rpcs3/Utilities/lockless.h
Nekotekina ac712bf4e3 lf_queue: remove explicit notify(), notify in push() instead
Should be cheap enough now if there are no waiters.
2019-10-12 22:45:17 +03:00

540 lines
9.8 KiB
C++

#pragma once
#include "types.h"
#include "util/atomic.hpp"
//! Simple sizeless array base for concurrent access. Cannot shrink, only growths automatically.
//! There is no way to know the current size. The smaller index is, the faster it's accessed.
//!
//! T is the type of elements. Currently, default constructor of T shall be constexpr.
//! N is initial element count, available without any memory allocation and only stored contiguously.
template <typename T, std::size_t N>
class lf_array
{
// Data (default-initialized)
T m_data[N]{};
// Next array block
atomic_t<lf_array*> m_next{};
public:
constexpr lf_array() = default;
~lf_array()
{
for (auto ptr = m_next.raw(); UNLIKELY(ptr);)
{
delete std::exchange(ptr, std::exchange(ptr->m_next.raw(), nullptr));
}
}
T& operator [](std::size_t index)
{
if (LIKELY(index < N))
{
return m_data[index];
}
else if (UNLIKELY(!m_next))
{
// Create new array block. It's not a full-fledged once-synchronization, unlikely needed.
for (auto _new = new lf_array, ptr = this; UNLIKELY(ptr);)
{
// Install the pointer. If failed, go deeper.
ptr = ptr->m_next.compare_and_swap(nullptr, _new);
}
}
// Access recursively
return (*m_next)[index - N];
}
};
//! Simple lock-free FIFO queue base. Based on lf_array<T, N> itself. Currently uses 32-bit counters.
//! There is no "push_end" or "pop_begin" provided, the queue element must signal its state on its own.
template<typename T, std::size_t N>
class lf_fifo : public lf_array<T, N>
{
struct alignas(8) ctrl_t
{
u32 push;
u32 pop;
};
atomic_t<ctrl_t> m_ctrl{};
public:
constexpr lf_fifo() = default;
// Get current "push" position
u32 size() const
{
return m_ctrl.load().push;
}
// Acquire the place for one or more elements.
u32 push_begin(u32 count = 1)
{
return std::bit_cast<atomic_t<u64>*>(&m_ctrl)->fetch_add(count); // Hack
}
// Get current "pop" position
u32 peek() const
{
return m_ctrl.load().pop;
}
// Acknowledge processed element, return number of the next one.
// Perform clear if possible, zero is returned in this case.
u32 pop_end(u32 count = 1)
{
return m_ctrl.atomic_op([&](ctrl_t& ctrl)
{
ctrl.pop += count;
if (ctrl.pop == ctrl.push)
{
// Clean if possible
ctrl.push = 0;
ctrl.pop = 0;
}
return ctrl.pop;
});
}
};
//! Simple lock-free map. Based on lf_array<>. All elements are accessible, implicitly initialized.
template<typename K, typename T, typename Hash = value_hash<K>, std::size_t Size = 256>
class lf_hashmap
{
struct pair_t
{
// Default-constructed key means "no key"
atomic_t<K> key{};
T value{};
};
//
lf_array<pair_t, Size> m_data{};
// Value for default-constructed key
T m_default_key_data{};
public:
constexpr lf_hashmap() = default;
// Access element (added implicitly)
T& operator [](const K& key)
{
if (UNLIKELY(key == K{}))
{
return m_default_key_data;
}
// Calculate hash and array position
for (std::size_t pos = Hash{}(key) % Size;; pos += Size)
{
// Access the array
auto& pair = m_data[pos];
// Check the key value (optimistic)
if (LIKELY(pair.key == key) || pair.key.compare_and_swap_test(K{}, key))
{
return pair.value;
}
}
}
};
// Helper type, linked list element
template <typename T>
class lf_queue_item final
{
lf_queue_item* m_link = nullptr;
T m_data;
template <typename U>
friend class lf_queue_iterator;
template <typename U>
friend class lf_queue_slice;
template <typename U>
friend class lf_queue;
constexpr lf_queue_item() = default;
template <typename... Args>
constexpr lf_queue_item(lf_queue_item* link, Args&&... args)
: m_link(link)
, m_data(std::forward<Args>(args)...)
{
}
public:
lf_queue_item(const lf_queue_item&) = delete;
lf_queue_item& operator=(const lf_queue_item&) = delete;
~lf_queue_item()
{
for (lf_queue_item* ptr = m_link; ptr;)
{
delete std::exchange(ptr, std::exchange(ptr->m_link, nullptr));
}
}
};
// Forward iterator: non-owning pointer to the list element in lf_queue_slice<>
template <typename T>
class lf_queue_iterator
{
lf_queue_item<T>* m_ptr = nullptr;
template <typename U>
friend class lf_queue_slice;
public:
constexpr lf_queue_iterator() = default;
bool operator ==(const lf_queue_iterator& rhs) const
{
return m_ptr == rhs.m_ptr;
}
bool operator !=(const lf_queue_iterator& rhs) const
{
return m_ptr != rhs.m_ptr;
}
T& operator *() const
{
return m_ptr->m_data;
}
T* operator ->() const
{
return &m_ptr->m_data;
}
lf_queue_iterator& operator ++()
{
m_ptr = m_ptr->m_link;
return *this;
}
lf_queue_iterator operator ++(int)
{
lf_queue_iterator result;
result.m_ptr = m_ptr;
m_ptr = m_ptr->m_link;
return result;
}
};
// Owning pointer to the linked list taken from the lf_queue<>
template <typename T>
class lf_queue_slice
{
lf_queue_item<T>* m_head = nullptr;
template <typename U>
friend class lf_queue;
public:
constexpr lf_queue_slice() = default;
lf_queue_slice(const lf_queue_slice&) = delete;
lf_queue_slice(lf_queue_slice&& r) noexcept
: m_head(r.m_head)
{
r.m_head = nullptr;
}
lf_queue_slice& operator =(const lf_queue_slice&) = delete;
lf_queue_slice& operator =(lf_queue_slice&& r) noexcept
{
if (this != &r)
{
delete m_head;
m_head = r.m_head;
r.m_head = nullptr;
}
return *this;
}
~lf_queue_slice()
{
delete m_head;
}
T& operator *() const
{
return m_head->m_data;
}
T* operator ->() const
{
return &m_head->m_data;
}
explicit operator bool() const
{
return m_head != nullptr;
}
T* get() const
{
return m_head ? &m_head->m_data : nullptr;
}
lf_queue_iterator<T> begin() const
{
lf_queue_iterator<T> result;
result.m_ptr = m_head;
return result;
}
lf_queue_iterator<T> end() const
{
return {};
}
lf_queue_slice& pop_front()
{
delete std::exchange(m_head, std::exchange(m_head->m_link, nullptr));
return *this;
}
};
class lf_queue_base
{
protected:
atomic_t<std::uintptr_t> m_head = 0;
};
// Linked list-based multi-producer queue (the consumer drains the whole queue at once)
template <typename T>
class lf_queue : public lf_queue_base
{
using lf_queue_base::m_head;
// Extract all elements and reverse element order (FILO to FIFO)
lf_queue_item<T>* reverse() noexcept
{
if (auto* head = m_head.load() ? reinterpret_cast<lf_queue_item<T>*>(m_head.exchange(0)) : nullptr)
{
if (auto* prev = head->m_link)
{
head->m_link = nullptr;
do
{
auto* pprev = prev->m_link;
prev->m_link = head;
head = std::exchange(prev, pprev);
}
while (prev);
}
return head;
}
return nullptr;
}
public:
constexpr lf_queue() = default;
~lf_queue()
{
delete reinterpret_cast<lf_queue_item<T>*>(m_head.load());
}
void wait() noexcept
{
if (m_head == 0)
{
m_head.wait(0);
}
}
template <typename... Args>
void push(Args&&... args)
{
auto _old = m_head.load();
auto* item = new lf_queue_item<T>(reinterpret_cast<lf_queue_item<T>*>(_old), std::forward<Args>(args)...);
while (!m_head.compare_exchange(_old, reinterpret_cast<std::uint64_t>(item)))
{
item->m_link = reinterpret_cast<lf_queue_item<T>*>(_old);
}
if (!_old)
{
// Notify only if queue was empty
m_head.notify_one();
}
}
// Withdraw the list, supports range-for loop: for (auto&& x : y.pop_all()) ...
lf_queue_slice<T> pop_all()
{
lf_queue_slice<T> result;
result.m_head = reverse();
return result;
}
// Apply func(data) to each element, return the total length
template <typename F>
std::size_t apply(F func)
{
std::size_t count = 0;
for (auto slice = pop_all(); slice; slice.pop_front())
{
std::invoke(func, *slice);
}
return count;
}
// Iterator that enables direct endless range-for loop: for (auto* ptr : queue) ...
class iterator
{
lf_queue* _this = nullptr;
lf_queue_slice<T> m_data;
public:
constexpr iterator() = default;
explicit iterator(lf_queue* _this)
: _this(_this)
{
m_data = _this->pop_all();
}
bool operator !=(const iterator& rhs) const
{
return _this != rhs._this;
}
T* operator *() const
{
return m_data ? m_data.get() : nullptr;
}
iterator& operator ++()
{
if (m_data)
{
m_data.pop_front();
}
if (!m_data)
{
m_data = _this->pop_all();
if (!m_data)
{
_this->wait();
m_data = _this->pop_all();
}
}
return *this;
}
};
iterator begin()
{
return iterator{this};
}
iterator end()
{
return iterator{};
}
};
// Assignable lock-free thread-safe value of any type (memory-inefficient)
template <typename T>
class lf_value final
{
atomic_t<lf_value*> m_head;
T m_data;
public:
template <typename... Args>
explicit constexpr lf_value(Args&&... args)
: m_head(this)
, m_data(std::forward<Args>(args)...)
{
}
~lf_value()
{
// All values are kept in the queue until the end
for (lf_value* ptr = m_head.load(); ptr != this;)
{
delete std::exchange(ptr, std::exchange(ptr->m_head.raw(), ptr));
}
}
// Get current head, allows to inspect old values
[[nodiscard]] const lf_value* head() const
{
return m_head.load();
}
// Inspect the initial (oldest) value
[[nodiscard]] const T& first() const
{
return m_data;
}
[[nodiscard]] const T& get() const
{
return m_head.load()->m_data;
}
[[nodiscard]] operator const T&() const
{
return m_head.load()->m_data;
}
// Construct new value in-place
template <typename... Args>
const T& assign(Args&&... args)
{
lf_value* val = new lf_value(std::forward<Args>(args)...);
lf_value* old = m_head.load();
do
{
val->m_head = old;
}
while (!m_head.compare_exchange(old, val));
return val->m_data;
}
// Copy-assign new value
const T& operator =(const T& value)
{
return assign(value);
}
// Move-assign new value
const T& operator =(T&& value)
{
return assign(std::move(value));
}
};