rpcs3/rpcs3/Emu/Cell/lv2/sys_rwlock.cpp

469 lines
8.1 KiB
C++

#include "stdafx.h"
#include "sys_rwlock.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
LOG_CHANNEL(sys_rwlock);
template<> DECLARE(ipc_manager<lv2_rwlock, u64>::g_ipc) {};
error_code sys_rwlock_create(ppu_thread& ppu, vm::ptr<u32> rw_lock_id, vm::ptr<sys_rwlock_attribute_t> attr)
{
vm::temporary_unlock(ppu);
sys_rwlock.warning("sys_rwlock_create(rw_lock_id=*0x%x, attr=*0x%x)", rw_lock_id, attr);
if (!rw_lock_id || !attr)
{
return CELL_EFAULT;
}
const u32 protocol = attr->protocol;
if (protocol == SYS_SYNC_PRIORITY_INHERIT)
sys_rwlock.todo("sys_rwlock_create(): SYS_SYNC_PRIORITY_INHERIT");
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY && protocol != SYS_SYNC_PRIORITY_INHERIT)
{
sys_rwlock.error("sys_rwlock_create(): unknown protocol (0x%x)", protocol);
return CELL_EINVAL;
}
if (auto error = lv2_obj::create<lv2_rwlock>(attr->pshared, attr->ipc_key, attr->flags, [&]
{
return std::make_shared<lv2_rwlock>(protocol, attr->pshared, attr->ipc_key, attr->flags, attr->name_u64);
}))
{
return error;
}
*rw_lock_id = idm::last_id();
return CELL_OK;
}
error_code sys_rwlock_destroy(ppu_thread& ppu, u32 rw_lock_id)
{
vm::temporary_unlock(ppu);
sys_rwlock.warning("sys_rwlock_destroy(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::withdraw<lv2_obj, lv2_rwlock>(rw_lock_id, [](lv2_rwlock& rw) -> CellError
{
if (rw.owner)
{
return CELL_EBUSY;
}
return {};
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret)
{
return rwlock.ret;
}
return CELL_OK;
}
error_code sys_rwlock_rlock(ppu_thread& ppu, u32 rw_lock_id, u64 timeout)
{
vm::temporary_unlock(ppu);
sys_rwlock.trace("sys_rwlock_rlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
if (val <= 0 && !(val & 1))
{
if (rwlock.owner.compare_and_swap_test(val, val - 2))
{
return true;
}
}
std::lock_guard lock(rwlock.mutex);
const s64 _old = rwlock.owner.fetch_op([&](s64& val)
{
if (val <= 0 && !(val & 1))
{
val -= 2;
}
else
{
val |= 1;
}
});
if (_old > 0 || _old & 1)
{
rwlock.rq.emplace_back(&ppu);
rwlock.sleep(ppu, timeout);
return false;
}
return true;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret)
{
return CELL_OK;
}
ppu.gpr[3] = CELL_OK;
while (!ppu.state.test_and_reset(cpu_flag::signal))
{
if (ppu.is_stopped())
{
return 0;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
ppu.check_state();
std::lock_guard lock(rwlock->mutex);
if (!rwlock->unqueue(rwlock->rq, &ppu))
{
timeout = 0;
continue;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
}
else
{
thread_ctrl::wait();
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_rwlock_tryrlock(ppu_thread& ppu, u32 rw_lock_id)
{
vm::temporary_unlock(ppu);
sys_rwlock.trace("sys_rwlock_tryrlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::check<lv2_obj, lv2_rwlock>(rw_lock_id, [](lv2_rwlock& rwlock)
{
auto [_, ok] = rwlock.owner.fetch_op([](s64& val)
{
if (val <= 0 && !(val & 1))
{
val -= 2;
return true;
}
return false;
});
return ok;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (!rwlock.ret)
{
return not_an_error(CELL_EBUSY);
}
return CELL_OK;
}
error_code sys_rwlock_runlock(ppu_thread& ppu, u32 rw_lock_id)
{
vm::temporary_unlock(ppu);
sys_rwlock.trace("sys_rwlock_runlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
if (val < 0 && !(val & 1))
{
if (rwlock.owner.compare_and_swap_test(val, val + 2))
{
return true;
}
}
return false;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret)
{
return CELL_OK;
}
else
{
std::lock_guard lock(rwlock->mutex);
// Remove one reader
const s64 _old = rwlock->owner.fetch_op([](s64& val)
{
if (val < -1)
{
val += 2;
}
});
if (_old >= 0)
{
return CELL_EPERM;
}
if (_old == -1)
{
if (const auto cpu = rwlock->schedule<ppu_thread>(rwlock->wq, rwlock->protocol))
{
rwlock->owner = cpu->id << 1 | !rwlock->wq.empty() | !rwlock->rq.empty();
rwlock->awake(cpu);
}
else
{
rwlock->owner = 0;
verify(HERE), rwlock->rq.empty();
}
}
}
return CELL_OK;
}
error_code sys_rwlock_wlock(ppu_thread& ppu, u32 rw_lock_id, u64 timeout)
{
vm::temporary_unlock(ppu);
sys_rwlock.trace("sys_rwlock_wlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock) -> s64
{
const s64 val = rwlock.owner;
if (val == 0)
{
if (rwlock.owner.compare_and_swap_test(0, ppu.id << 1))
{
return 0;
}
}
else if (val >> 1 == ppu.id)
{
return val;
}
std::lock_guard lock(rwlock.mutex);
const s64 _old = rwlock.owner.fetch_op([&](s64& val)
{
if (val == 0)
{
val = ppu.id << 1;
}
else
{
val |= 1;
}
});
if (_old != 0)
{
rwlock.wq.emplace_back(&ppu);
rwlock.sleep(ppu, timeout);
}
return _old;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret == 0)
{
return CELL_OK;
}
if (rwlock.ret >> 1 == ppu.id)
{
return CELL_EDEADLK;
}
ppu.gpr[3] = CELL_OK;
while (!ppu.state.test_and_reset(cpu_flag::signal))
{
if (ppu.is_stopped())
{
return 0;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
ppu.check_state();
std::lock_guard lock(rwlock->mutex);
if (!rwlock->unqueue(rwlock->wq, &ppu))
{
timeout = 0;
continue;
}
// If the last waiter quit the writer sleep queue, wake blocked readers
if (!rwlock->rq.empty() && rwlock->wq.empty() && rwlock->owner < 0)
{
rwlock->owner.atomic_op([&](s64& owner)
{
owner -= -2 * static_cast<s64>(rwlock->rq.size()); // Add readers to value
owner &= -2; // Clear wait bit
});
// Protocol doesn't matter here since they are all enqueued anyways
while (auto cpu = rwlock->schedule<ppu_thread>(rwlock->rq, SYS_SYNC_FIFO))
{
rwlock->append(cpu);
}
lv2_obj::awake_all();
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
}
else
{
thread_ctrl::wait();
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_rwlock_trywlock(ppu_thread& ppu, u32 rw_lock_id)
{
vm::temporary_unlock(ppu);
sys_rwlock.trace("sys_rwlock_trywlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::check<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
// Return previous value
return val ? val : rwlock.owner.compare_and_swap(0, ppu.id << 1);
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret != 0)
{
if (rwlock.ret >> 1 == ppu.id)
{
return CELL_EDEADLK;
}
return not_an_error(CELL_EBUSY);
}
return CELL_OK;
}
error_code sys_rwlock_wunlock(ppu_thread& ppu, u32 rw_lock_id)
{
vm::temporary_unlock(ppu);
sys_rwlock.trace("sys_rwlock_wunlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
// Return previous value
return val != ppu.id << 1 ? val : rwlock.owner.compare_and_swap(val, 0);
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret >> 1 != ppu.id)
{
return CELL_EPERM;
}
if (rwlock.ret & 1)
{
std::lock_guard lock(rwlock->mutex);
if (auto cpu = rwlock->schedule<ppu_thread>(rwlock->wq, rwlock->protocol))
{
rwlock->owner = cpu->id << 1 | !rwlock->wq.empty() | !rwlock->rq.empty();
rwlock->awake(cpu);
}
else if (auto readers = rwlock->rq.size())
{
while (auto cpu = rwlock->schedule<ppu_thread>(rwlock->rq, SYS_SYNC_FIFO))
{
rwlock->append(cpu);
}
rwlock->owner.release(-2 * static_cast<s64>(readers));
lv2_obj::awake_all();
}
else
{
rwlock->owner = 0;
}
}
return CELL_OK;
}