rpcs3/Utilities/types.h
2016-07-16 14:45:57 +03:00

554 lines
10 KiB
C++

#pragma once
#include <cstdint>
#include <climits>
#include <type_traits>
using schar = signed char;
using uchar = unsigned char;
using ushort = unsigned short;
using uint = unsigned int;
using ulong = unsigned long;
using ullong = unsigned long long;
using llong = long long;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using s8 = std::int8_t;
using s16 = std::int16_t;
using s32 = std::int32_t;
using s64 = std::int64_t;
namespace gsl
{
enum class byte : u8;
}
template<typename T1, typename T2>
struct bijective_pair
{
T1 v1;
T2 v2;
};
template<typename T, std::size_t Align = alignof(T), std::size_t Size = sizeof(T)>
struct se_storage;
template<typename T, bool Se = true, std::size_t Align = alignof(T)>
class se_t;
// Specialization with static constexpr bijective_pair<T1, T2> map[] member expected
template<typename T1, typename T2>
struct bijective;
template<typename T, std::size_t Size = sizeof(T)>
struct atomic_storage;
template<typename T1, typename T2, typename = void>
struct atomic_add;
template<typename T1, typename T2, typename = void>
struct atomic_sub;
template<typename T1, typename T2, typename = void>
struct atomic_and;
template<typename T1, typename T2, typename = void>
struct atomic_or;
template<typename T1, typename T2, typename = void>
struct atomic_xor;
template<typename T, typename = void>
struct atomic_pre_inc;
template<typename T, typename = void>
struct atomic_post_inc;
template<typename T, typename = void>
struct atomic_pre_dec;
template<typename T, typename = void>
struct atomic_post_dec;
template<typename T1, typename T2, typename = void>
struct atomic_test_and_set;
template<typename T1, typename T2, typename = void>
struct atomic_test_and_reset;
template<typename T1, typename T2, typename = void>
struct atomic_test_and_complement;
template<typename T>
class atomic_t;
#ifdef _MSC_VER
using std::void_t;
#else
namespace void_details
{
template<class... >
struct make_void
{
using type = void;
};
}
template<class... T> using void_t = typename void_details::make_void<T...>::type;
#endif
// Extract T::simple_type if available, remove cv qualifiers
template<typename T, typename = void>
struct simple_type_helper
{
using type = typename std::remove_cv<T>::type;
};
template<typename T>
struct simple_type_helper<T, void_t<typename T::simple_type>>
{
using type = typename T::simple_type;
};
template<typename T> using simple_t = typename simple_type_helper<T>::type;
// Bool type equivalent
class b8
{
u8 m_value;
public:
b8() = default;
constexpr b8(bool value)
: m_value(value)
{
}
constexpr operator bool() const
{
return m_value != 0;
}
};
// Bool wrapper for restricting bool result conversions
struct explicit_bool_t
{
const bool value;
constexpr explicit_bool_t(bool value)
: value(value)
{
}
explicit constexpr operator bool() const
{
return value;
}
};
#ifndef _MSC_VER
using u128 = __uint128_t;
using s128 = __int128_t;
#else
#include "intrin.h"
// Unsigned 128-bit integer implementation (TODO)
struct alignas(16) u128
{
u64 lo, hi;
u128() = default;
constexpr u128(u64 l)
: lo(l)
, hi(0)
{
}
friend u128 operator +(const u128& l, const u128& r)
{
u128 value;
_addcarry_u64(_addcarry_u64(0, r.lo, l.lo, &value.lo), r.hi, l.hi, &value.hi);
return value;
}
friend u128 operator +(const u128& l, u64 r)
{
u128 value;
_addcarry_u64(_addcarry_u64(0, r, l.lo, &value.lo), l.hi, 0, &value.hi);
return value;
}
friend u128 operator +(u64 l, const u128& r)
{
u128 value;
_addcarry_u64(_addcarry_u64(0, r.lo, l, &value.lo), 0, r.hi, &value.hi);
return value;
}
friend u128 operator -(const u128& l, const u128& r)
{
u128 value;
_subborrow_u64(_subborrow_u64(0, r.lo, l.lo, &value.lo), r.hi, l.hi, &value.hi);
return value;
}
friend u128 operator -(const u128& l, u64 r)
{
u128 value;
_subborrow_u64(_subborrow_u64(0, r, l.lo, &value.lo), 0, l.hi, &value.hi);
return value;
}
friend u128 operator -(u64 l, const u128& r)
{
u128 value;
_subborrow_u64(_subborrow_u64(0, r.lo, l, &value.lo), r.hi, 0, &value.hi);
return value;
}
u128 operator +() const
{
return *this;
}
u128 operator -() const
{
u128 value;
_subborrow_u64(_subborrow_u64(0, lo, 0, &value.lo), hi, 0, &value.hi);
return value;
}
u128& operator ++()
{
_addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi);
return *this;
}
u128 operator ++(int)
{
u128 value = *this;
_addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi);
return value;
}
u128& operator --()
{
_subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi);
return *this;
}
u128 operator --(int)
{
u128 value = *this;
_subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi);
return value;
}
u128 operator ~() const
{
u128 value;
value.lo = ~lo;
value.hi = ~hi;
return value;
}
friend u128 operator &(const u128& l, const u128& r)
{
u128 value;
value.lo = l.lo & r.lo;
value.hi = l.hi & r.hi;
return value;
}
friend u128 operator |(const u128& l, const u128& r)
{
u128 value;
value.lo = l.lo | r.lo;
value.hi = l.hi | r.hi;
return value;
}
friend u128 operator ^(const u128& l, const u128& r)
{
u128 value;
value.lo = l.lo ^ r.lo;
value.hi = l.hi ^ r.hi;
return value;
}
u128& operator +=(const u128& r)
{
_addcarry_u64(_addcarry_u64(0, r.lo, lo, &lo), r.hi, hi, &hi);
return *this;
}
u128& operator +=(uint64_t r)
{
_addcarry_u64(_addcarry_u64(0, r, lo, &lo), 0, hi, &hi);
return *this;
}
u128& operator &=(const u128& r)
{
lo &= r.lo;
hi &= r.hi;
return *this;
}
u128& operator |=(const u128& r)
{
lo |= r.lo;
hi |= r.hi;
return *this;
}
u128& operator ^=(const u128& r)
{
lo ^= r.lo;
hi ^= r.hi;
return *this;
}
};
// Signed 128-bit integer implementation (TODO)
struct alignas(16) s128
{
u64 lo;
s64 hi;
s128() = default;
constexpr s128(s64 l)
: hi(l >> 63)
, lo(l)
{
}
constexpr s128(u64 l)
: hi(0)
, lo(l)
{
}
};
#endif
namespace std
{
/* Let's hack. */
template<>
struct is_integral<u128> : true_type
{
};
template<>
struct is_integral<s128> : true_type
{
};
template<>
struct make_unsigned<u128>
{
using type = u128;
};
template<>
struct make_unsigned<s128>
{
using type = u128;
};
template<>
struct make_signed<u128>
{
using type = s128;
};
template<>
struct make_signed<s128>
{
using type = s128;
};
}
static_assert(std::is_arithmetic<u128>::value && std::is_integral<u128>::value && alignof(u128) == 16 && sizeof(u128) == 16, "Wrong u128 implementation");
static_assert(std::is_arithmetic<s128>::value && std::is_integral<s128>::value && alignof(s128) == 16 && sizeof(s128) == 16, "Wrong s128 implementation");
union alignas(2) f16
{
u16 _u16;
u8 _u8[2];
explicit f16(u16 raw)
{
_u16 = raw;
}
explicit operator float() const
{
// See http://stackoverflow.com/a/26779139
// The conversion doesn't handle NaN/Inf
u32 raw = ((_u16 & 0x8000) << 16) | // Sign (just moved)
(((_u16 & 0x7c00) + 0x1C000) << 13) | // Exponent ( exp - 15 + 127)
((_u16 & 0x03FF) << 13); // Mantissa
return (float&)raw;
}
};
using f32 = float;
using f64 = double;
struct ignore
{
template<typename T>
ignore(T)
{
}
};
// Simplified hash algorithm for pointers. May be used in std::unordered_(map|set).
template<typename T, std::size_t Align = alignof(T)>
struct pointer_hash
{
std::size_t operator()(T* ptr) const
{
return reinterpret_cast<std::uintptr_t>(ptr) / Align;
}
};
// Contains value of any POD type with fixed size and alignment. TT<> is the type converter applied.
// For example, `simple_t` may be used to remove endianness.
template<template<typename> class TT, std::size_t S, std::size_t A = S>
struct alignas(A) any_pod
{
std::aligned_storage_t<S, A> data;
any_pod() = default;
template<typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
any_pod(const T& value)
{
reinterpret_cast<T2&>(data) = value;
}
template<typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
T2& as()
{
return reinterpret_cast<T2&>(data);
}
template<typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
const T2& as() const
{
return reinterpret_cast<const T2&>(data);
}
};
using any16 = any_pod<simple_t, sizeof(u16)>;
using any32 = any_pod<simple_t, sizeof(u32)>;
using any64 = any_pod<simple_t, sizeof(u64)>;
// Allows to define integer convertible to multiple enum types
template<typename T = void, typename... Ts>
struct multicast : multicast<Ts...>
{
static_assert(std::is_enum<T>::value, "multicast<> error: invalid conversion type (enum type expected)");
multicast() = default;
template<typename UT>
constexpr multicast(const UT& value)
: multicast<Ts...>(value)
, m_value{ value } // Forbid narrowing
{
}
constexpr operator T() const
{
// Cast to enum type
return static_cast<T>(m_value);
}
private:
std::underlying_type_t<T> m_value;
};
// Recursion terminator
template<>
struct multicast<void>
{
multicast() = default;
template<typename UT>
constexpr multicast(const UT& value)
{
}
};
template<typename T1, typename T2 = const char*, typename T = T1, typename DT = T2>
T2 bijective_find(const T& left, const DT& def = {})
{
for (std::size_t i = 0; i < sizeof(bijective<T1, T2>::map) / sizeof(bijective_pair<T1, T2>); i++)
{
if (bijective<T1, T2>::map[i].v1 == left)
{
return bijective<T1, T2>::map[i].v2;
}
}
return def;
}
// Formatting helper, type-specific preprocessing for improving safety and functionality
template<typename T, typename = void>
struct unveil
{
// TODO
static inline const T& get(const T& arg)
{
return arg;
}
};
template<typename T>
struct unveil<T, void_t<decltype(std::declval<T>().c_str())>>
{
static inline const char* get(const T& arg)
{
return arg.c_str();
}
};
// Tagged ID type
template<typename T = void, typename ID = u32>
class id_value
{
// Initial value
mutable ID m_value{ static_cast<ID>(-1) };
// Allow access for ID manager
friend class idm;
// Update ID
void operator =(const ID& value) const
{
m_value = value;
}
public:
constexpr id_value() {}
// Get the value
operator ID() const
{
return m_value;
}
};