rpcs3/Utilities/JITLLVM.cpp

803 lines
19 KiB
C++

#include "util/types.hpp"
#include "util/sysinfo.hpp"
#include "JIT.h"
#include "StrFmt.h"
#include "File.h"
#include "util/logs.hpp"
#include "mutex.h"
#include "util/vm.hpp"
#include "util/asm.hpp"
#include "Crypto/unzip.h"
#include <charconv>
LOG_CHANNEL(jit_log, "JIT");
#ifdef LLVM_AVAILABLE
#include <unordered_map>
#ifdef _MSC_VER
#pragma warning(push, 0)
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wall"
#pragma GCC diagnostic ignored "-Wextra"
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wredundant-decls"
#pragma GCC diagnostic ignored "-Weffc++"
#pragma GCC diagnostic ignored "-Wmissing-noreturn"
#endif
#include <llvm/Support/CodeGen.h>
#include "llvm/Support/TargetSelect.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolSize.h"
#ifdef _MSC_VER
#pragma warning(pop)
#else
#pragma GCC diagnostic pop
#endif
const bool jit_initialize = []() -> bool
{
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
llvm::InitializeNativeTargetAsmParser();
LLVMLinkInMCJIT();
return true;
}();
[[noreturn]] static void null(const char* name)
{
fmt::throw_exception("Null function: %s", name);
}
namespace vm
{
extern u8* const g_sudo_addr;
}
static shared_mutex null_mtx;
static std::unordered_map<std::string, u64> null_funcs;
static u64 make_null_function(const std::string& name)
{
if (name.starts_with("__0x"))
{
u32 addr = -1;
auto res = std::from_chars(name.c_str() + 4, name.c_str() + name.size(), addr, 16);
if (res.ec == std::errc() && res.ptr == name.c_str() + name.size() && addr < 0x8000'0000)
{
// Point the garbage to reserved, non-executable memory
return reinterpret_cast<u64>(vm::g_sudo_addr + addr);
}
}
std::lock_guard lock(null_mtx);
if (u64& func_ptr = null_funcs[name]) [[likely]]
{
// Already exists
return func_ptr;
}
else
{
using namespace asmjit;
// Build a "null" function that contains its name
const auto func = build_function_asm<void (*)()>("NULL", [&](native_asm& c, auto& args)
{
#if defined(ARCH_X64)
Label data = c.newLabel();
c.lea(args[0], x86::qword_ptr(data, 0));
c.jmp(Imm(&null));
c.align(AlignMode::kCode, 16);
c.bind(data);
// Copy function name bytes
for (char ch : name)
c.db(ch);
c.db(0);
c.align(AlignMode::kData, 16);
#else
// AArch64 implementation
Label data = c.newLabel();
Label jump_address = c.newLabel();
c.ldr(args[0], arm::ptr(data, 0));
c.ldr(a64::x14, arm::ptr(jump_address, 0));
c.br(a64::x14);
// Data frame
c.align(AlignMode::kCode, 16);
c.bind(jump_address);
c.embedUInt64(reinterpret_cast<u64>(&null));
c.align(AlignMode::kData, 16);
c.bind(data);
c.embed(name.c_str(), name.size());
c.embedUInt8(0U);
c.align(AlignMode::kData, 16);
#endif
});
func_ptr = reinterpret_cast<u64>(func);
return func_ptr;
}
}
struct JITAnnouncer : llvm::JITEventListener
{
void notifyObjectLoaded(u64, const llvm::object::ObjectFile& obj, const llvm::RuntimeDyld::LoadedObjectInfo& info) override
{
using namespace llvm;
object::OwningBinary<object::ObjectFile> debug_obj_ = info.getObjectForDebug(obj);
if (!debug_obj_.getBinary())
{
#ifdef __linux__
jit_log.error("LLVM: Failed to announce JIT events (no debug object)");
#endif
return;
}
const object::ObjectFile& debug_obj = *debug_obj_.getBinary();
for (const auto& [sym, size] : computeSymbolSizes(debug_obj))
{
Expected<object::SymbolRef::Type> type_ = sym.getType();
if (!type_ || *type_ != object::SymbolRef::ST_Function)
continue;
Expected<StringRef> name = sym.getName();
if (!name)
continue;
Expected<u64> addr = sym.getAddress();
if (!addr)
continue;
jit_announce(*addr, size, {name->data(), name->size()});
}
}
};
// Simple memory manager
struct MemoryManager1 : llvm::RTDyldMemoryManager
{
// 256 MiB for code or data
static constexpr u64 c_max_size = 0x20000000 / 2;
// Allocation unit (2M)
static constexpr u64 c_page_size = 2 * 1024 * 1024;
// Reserve 512 MiB
u8* const ptr = static_cast<u8*>(utils::memory_reserve(c_max_size * 2));
u64 code_ptr = 0;
u64 data_ptr = c_max_size;
MemoryManager1() = default;
MemoryManager1(const MemoryManager1&) = delete;
MemoryManager1& operator=(const MemoryManager1&) = delete;
~MemoryManager1() override
{
// Hack: don't release to prevent reuse of address space, see jit_announce
utils::memory_decommit(ptr, c_max_size * 2);
}
llvm::JITSymbol findSymbol(const std::string& name) override
{
u64 addr = RTDyldMemoryManager::getSymbolAddress(name);
if (!addr)
{
addr = make_null_function(name);
if (!addr)
{
fmt::throw_exception("Failed to link '%s'", name);
}
}
return {addr, llvm::JITSymbolFlags::Exported};
}
u8* allocate(u64& oldp, uptr size, uint align, utils::protection prot)
{
if (align > c_page_size)
{
jit_log.fatal("Unsupported alignment (size=0x%x, align=0x%x)", size, align);
return nullptr;
}
const u64 olda = utils::align(oldp, align);
const u64 newp = utils::align(olda + size, align);
if ((newp - 1) / c_max_size != oldp / c_max_size)
{
jit_log.fatal("Out of memory (size=0x%x, align=0x%x)", size, align);
return nullptr;
}
if ((oldp - 1) / c_page_size != (newp - 1) / c_page_size)
{
// Allocate pages on demand
const u64 pagea = utils::align(oldp, c_page_size);
const u64 psize = utils::align(newp - pagea, c_page_size);
utils::memory_commit(this->ptr + pagea, psize, prot);
}
// Update allocation counter
oldp = newp;
return this->ptr + olda;
}
u8* allocateCodeSection(uptr size, uint align, uint /*sec_id*/, llvm::StringRef /*sec_name*/) override
{
return allocate(code_ptr, size, align, utils::protection::wx);
}
u8* allocateDataSection(uptr size, uint align, uint /*sec_id*/, llvm::StringRef /*sec_name*/, bool /*is_ro*/) override
{
return allocate(data_ptr, size, align, utils::protection::rw);
}
bool finalizeMemory(std::string* = nullptr) override
{
return false;
}
void registerEHFrames(u8*, u64, usz) override
{
}
void deregisterEHFrames() override
{
}
};
// Simple memory manager
struct MemoryManager2 : llvm::RTDyldMemoryManager
{
MemoryManager2() = default;
~MemoryManager2() override
{
}
llvm::JITSymbol findSymbol(const std::string& name) override
{
u64 addr = RTDyldMemoryManager::getSymbolAddress(name);
if (!addr)
{
addr = make_null_function(name);
if (!addr)
{
fmt::throw_exception("Failed to link '%s' (MM2)", name);
}
}
return {addr, llvm::JITSymbolFlags::Exported};
}
u8* allocateCodeSection(uptr size, uint align, uint /*sec_id*/, llvm::StringRef /*sec_name*/) override
{
return jit_runtime::alloc(size, align, true);
}
u8* allocateDataSection(uptr size, uint align, uint /*sec_id*/, llvm::StringRef /*sec_name*/, bool /*is_ro*/) override
{
return jit_runtime::alloc(size, align, false);
}
bool finalizeMemory(std::string* = nullptr) override
{
return false;
}
void registerEHFrames(u8*, u64, usz) override
{
}
void deregisterEHFrames() override
{
}
};
// Helper class
class ObjectCache final : public llvm::ObjectCache
{
const std::string& m_path;
const std::add_pointer_t<jit_compiler> m_compiler = nullptr;
public:
ObjectCache(const std::string& path, jit_compiler* compiler = nullptr)
: m_path(path)
, m_compiler(compiler)
{
}
~ObjectCache() override = default;
void notifyObjectCompiled(const llvm::Module* _module, llvm::MemoryBufferRef obj) override
{
std::string name = m_path;
name.append(_module->getName().data());
//fs::file(name, fs::rewrite).write(obj.getBufferStart(), obj.getBufferSize());
name.append(".gz");
if (!obj.getBufferSize())
{
jit_log.error("LLVM: Nothing to write: %s", name);
return;
}
ensure(m_compiler);
fs::file module_file(name, fs::rewrite);
if (!module_file)
{
jit_log.error("LLVM: Failed to create module file: %s (%s)", name, fs::g_tls_error);
return;
}
// Bold assumption about upper limit of space consumption
const usz max_size = obj.getBufferSize() * 4;
if (!m_compiler->add_sub_disk_space(0 - max_size))
{
jit_log.error("LLVM: Failed to create module file: %s (not enough disk space left)", name);
return;
}
if (!zip(obj.getBufferStart(), obj.getBufferSize(), module_file))
{
jit_log.error("LLVM: Failed to compress module: %s", _module->getName().data());
module_file.close();
fs::remove_file(name);
return;
}
jit_log.trace("LLVM: Created module: %s", _module->getName().data());
// Restore space that was overestimated
ensure(m_compiler->add_sub_disk_space(max_size - module_file.size()));
}
static std::unique_ptr<llvm::MemoryBuffer> load(const std::string& path)
{
if (fs::file cached{path + ".gz", fs::read})
{
const std::vector<u8> cached_data = cached.to_vector<u8>();
if (cached_data.empty()) [[unlikely]]
{
return nullptr;
}
const std::vector<u8> out = unzip(cached_data);
if (out.empty())
{
jit_log.error("LLVM: Failed to unzip module: '%s'", path);
return nullptr;
}
auto buf = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(out.size());
std::memcpy(buf->getBufferStart(), out.data(), out.size());
return buf;
}
if (fs::file cached{path, fs::read})
{
if (cached.size() == 0) [[unlikely]]
{
return nullptr;
}
auto buf = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(cached.size());
cached.read(buf->getBufferStart(), buf->getBufferSize());
return buf;
}
return nullptr;
}
std::unique_ptr<llvm::MemoryBuffer> getObject(const llvm::Module* _module) override
{
std::string path = m_path;
path.append(_module->getName().data());
if (auto buf = load(path))
{
jit_log.notice("LLVM: Loaded module: %s", _module->getName().data());
return buf;
}
return nullptr;
}
};
std::string jit_compiler::cpu(const std::string& _cpu)
{
std::string m_cpu = _cpu;
if (m_cpu.empty())
{
m_cpu = llvm::sys::getHostCPUName().str();
if (m_cpu == "generic")
{
// Try to detect a best match based on other criteria
m_cpu = fallback_cpu_detection();
}
if (m_cpu == "sandybridge" ||
m_cpu == "ivybridge" ||
m_cpu == "haswell" ||
m_cpu == "broadwell" ||
m_cpu == "skylake" ||
m_cpu == "skylake-avx512" ||
m_cpu == "cascadelake" ||
m_cpu == "cooperlake" ||
m_cpu == "cannonlake" ||
m_cpu == "icelake" ||
m_cpu == "icelake-client" ||
m_cpu == "icelake-server" ||
m_cpu == "tigerlake" ||
m_cpu == "rocketlake" ||
m_cpu == "alderlake" ||
m_cpu == "raptorlake" ||
m_cpu == "meteorlake")
{
// Downgrade if AVX is not supported by some chips
if (!utils::has_avx())
{
m_cpu = "nehalem";
}
}
if (m_cpu == "skylake-avx512" ||
m_cpu == "cascadelake" ||
m_cpu == "cooperlake" ||
m_cpu == "cannonlake" ||
m_cpu == "icelake" ||
m_cpu == "icelake-client" ||
m_cpu == "icelake-server" ||
m_cpu == "tigerlake" ||
m_cpu == "rocketlake")
{
// Downgrade if AVX-512 is disabled or not supported
if (!utils::has_avx512())
{
m_cpu = "skylake";
}
}
if (m_cpu == "znver1" && utils::has_clwb())
{
// Upgrade
m_cpu = "znver2";
}
if ((m_cpu == "znver3" || m_cpu == "goldmont" || m_cpu == "alderlake" || m_cpu == "raptorlake" || m_cpu == "meteorlake") && utils::has_avx512_icl())
{
// Upgrade
m_cpu = "icelake-client";
}
if (m_cpu == "goldmont" && utils::has_avx2())
{
// Upgrade
m_cpu = "alderlake";
}
}
return m_cpu;
}
std::string jit_compiler::triple1()
{
#if defined(_WIN32)
return llvm::Triple::normalize(llvm::sys::getProcessTriple());
#elif defined(__APPLE__) && defined(ARCH_X64)
return llvm::Triple::normalize("x86_64-unknown-linux-gnu");
#elif defined(__APPLE__) && defined(ARCH_ARM64)
return llvm::Triple::normalize("aarch64-unknown-linux-android"); // Set environment to android to reserve x18
#else
return llvm::Triple::normalize(llvm::sys::getProcessTriple());
#endif
}
std::string jit_compiler::triple2()
{
#if defined(_WIN32) && defined(ARCH_X64)
return llvm::Triple::normalize("x86_64-unknown-linux-gnu");
#elif defined(_WIN32) && defined(ARCH_ARM64)
return llvm::Triple::normalize("aarch64-unknown-linux-gnu");
#elif defined(__APPLE__) && defined(ARCH_X64)
return llvm::Triple::normalize("x86_64-unknown-linux-gnu");
#elif defined(__APPLE__) && defined(ARCH_ARM64)
return llvm::Triple::normalize("aarch64-unknown-linux-android"); // Set environment to android to reserve x18
#else
return llvm::Triple::normalize(llvm::sys::getProcessTriple());
#endif
}
bool jit_compiler::add_sub_disk_space(ssz space)
{
if (space >= 0)
{
ensure(m_disk_space.fetch_add(space) < ~static_cast<usz>(space));
return true;
}
return m_disk_space.fetch_op([sub_size = static_cast<usz>(0 - space)](usz& val)
{
if (val >= sub_size)
{
val -= sub_size;
return true;
}
return false;
}).second;
}
jit_compiler::jit_compiler(const std::unordered_map<std::string, u64>& _link, const std::string& _cpu, u32 flags)
: m_context(new llvm::LLVMContext)
, m_cpu(cpu(_cpu))
{
std::string result;
auto null_mod = std::make_unique<llvm::Module> ("null_", *m_context);
null_mod->setTargetTriple(jit_compiler::triple1());
std::unique_ptr<llvm::RTDyldMemoryManager> mem;
if (_link.empty())
{
// Auxiliary JIT (does not use custom memory manager, only writes the objects)
if (flags & 0x1)
{
mem = std::make_unique<MemoryManager1>();
}
else
{
mem = std::make_unique<MemoryManager2>();
null_mod->setTargetTriple(jit_compiler::triple2());
}
}
else
{
mem = std::make_unique<MemoryManager1>();
}
{
m_engine.reset(llvm::EngineBuilder(std::move(null_mod))
.setErrorStr(&result)
.setEngineKind(llvm::EngineKind::JIT)
.setMCJITMemoryManager(std::move(mem))
#if LLVM_VERSION_MAJOR < 18
.setOptLevel(llvm::CodeGenOpt::Aggressive)
#else
.setOptLevel(llvm::CodeGenOptLevel::Aggressive)
#endif
.setCodeModel(flags & 0x2 ? llvm::CodeModel::Large : llvm::CodeModel::Small)
#ifdef __APPLE__
//.setCodeModel(llvm::CodeModel::Large)
#endif
.setRelocationModel(llvm::Reloc::Model::PIC_)
.setMCPU(m_cpu)
.create());
}
if (!_link.empty())
{
for (auto&& [name, addr] : _link)
{
m_engine->updateGlobalMapping(name, addr);
}
}
if (!_link.empty() || !(flags & 0x1))
{
m_engine->RegisterJITEventListener(llvm::JITEventListener::createIntelJITEventListener());
m_engine->RegisterJITEventListener(new JITAnnouncer);
}
if (!m_engine)
{
fmt::throw_exception("LLVM: Failed to create ExecutionEngine: %s", result);
}
fs::device_stat stats{};
if (fs::statfs(fs::get_cache_dir(), stats))
{
m_disk_space = stats.avail_free / 4;
}
}
jit_compiler::~jit_compiler()
{
}
void jit_compiler::add(std::unique_ptr<llvm::Module> _module, const std::string& path)
{
ObjectCache cache{path, this};
m_engine->setObjectCache(&cache);
const auto ptr = _module.get();
m_engine->addModule(std::move(_module));
m_engine->generateCodeForModule(ptr);
m_engine->setObjectCache(nullptr);
for (auto& func : ptr->functions())
{
// Delete IR to lower memory consumption
func.deleteBody();
}
}
void jit_compiler::add(std::unique_ptr<llvm::Module> _module)
{
const auto ptr = _module.get();
m_engine->addModule(std::move(_module));
m_engine->generateCodeForModule(ptr);
for (auto& func : ptr->functions())
{
// Delete IR to lower memory consumption
func.deleteBody();
}
}
bool jit_compiler::add(const std::string& path)
{
auto cache = ObjectCache::load(path);
if (!cache)
{
jit_log.error("ObjectCache: Failed to read file. (path='%s', error=%s)", path, fs::g_tls_error);
return false;
}
if (auto object_file = llvm::object::ObjectFile::createObjectFile(*cache))
{
m_engine->addObjectFile(llvm::object::OwningBinary<llvm::object::ObjectFile>(std::move(*object_file), std::move(cache)));
jit_log.trace("ObjectCache: Successfully added %s", path);
return true;
}
else
{
jit_log.error("ObjectCache: Adding failed: %s", path);
return false;
}
}
bool jit_compiler::check(const std::string& path)
{
if (auto cache = ObjectCache::load(path))
{
if (auto object_file = llvm::object::ObjectFile::createObjectFile(*cache))
{
return true;
}
if (fs::remove_file(path))
{
jit_log.error("ObjectCache: Removed damaged file: %s", path);
}
}
return false;
}
void jit_compiler::update_global_mapping(const std::string& name, u64 addr)
{
m_engine->updateGlobalMapping(name, addr);
}
void jit_compiler::fin()
{
m_engine->finalizeObject();
}
u64 jit_compiler::get(const std::string& name)
{
return m_engine->getGlobalValueAddress(name);
}
llvm::StringRef fallback_cpu_detection()
{
#if defined (ARCH_X64)
// If we got here we either have a very old and outdated CPU or a new CPU that has not been seen by LLVM yet.
const std::string brand = utils::get_cpu_brand();
const auto family = utils::get_cpu_family();
const auto model = utils::get_cpu_model();
if (brand.starts_with("AMD"))
{
switch (family)
{
case 0x10:
return "amdfam10";
case 0x15:
// Bulldozer class, includes piledriver, excavator, steamroller, etc
return utils::has_avx2() ? "bdver4" : "bdver1";
case 0x17:
case 0x18:
// No major differences between znver1 and znver2, return the lesser
return "znver1";
case 0x19:
// Models 0-Fh are zen3 as are 20h-60h. The rest we can assume are zen4
return ((model >= 0x20 && model <= 0x60) || model < 0x10)
? "znver3"
: "znver4";
case 0x1a:
// Only one generation in family 1a so far, zen5, which we do not support yet.
// Return zen4 as a workaround until the next LLVM upgrade.
return "znver4";
default:
return utils::has_avx512()
? "znver4"
: "znver3";
}
}
else if (brand.find("Intel") != std::string::npos)
{
if (!utils::has_avx())
{
return "nehalem";
}
if (!utils::has_avx2())
{
return "ivybridge";
}
if (!utils::has_avx512())
{
return "skylake";
}
if (utils::has_avx512_icl())
{
return "cannonlake";
}
return "icelake-client";
}
else if (brand.starts_with("VirtualApple"))
{
// No AVX. This will change in MacOS 15+, at which point we may revise this.
return utils::has_avx() ? "haswell" : "nehalem";
}
#elif defined(ARCH_ARM64)
// TODO: Read the data from /proc/cpuinfo. ARM CPU registers are not accessible from usermode.
// This will be a pain when supporting snapdragon on windows but we'll cross that bridge when we get there.
// Require at least armv8-2a. Older chips are going to be useless anyway.
return "cortex-a78";
#endif
// Failed to guess, use generic fallback
return "generic";
}
#endif // LLVM_AVAILABLE