switch (*code >> 6) // check Mod
{
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
default: return 1;
}
};
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
switch (op1)
{
case 0x0f:
{
out_length++, code++;
switch (op2)
{
case 0x11:
case 0x29:
{
if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb0:
{
if (!oso) // CMPXCHG r8/m8, r8
{
out_op = X64OP_CMPXCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb1:
{
if (true) // CMPXCHG r/m, r (16, 32, 64)
{
out_op = X64OP_CMPXCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x9a:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0x9f:
{
if (!lock) // SETcc
{
out_op = X64OP_STORE;
out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x38:
{
out_length++, code++;
switch (op3)
{
case 0xf0:
case 0xf1:
{
if (!repne) // MOVBE
{
out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
}
break;
}
case 0x20:
{
if (!oso)
{
out_op = X64OP_AND;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x21:
{
if (true)
{
out_op = X64OP_AND;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x80:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
//case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
case 0x81:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_ADD; break;
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
case 0x83:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_ADD; break;
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = X64_IMM8;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + 1;
return;
}
case 0x86:
{
if (!oso) // XCHG r8/m8, r8
{
out_op = X64OP_XCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x87:
{
if (true) // XCHG r/m, r (16, 32, 64)
{
out_op = X64OP_XCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x88:
{
if (!lock && !oso) // MOV r8/m8, r8
{
out_op = X64OP_STORE;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x89:
{
if (!lock) // MOV r/m, r (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8a:
{
if (!lock && !oso) // MOV r8, r8/m8
{
out_op = X64OP_LOAD;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8b:
{
if (!lock) // MOV r, r/m (16, 32, 64)
{
out_op = X64OP_LOAD;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xa4:
{
if (!oso && !lock && !repe && !rex) // MOVS
{
out_op = X64OP_MOVS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP MOVS
{
out_op = X64OP_MOVS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xaa:
{
if (!oso && !lock && !repe && !rex) // STOS
{
out_op = X64OP_STOS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP STOS
{
out_op = X64OP_STOS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xc4: // 3-byte VEX prefix
case 0xc5: // 2-byte VEX prefix
{
// Last prefix byte: op2 or op3
const u8 opx = op1 == 0xc5 ? op2 : op3;
// Implied prefixes
rex |= op2 & 0x80 ? 0 : 0x4; // REX.R
rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ???
oso = (opx & 0x3) == 0x1;
repe = (opx & 0x3) == 0x2;
repne = (opx & 0x3) == 0x3;
const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f;
const u8 vop1 = op1 == 0xc5 ? op3 : code[2];
const u8 vlen = (opx & 0x4) ? 32 : 16;
const u8 vreg = (~opx >> 3) & 0xf;
out_length += op1 == 0xc5 ? 2 : 3;
code += op1 == 0xc5 ? 2 : 3;
if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F
{
case 0x11:
case 0x29:
{
if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = vlen;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if (repe || oso) // VMOVDQU/VMOVDQA mem,reg
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = vlen;
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
case 0xc6:
{
if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8
{
out_op = X64OP_STORE;
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
break;
}
case 0xc7:
{
if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
break;
}
case 0xf6:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_LOAD_TEST; break;
default: out_op = X64OP_NONE; break; // TODO...
}
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
case 0xf7:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_LOAD_TEST; break;
default: out_op = X64OP_NONE; break; // TODO...
}
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
}
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
}
#ifdef _WIN32
typedef CONTEXT x64_context;
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(&(context)->Xmm0)[reg]))
#define EFLAGS(context) ((context)->EFlags)
#define ARG1(context) RCX(context)
#define ARG2(context) RDX(context)
#else
typedef ucontext_t x64_context;
#ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
uint64_t* darwin_x64reg(x64_context *context, int reg)
{
auto *state = &context->uc_mcontext->__ss;
switch(reg)
{
case 0: return &state->__rax;
case 1: return &state->__rcx;
case 2: return &state->__rdx;
case 3: return &state->__rbx;
case 4: return &state->__rsp;
case 5: return &state->__rbp;
case 6: return &state->__rsi;
case 7: return &state->__rdi;
case 8: return &state->__r8;
case 9: return &state->__r9;
case 10: return &state->__r10;
case 11: return &state->__r11;
case 12: return &state->__r12;
case 13: return &state->__r13;
case 14: return &state->__r14;
case 15: return &state->__r15;
case 16: return &state->__rip;
default:
LOG_ERROR(GENERAL, "Invalid register index: %d", reg);
return nullptr;
}
}
#else
static const decltype(REG_RAX) reg_table[] =
{
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
};
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
#endif // __APPLE__
#define ARG1(context) RDI(context)
#define ARG2(context) RSI(context)
#endif
#define RAX(c) (*X64REG((c), 0))
#define RCX(c) (*X64REG((c), 1))
#define RDX(c) (*X64REG((c), 2))
#define RSP(c) (*X64REG((c), 4))
#define RSI(c) (*X64REG((c), 6))
#define RDI(c) (*X64REG((c), 7))
#define RIP(c) (*X64REG((c), 16))
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value)
{
// get x64 reg value (for store operations)
if (reg - X64R_RAX < 16)
{
// load the value from x64 register
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
switch (d_size)
{
case 1: out_value = (u8)reg_value; return true;
case 2: out_value = (u16)reg_value; return true;
case 4: out_value = (u32)reg_value; return true;
case 8: out_value = reg_value; return true;
}
}
else if (reg - X64R_AL < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AL));
return true;
}
else if (reg - X64R_AH < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8);
return true;
}
else if (reg == X64_IMM8)
{
// load the immediate value (assuming it's at the end of the instruction)
const s8 imm_value = *(s8*)(RIP(context) + i_size - 1);
switch (d_size)
{
case 1: out_value = (u8)imm_value; return true;
case 2: out_value = (u16)imm_value; return true; // sign-extended
case 4: out_value = (u32)imm_value; return true; // sign-extended
case 8: out_value = (u64)imm_value; return true; // sign-extended
}
}
else if (reg == X64_IMM16)
{
const s16 imm_value = *(s16*)(RIP(context) + i_size - 2);
switch (d_size)
{
case 2: out_value = (u16)imm_value; return true;
}
}
else if (reg == X64_IMM32)
{
const s32 imm_value = *(s32*)(RIP(context) + i_size - 4);
switch (d_size)
{
case 4: out_value = (u32)imm_value; return true;
case 8: out_value = (u64)imm_value; return true; // sign-extended
}
}
else if (reg == X64R_ECX)
{
out_value = (u32)RCX(context);
return true;
}
else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE)
{
const u32 _cf = EFLAGS(context) & 0x1;
const u32 _zf = EFLAGS(context) & 0x40;
const u32 _sf = EFLAGS(context) & 0x80;
const u32 _of = EFLAGS(context) & 0x800;
const u32 _pf = EFLAGS(context) & 0x4;
const u32 _l = (_sf << 4) ^ _of; // SF != OF
switch (reg & ~1)
{
case X64_BIT_O: out_value = !!_of ^ (reg & 1); break;
case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break;
case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break;
case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break;
case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break;
case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break;
case X64_BIT_L: out_value = !!_l ^ (reg & 1); break;
case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break;
}
return true;
}
LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", (u32)reg, d_size, i_size);
return false;
}
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value)
{
// save x64 reg value (for load operations)
if (reg - X64R_RAX < 16)
{
// save the value into x64 register
switch (d_size)
{
case 1: *X64REG(context, reg - X64R_RAX) = value & 0xff | *X64REG(context, reg - X64R_RAX) & 0xffffff00; return true;
case 2: *X64REG(context, reg - X64R_RAX) = value & 0xffff | *X64REG(context, reg - X64R_RAX) & 0xffff0000; return true;
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
}
}
LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", (u32)reg, d_size, value);
return false;
}
bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y, bool carry = true)
{
switch (d_size)
{
case 1: break;
case 2: break;
case 4: break;
case 8: break;
default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
}
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
const u64 diff = x - y;
const u64 summ = x + y;
if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign)
{
EFLAGS(context) |= 0x1; // set CF
}
else if (carry)
{
EFLAGS(context) &= ~0x1; // clear CF
}
if (x == y)
{
EFLAGS(context) |= 0x40; // set ZF
}
else
{
EFLAGS(context) &= ~0x40; // clear ZF
}
if (diff & sign)
{
EFLAGS(context) |= 0x80; // set SF
}
else
{
EFLAGS(context) &= ~0x80; // clear SF
}
if ((x ^ summ) & (y ^ summ) & sign)
{
EFLAGS(context) |= 0x800; // set OF
}
else
{
EFLAGS(context) &= ~0x800; // clear OF
}
const u8 p1 = (u8)diff ^ ((u8)diff >> 4);
const u8 p2 = p1 ^ (p1 >> 2);
const u8 p3 = p2 ^ (p2 >> 1);
if ((p3 & 1) == 0)
{
EFLAGS(context) |= 0x4; // set PF
}
else
{
EFLAGS(context) &= ~0x4; // clear PF
}
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
{
EFLAGS(context) |= 0x10; // set AF
}
else
{
EFLAGS(context) &= ~0x10; // clear AF
}
return true;
}
size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size)
{
if (op == X64OP_MOVS || op == X64OP_STOS)
{
if (EFLAGS(context) & 0x400 /* direction flag */)
{
// skip reservation bound check (TODO)
return 0;
}
if (reg != X64_NOT_SET) // get "full" access size from RCX register
{
u64 counter;
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
{
return -1;
}
return d_size * counter;
}
}
if (op == X64OP_CMPXCHG)
{
// Detect whether the instruction can't actually modify memory to avoid breaking reservation
u64 cmp, exch;
if (!get_x64_reg_value(context, reg, d_size, i_size, cmp) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, exch))
{
return -1;
}
if (cmp == exch)
{
// skip reservation bound check
return 0;
}
}
return d_size;
}
namespace rsx
{
extern std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
}
bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
{
if (rsx::g_access_violation_handler && rsx::g_access_violation_handler(addr, is_writing))
{
return true;
}
auto code = (const u8*)RIP(context);
x64_op_t op;
x64_reg_t reg;
size_t d_size;
size_t i_size;
// decode single x64 instruction that causes memory access
decode_x64_reg_op(code, op, reg, d_size, i_size);
auto report_opcode = [=]()
{
if (op == X64OP_NONE)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%ph): unsupported opcode: %s", code, *(be_t<v128, 1>*)(code));
}
};
if ((d_size | d_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size);
report_opcode();
return false;
}
// get length of data being accessed
size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size);
if ((a_size | a_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size);
report_opcode();
return false;
}
// check if address is RawSPU MMIO register
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{
auto thread = idm::get<RawSPUThread>((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET);
if (!thread)
{
return false;
}
if (a_size != 4 || !d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size);
report_opcode();
return false;
}
switch (op)
{
case X64OP_LOAD:
case X64OP_LOAD_BE:
case X64OP_LOAD_CMP:
case X64OP_LOAD_TEST:
{
u32 value;
if (is_writing || !thread->read_reg(addr, value))
{
return false;
}
if (op != X64OP_LOAD_BE)
{
value = se_storage<u32>::swap(value);
}
if (op == X64OP_LOAD_CMP)
{
u64 rvalue;
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue))
{
return false;
}
break;
}
if (op == X64OP_LOAD_TEST)
{
u64 rvalue;
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0))
{
return false;
}
break;
}
if (!put_x64_reg_value(context, reg, d_size, value))
{
return false;
}
break;
}
case X64OP_STORE:
case X64OP_STORE_BE:
{
u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
if (!thread->write_reg(addr, op == X64OP_STORE ? se_storage<u32>::swap((u32)reg_value) : (u32)reg_value))
{
return false;
}
break;
}
case X64OP_MOVS: // possibly, TODO
case X64OP_STOS:
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", (u32)op, (u32)reg, d_size, i_size);
report_opcode();
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
return true;
}
// check if fault is caused by the reservation
return vm::reservation_query(addr, (u32)a_size, is_writing, [&]() -> bool
{
// write memory using "privileged" access to avoid breaking reservation
if (!d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size);
report_opcode();
return false;
}
switch (op)
{
case X64OP_STORE:
case X64OP_STORE_BE:
{
if (d_size == 16 && op == X64OP_STORE)
{
if (reg - X64R_XMM0 >= 16)
{
LOG_ERROR(MEMORY, "X64OP_STORE: d_size=16, reg=%d", (u32)reg);
return false;
}
std::memcpy(vm::base_priv(addr), XMMREG(context, reg - X64R_XMM0), 16);
break;
}
u64 reg_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
if (op == X64OP_STORE_BE && d_size == 2)
{
reg_value = se_storage<u16>::swap((u16)reg_value);
}
else if (op == X64OP_STORE_BE && d_size == 4)
{
reg_value = se_storage<u32>::swap((u32)reg_value);
}
else if (op == X64OP_STORE_BE && d_size == 8)
{
reg_value = se_storage<u64>::swap(reg_value);
}
else if (op == X64OP_STORE_BE)
{
return false;
}
if (d_size == 1)
{
*(volatile u8*)vm::base_priv(addr) = (u8)reg_value;
}
else if (d_size == 2 && addr % 2 == 0)
{
*(volatile u16*)vm::base_priv(addr) = (u16)reg_value;
}
else if (d_size == 4 && addr % 4 == 0)
{
*(volatile u32*)vm::base_priv(addr) = (u32)reg_value;
}
else if (d_size == 8 && addr % 8 == 0)
{
*(volatile u64*)vm::base_priv(addr) = (u64)reg_value;
}
else
{
std::memcpy(vm::base_priv(addr), &reg_value, d_size);
}
break;
}
case X64OP_MOVS:
{
if (d_size > 8)
{
LOG_ERROR(MEMORY, "X64OP_MOVS: d_size=%lld", d_size);
return false;
}
if (vm::base(addr) != (void*)RDI(context))
{
LOG_ERROR(MEMORY, "X64OP_MOVS: rdi=0x%llx, rsi=0x%llx, addr=0x%x", (u64)RDI(context), (u64)RSI(context), addr);
return false;
}
u32 a_addr = addr;
while (a_addr >> 12 == addr >> 12)
{
u64 value;
// copy data
std::memcpy(&value, (void*)RSI(context), d_size);
std::memcpy(vm::base_priv(a_addr), &value, d_size);
// shift pointers
if (EFLAGS(context) & 0x400 /* direction flag */)
{
LOG_ERROR(MEMORY, "X64OP_MOVS TODO: reversed direction");
return false;
//RSI(context) -= d_size;
//RDI(context) -= d_size;
//a_addr -= (u32)d_size;
}
else
{
RSI(context) += d_size;
RDI(context) += d_size;
a_addr += (u32)d_size;
}
// decrement counter
if (reg == X64_NOT_SET || !--RCX(context))
{
break;
}
}
if (reg == X64_NOT_SET || !RCX(context))
{
break;
}
// don't skip partially processed instruction
return true;
}
case X64OP_STOS:
{
if (d_size > 8)
{
LOG_ERROR(MEMORY, "X64OP_STOS: d_size=%lld", d_size);
return false;
}
if (vm::base(addr) != (void*)RDI(context))
{
LOG_ERROR(MEMORY, "X64OP_STOS: rdi=0x%llx, addr=0x%x", (u64)RDI(context), addr);
return false;
}
u64 value;
if (!get_x64_reg_value(context, X64R_RAX, d_size, i_size, value))
{
return false;
}
u32 a_addr = addr;
while (a_addr >> 12 == addr >> 12)
{
// fill data with value
std::memcpy(vm::base_priv(a_addr), &value, d_size);
// shift pointers
if (EFLAGS(context) & 0x400 /* direction flag */)
{
LOG_ERROR(MEMORY, "X64OP_STOS TODO: reversed direction");
return false;
//RDI(context) -= d_size;
//a_addr -= (u32)d_size;
}
else
{
RDI(context) += d_size;
a_addr += (u32)d_size;
}
// decrement counter
if (reg == X64_NOT_SET || !--RCX(context))
{
break;
}
}
if (reg == X64_NOT_SET || !RCX(context))
{
break;
}
// don't skip partially processed instruction
return true;
}
case X64OP_XCHG:
{
u64 reg_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
switch (d_size)
{
case 1: reg_value = ((atomic_t<u8>*)vm::base_priv(addr))->exchange((u8)reg_value); break;
case 2: reg_value = ((atomic_t<u16>*)vm::base_priv(addr))->exchange((u16)reg_value); break;
case 4: reg_value = ((atomic_t<u32>*)vm::base_priv(addr))->exchange((u32)reg_value); break;
case 8: reg_value = ((atomic_t<u64>*)vm::base_priv(addr))->exchange((u64)reg_value); break;
default: return false;
}
if (!put_x64_reg_value(context, reg, d_size, reg_value))
{
return false;
}
break;
}
case X64OP_CMPXCHG:
{
u64 reg_value, old_value, cmp_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, cmp_value))
{
return false;
}
switch (d_size)
{
case 1: old_value = ((atomic_t<u8>*)vm::base_priv(addr))->compare_and_swap((u8)cmp_value, (u8)reg_value); break;
case 2: old_value = ((atomic_t<u16>*)vm::base_priv(addr))->compare_and_swap((u16)cmp_value, (u16)reg_value); break;
case 4: old_value = ((atomic_t<u32>*)vm::base_priv(addr))->compare_and_swap((u32)cmp_value, (u32)reg_value); break;
case 8: old_value = ((atomic_t<u64>*)vm::base_priv(addr))->compare_and_swap((u64)cmp_value, (u64)reg_value); break;
default: return false;
}
if (!put_x64_reg_value(context, X64R_RAX, d_size, old_value) || !set_x64_cmp_flags(context, d_size, cmp_value, old_value))
{
return false;
}
break;
}
case X64OP_AND:
{
u64 value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: value = *(atomic_t<u8>*)vm::base_priv(addr) &= (u8)value; break;
case 2: value = *(atomic_t<u16>*)vm::base_priv(addr) &= (u16)value; break;
case 4: value = *(atomic_t<u32>*)vm::base_priv(addr) &= (u32)value; break;
case 8: value = *(atomic_t<u64>*)vm::base_priv(addr) &= (u64)value; break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, value, 0))
{
return false;
}
break;
}
case X64OP_OR:
{
u64 value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: value = *(atomic_t<u8>*)vm::base_priv(addr) |= (u8)value; break;
case 2: value = *(atomic_t<u16>*)vm::base_priv(addr) |= (u16)value; break;
case 4: value = *(atomic_t<u32>*)vm::base_priv(addr) |= (u32)value; break;
case 8: value = *(atomic_t<u64>*)vm::base_priv(addr) |= (u64)value; break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, value, 0))
{
return false;
}
break;
}
case X64OP_XOR:
{
u64 value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: value = *(atomic_t<u8>*)vm::base_priv(addr) ^= (u8)value; break;
case 2: value = *(atomic_t<u16>*)vm::base_priv(addr) ^= (u16)value; break;
case 4: value = *(atomic_t<u32>*)vm::base_priv(addr) ^= (u32)value; break;
case 8: value = *(atomic_t<u64>*)vm::base_priv(addr) ^= (u64)value; break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, value, 0))
{
return false;
}
break;
}
case X64OP_INC:
{
u64 value;
switch (d_size)
{
case 1: value = ++*(atomic_t<u8>*)vm::base_priv(addr); break;
case 2: value = ++*(atomic_t<u16>*)vm::base_priv(addr); break;
case 4: value = ++*(atomic_t<u32>*)vm::base_priv(addr); break;
case 8: value = ++*(atomic_t<u64>*)vm::base_priv(addr); break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, value, 1, false)) // ???
{
return false;
}
break;
}
case X64OP_DEC:
{
u64 value;
switch (d_size)
{
case 1: value = --*(atomic_t<u8>*)vm::base_priv(addr); break;
case 2: value = --*(atomic_t<u16>*)vm::base_priv(addr); break;
case 4: value = --*(atomic_t<u32>*)vm::base_priv(addr); break;
case 8: value = --*(atomic_t<u64>*)vm::base_priv(addr); break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, value, -1, false)) // ???
{
return false;
}
break;
}
case X64OP_ADD:
{
u64 value, new_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: new_value = *(atomic_t<u8>*)vm::base_priv(addr) += (u8)value; break;
case 2: new_value = *(atomic_t<u16>*)vm::base_priv(addr) += (u16)value; break;
case 4: new_value = *(atomic_t<u32>*)vm::base_priv(addr) += (u32)value; break;
case 8: new_value = *(atomic_t<u64>*)vm::base_priv(addr) += (u64)value; break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, new_value, value)) // ???
{
return false;
}
break;
}
case X64OP_ADC:
{
u64 value, new_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: new_value = *(atomic_t<u8>*)vm::base_priv(addr) += (u8)(value + (EFLAGS(context) & 1)); break;
case 2: new_value = *(atomic_t<u16>*)vm::base_priv(addr) += (u16)(value + (EFLAGS(context) & 1)); break;
case 4: new_value = *(atomic_t<u32>*)vm::base_priv(addr) += (u32)(value + (EFLAGS(context) & 1)); break;
case 8: new_value = *(atomic_t<u64>*)vm::base_priv(addr) += (u64)(value + (EFLAGS(context) & 1)); break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, new_value, value + (EFLAGS(context) & 1))) // ???
{
return false;
}
break;
}
case X64OP_SUB:
{
u64 value, new_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: new_value = *(atomic_t<u8>*)vm::base_priv(addr) -= (u8)value; break;
case 2: new_value = *(atomic_t<u16>*)vm::base_priv(addr) -= (u16)value; break;
case 4: new_value = *(atomic_t<u32>*)vm::base_priv(addr) -= (u32)value; break;
case 8: new_value = *(atomic_t<u64>*)vm::base_priv(addr) -= (u64)value; break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, new_value, 0 - value)) // ???
{
return false;
}
break;
}
case X64OP_SBB:
{
u64 value, new_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: new_value = *(atomic_t<u8>*)vm::base_priv(addr) -= (u8)(value + (EFLAGS(context) & 1)); break;
case 2: new_value = *(atomic_t<u16>*)vm::base_priv(addr) -= (u16)(value + (EFLAGS(context) & 1)); break;
case 4: new_value = *(atomic_t<u32>*)vm::base_priv(addr) -= (u32)(value + (EFLAGS(context) & 1)); break;
case 8: new_value = *(atomic_t<u64>*)vm::base_priv(addr) -= (u64)(value + (EFLAGS(context) & 1)); break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, new_value, 0 - (value + (EFLAGS(context) & 1)))) // ???
{
return false;
}
break;
}
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size);
report_opcode();
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
return true;
});
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
}
// Detect leaf function
static bool is_leaf_function(u64 rip)
{
#ifdef _WIN32
DWORD64 base = 0;
if (const auto rtf = RtlLookupFunctionEntry(rip, &base, nullptr))
{
// Access UNWIND_INFO structure
const auto uw = (u8*)(base + rtf->UnwindData);
// Leaf function has zero epilog size and no unwind codes
return uw[0] == 1 && uw[1] == 0 && uw[2] == 0 && uw[3] == 0;
}
// No unwind info implies leaf function
return true;
#else
// TODO
return false;
#endif
}
static thread_local u64 s_tls_ret_pos = 0;
static thread_local u64 s_tls_ret_addr = 0;
[[noreturn]] static void throw_access_violation(const char* cause, u64 addr)
{
if (s_tls_ret_pos) *(u64*)s_tls_ret_pos = s_tls_ret_addr; // Fix stack
vm::throw_access_violation(addr, cause);
std::abort();
}
// Modify context in order to convert hardware exception to C++ exception
static void prepare_throw_access_violation(x64_context* context, const char* cause, u32 address)
{
// Set throw_access_violation() call args (old register values are lost)
ARG1(context) = (u64)cause;
ARG2(context) = address;
// Push the exception address as a "return" address (throw_access_violation() shall not return)
s_tls_ret_addr = RIP(context);
s_tls_ret_pos = is_leaf_function(s_tls_ret_addr) ? 0 : RSP(context) -= sizeof(u64);
RIP(context) = (u64)std::addressof(throw_access_violation);
}
static void _handle_interrupt(x64_context* ctx);
#ifdef _WIN32
static LONG exception_handler(PEXCEPTION_POINTERS pExp)
{
const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::base(0);
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull)
{
vm::g_tls_fault_count++;
if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord))
{
return EXCEPTION_CONTINUE_EXECUTION;
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
static LONG exception_filter(PEXCEPTION_POINTERS pExp)
{
std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode);
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
{
const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::base(0);
const auto cause = pExp->ExceptionRecord->ExceptionInformation[0] != 0 ? "writing" : "reading";
if (!(vm::g_tls_fault_count & (1ull << 63)) && addr64 < 0x100000000ull)
{
vm::g_tls_fault_count |= (1ull << 63);
// Setup throw_access_violation() call on the context
prepare_throw_access_violation(pExp->ContextRecord, cause, (u32)addr64);
return EXCEPTION_CONTINUE_EXECUTION;
}
msg += fmt::format("Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress);
}
else
{
msg += fmt::format("Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress);
for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++)
{
msg += fmt::format("ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]);
}
}
std::vector<HMODULE> modules;
for (DWORD size = 256; modules.size() != size; size /= sizeof(HMODULE))
{
modules.resize(size);
if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size))
{
modules.clear();
break;
}
}
msg += fmt::format("Instruction address: %p.\n", pExp->ContextRecord->Rip);
DWORD64 unwind_base;
if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr))
{
// Get function address
const DWORD64 func_addr = rtf->BeginAddress + unwind_base;
msg += fmt::format("Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress);
// Access UNWIND_INFO structure
//const auto uw = (u8*)(unwind_base + rtf->UnwindData);
}
for (HMODULE module : modules)
{
MODULEINFO info;
if (GetModuleInformation(GetCurrentProcess(), module, &info, sizeof(info)))
{
const DWORD64 base = (DWORD64)info.lpBaseOfDll;
if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage)
{
std::string module_name;
for (DWORD size = 15; module_name.size() != size;)
{
module_name.resize(size);
size = GetModuleBaseNameA(GetCurrentProcess(), module, &module_name.front(), size + 1);
if (!size)
{
module_name.clear();
break;
}
}
msg += fmt::format("Module name: '%s'.\n", module_name);
msg += fmt::format("Module base: %p.\n", info.lpBaseOfDll);
}
}
}
msg += fmt::format("RPCS3 image base: %p.\n", GetModuleHandle(NULL));
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ILLEGAL_INSTRUCTION)
{
msg += "\n"
"Illegal instruction exception occured.\n"
"Note that your CPU must support SSSE3 extension.\n";
}
// TODO: print registers and the callstack
// Report fatal error
report_fatal_error(msg);
return EXCEPTION_CONTINUE_SEARCH;
}
const bool s_exception_handler_set = []() -> bool
{
if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler))
{
report_fatal_error("AddVectoredExceptionHandler() failed.");
std::abort();
}
if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter))
{
report_fatal_error("SetUnhandledExceptionFilter() failed.");
std::abort();
}
return true;
}();
#else
static void signal_handler(int sig, siginfo_t* info, void* uct)
{
x64_context* context = (ucontext_t*)uct;
if (sig == SIGUSR1)
{
return _handle_interrupt(context);
}
#ifdef __APPLE__
const bool is_writing = context->uc_mcontext->__es.__err & 0x2;
#else
const bool is_writing = context->uc_mcontext.gregs[REG_ERR] & 0x2;
#endif
const u64 addr64 = (u64)info->si_addr - (u64)vm::base(0);
const auto cause = is_writing ? "writing" : "reading";
if (addr64 < 0x100000000ull)
{
vm::g_tls_fault_count++;
// Try to process access violation
if (!thread_ctrl::get_current() || !handle_access_violation((u32)addr64, is_writing, context))
{
// Setup throw_access_violation() call on the context
prepare_throw_access_violation(context, cause, (u32)addr64);
}
}
else
{
// TODO (debugger interaction)
report_fatal_error(fmt::format("Segfault %s location %p at %p.", cause, info->si_addr, RIP(context)));
std::abort();
}
}
const bool s_exception_handler_set = []() -> bool
{
struct ::sigaction sa;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = signal_handler;
if (::sigaction(SIGSEGV, &sa, NULL) == -1)
{
std::printf("sigaction(SIGSEGV) failed (0x%x).", errno);
std::abort();
}
sa.sa_sigaction = signal_handler;
if (::sigaction(SIGUSR1, &sa, NULL) == -1)
{
std::printf("sigaction(SIGUSR1) failed (0x%x).", errno);
std::abort();
}
return true;
}();
#endif
const bool s_self_test = []() -> bool
{
// Find ret instruction
if ((*(u8*)throw_access_violation & 0xF6) == 0xC2)
{
std::abort();
}
return true;
}();
#include <thread>
#include <mutex>
#include <condition_variable>
#include <exception>
#include <chrono>
thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr;
struct thread_ctrl::internal
{
std::mutex mutex;
std::condition_variable cond;
std::condition_variable jcv; // Allows simultaneous joining
std::condition_variable icv;
task_stack atexit;
std::exception_ptr exception; // Stored exception
std::chrono::high_resolution_clock::time_point time_limit;
#ifdef _WIN32
DWORD thread_id = 0;
#endif
x64_context _context{};
x64_context* const thread_ctx = &this->_context;
atomic_t<void(*)()> interrupt{}; // Interrupt function
};
thread_local thread_ctrl::internal* g_tls_internal = nullptr;
extern std::condition_variable& get_current_thread_cv()
{
return g_tls_internal->cond;
}
// TODO
extern atomic_t<u32> g_thread_count(0);
extern thread_local std::string(*g_tls_log_prefix)();
void thread_ctrl::start(const std::shared_ptr<thread_ctrl>& ctrl, task_stack task)
{
reinterpret_cast<std::thread&>(ctrl->m_thread) = std::thread([ctrl, task = std::move(task)]
{
try
{
ctrl->initialize();
task.exec();
}
catch (...)
{
ctrl->m_data->exception = std::current_exception();
}
ctrl->finalize();
});
}
void thread_ctrl::wait_start(u64 timeout)
{
m_data->time_limit = std::chrono::high_resolution_clock::now() + std::chrono::microseconds(timeout);
}
bool thread_ctrl::wait_wait(u64 timeout)
{
std::unique_lock<std::mutex> lock(m_data->mutex, std::adopt_lock);
if (timeout && m_data->cond.wait_until(lock, m_data->time_limit) == std::cv_status::timeout)
{
lock.release();
return false;
}
m_data->cond.wait(lock);
lock.release();
return true;
}
void thread_ctrl::test()
{
if (m_data && m_data->exception)
{
std::rethrow_exception(m_data->exception);
}
}
void thread_ctrl::initialize()
{
// Initialize TLS variable
g_tls_this_thread = this;
g_tls_internal = this->m_data;
#ifdef _WIN32
m_data->thread_id = GetCurrentThreadId();
#endif
g_tls_log_prefix = []
{
return g_tls_this_thread->m_name;
};
++g_thread_count;
#if defined(_MSC_VER)
struct THREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
};
// Set thread name for VS debugger
if (IsDebuggerPresent())
{
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = m_name.c_str();
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
}
#endif
}
void thread_ctrl::finalize() noexcept
{
// Disable and discard possible interrupts
interrupt_disable();
test_interrupt();
// TODO
vm::reservation_free();
// Call atexit functions
if (m_data) m_data->atexit.exec();
--g_thread_count;
#ifdef _WIN32
ULONG64 time;
QueryThreadCycleTime(GetCurrentThread(), &time);
LOG_NOTICE(GENERAL, "Thread time: %f Gc", time / 1000000000.);
#endif
}
void thread_ctrl::push_atexit(task_stack task)
{
m_data->atexit.push(std::move(task));
}
thread_ctrl::thread_ctrl(std::string&& name)
: m_name(std::move(name))
{
CHECK_STORAGE(std::thread, m_thread);
#pragma push_macro("new")
#undef new
new (&m_thread) std::thread;
#pragma pop_macro("new")
initialize_once();
}
thread_ctrl::~thread_ctrl()
{
if (reinterpret_cast<std::thread&>(m_thread).joinable())
{
reinterpret_cast<std::thread&>(m_thread).detach();
}
delete m_data;
reinterpret_cast<std::thread&>(m_thread).~thread();
}
void thread_ctrl::initialize_once()
{
if (UNLIKELY(!m_data))
{
auto ptr = new thread_ctrl::internal;
if (!m_data.compare_and_swap_test(nullptr, ptr))
{
delete ptr;
}
}
}
void thread_ctrl::join()
{
// Increase contention counter
const u32 _j = m_joining++;
if (LIKELY(_j >= 0x80000000))
{
// Already joined (signal condition)
m_joining = 0x80000000;
}
else if (LIKELY(_j == 0))
{
// Winner joins the thread
reinterpret_cast<std::thread&>(m_thread).join();
// Notify others if necessary
if (UNLIKELY(m_joining.exchange(0x80000000) != 1))
{
// Serialize for reliable notification
m_data->mutex.lock();
m_data->mutex.unlock();
m_data->jcv.notify_all();
}
}
else
{
// Hard way
std::unique_lock<std::mutex> lock(m_data->mutex);
m_data->jcv.wait(lock, WRAP_EXPR(m_joining >= 0x80000000));
}
if (UNLIKELY(m_data && m_data->exception && !std::uncaught_exception()))
{
std::rethrow_exception(m_data->exception);
}
}
void thread_ctrl::lock()
{
m_data->mutex.lock();
}
void thread_ctrl::unlock()
{
m_data->mutex.unlock();
}
void thread_ctrl::lock_notify()
{
if (UNLIKELY(g_tls_this_thread == this))
{
return;
}
// Serialize for reliable notification, condition is assumed to be changed externally
m_data->mutex.lock();
m_data->mutex.unlock();
m_data->cond.notify_one();
}
void thread_ctrl::notify()
{
m_data->cond.notify_one();
}
void thread_ctrl::set_exception(std::exception_ptr e)
{
m_data->exception = e;
}
static void _handle_interrupt(x64_context* ctx)
{
// Copy context for further use (TODO: is it safe on all platforms?)
g_tls_internal->_context = *ctx;
thread_ctrl::handle_interrupt();
}
static thread_local void(*s_tls_handler)() = nullptr;
[[noreturn]] static void execute_interrupt_handler()
{
// Fix stack for throwing
if (s_tls_ret_pos) s_tls_ret_addr = std::exchange(*(u64*)s_tls_ret_pos, s_tls_ret_addr);
// Run either throwing or returning interrupt handler
s_tls_handler();
// Restore context in the case of return
const auto ctx = g_tls_internal->thread_ctx;
if (s_tls_ret_pos)
{
RIP(ctx) = std::exchange(*(u64*)s_tls_ret_pos, s_tls_ret_addr);
RSP(ctx) += sizeof(u64);
}
else
{
RIP(ctx) = s_tls_ret_addr;
}
#ifdef _WIN32
RtlRestoreContext(ctx, nullptr);
#else
::setcontext(ctx);
#endif
}
void thread_ctrl::handle_interrupt()
{
const auto _this = g_tls_this_thread;
const auto ctx = g_tls_internal->thread_ctx;
if (_this->m_guard & 0x80000000)
{
// Discard interrupt if interrupts are disabled
if (g_tls_internal->interrupt.exchange(nullptr))
{
_this->lock();
_this->unlock();
g_tls_internal->icv.notify_one();
}
}
else if (_this->m_guard == 0)
{
// Set interrupt immediately if no guard set
if (const auto handler = g_tls_internal->interrupt.exchange(nullptr))
{
_this->lock();
_this->unlock();
g_tls_internal->icv.notify_one();
#ifdef _WIN32
// Install function call
s_tls_ret_addr = RIP(ctx);
s_tls_ret_pos = is_leaf_function(s_tls_ret_addr) ? 0 : RSP(ctx) -= sizeof(u64);
s_tls_handler = handler;
RIP(ctx) = (u64)execute_interrupt_handler;
#else
// Call handler directly (TODO: install function call preserving red zone)
return handler();
#endif
}
}
else
{
// Set delayed interrupt otherwise
_this->m_guard |= 0x40000000;
}
#ifdef _WIN32
RtlRestoreContext(ctx, nullptr);
#endif
}
void thread_ctrl::interrupt(void(*handler)())
{
VERIFY(this != g_tls_this_thread); // TODO: self-interrupt
VERIFY(m_data->interrupt.compare_and_swap_test(nullptr, handler)); // TODO: multiple interrupts
#ifdef _WIN32
const auto ctx = m_data->thread_ctx;
const HANDLE nt = OpenThread(THREAD_ALL_ACCESS, FALSE, m_data->thread_id);
VERIFY(nt);
VERIFY(SuspendThread(nt) != -1);
ctx->ContextFlags = CONTEXT_FULL;
VERIFY(GetThreadContext(nt, ctx));
ctx->ContextFlags = CONTEXT_FULL;
const u64 _rip = RIP(ctx);
RIP(ctx) = (u64)std::addressof(thread_ctrl::handle_interrupt);
VERIFY(SetThreadContext(nt, ctx));
RIP(ctx) = _rip;
VERIFY(ResumeThread(nt) != -1);
CloseHandle(nt);
#else
pthread_kill(reinterpret_cast<std::thread&>(m_thread).native_handle(), SIGUSR1);
#endif
std::unique_lock<std::mutex> lock(m_data->mutex, std::adopt_lock);
while (m_data->interrupt)
{
m_data->icv.wait(lock);
}
lock.release();
}
void thread_ctrl::test_interrupt()
{
if (m_guard & 0x80000000)
{
if (m_data->interrupt.exchange(nullptr))
{
lock(), unlock(), m_data->icv.notify_one();
}
return;
}
if (m_guard == 0x40000000 && !std::uncaught_exception())
{
m_guard = 0;
// Execute delayed interrupt handler
if (const auto handler = m_data->interrupt.exchange(nullptr))
{
lock(), unlock(), m_data->icv.notify_one();
return handler();
}
}
}
void thread_ctrl::sleep(u64 useconds)
{
std::this_thread::sleep_for(std::chrono::microseconds(useconds));
}
named_thread::named_thread()
{
}
named_thread::~named_thread()
{
}
std::string named_thread::get_name() const
{
return fmt::format("('%s') Unnamed Thread", typeid(*this).name());
}
void named_thread::start_thread(const std::shared_ptr<void>& _this)
{
// Ensure it's not called from the constructor and the correct object is passed
ENSURES(_this.get() == this);
// Run thread
thread_ctrl::spawn(m_thread, get_name(), [this, _this]()
{
try
{
LOG_TRACE(GENERAL, "Thread started");
on_task();
LOG_TRACE(GENERAL, "Thread ended");
}
catch (const std::exception& e)
{
LOG_FATAL(GENERAL, "%s thrown: %s", typeid(e).name(), e.what());
Emu.Pause();
}
catch (EmulationStopped)
{
LOG_NOTICE(GENERAL, "Thread aborted");
}
on_exit();
});
}