rpcs3/Utilities/Thread.cpp
2015-01-14 19:48:50 +03:00

672 lines
14 KiB
C++

#include "stdafx.h"
#include "Log.h"
#include "Emu/System.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Thread.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <signal.h>
#include <ucontext.h>
#endif
void SetCurrentThreadDebugName(const char* threadName)
{
#if defined(_MSC_VER) // this is VS-specific way to set thread names for the debugger
#pragma pack(push,8)
struct THREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
} info;
#pragma pack(pop)
info.dwType = 0x1000;
info.szName = threadName;
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
#endif
}
enum x64_reg_t : u32
{
X64R_EAX,
X64R_ECX,
X64R_EDX,
X64R_EBX,
X64R_ESP,
X64R_EBP,
X64R_ESI,
X64R_EDI,
X64R_R8D,
X64R_R9D,
X64R_R10D,
X64R_R11D,
X64R_R12D,
X64R_R13D,
X64R_R14D,
X64R_R15D,
X64R32 = X64R_EAX,
X64_IMM32,
};
enum x64_op_t : u32
{
X64OP_LOAD, // obtain and put the value into x64 register (from Memory.ReadMMIO32, for example)
X64OP_STORE, // take the value from x64 register or an immediate and use it (pass in Memory.WriteMMIO32, for example)
// example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register)
// example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers)
};
void decode_x64_reg_op(const u8* code, x64_op_t& decoded_op, x64_reg_t& decoded_reg, size_t& decoded_size)
{
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
decoded_size = 0;
u8 rex = 0;
u8 reg = 0; // set to 8 by REX prefix
u8 pg2 = 0;
// check prefixes:
for (;; code++, decoded_size++)
{
switch (const u8 prefix = *code)
{
case 0xf0: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (LOCK prefix) found", code - decoded_size, prefix); // group 1
case 0xf2: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REPNE/REPNZ prefix) found", code - decoded_size, prefix); // group 1
case 0xf3: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REP/REPE/REPZ prefix) found", code - decoded_size, prefix); // group 1
case 0x2e: // group 2
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
{
if (!pg2)
{
pg2 = prefix; // probably, segment register
continue;
}
else
{
throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (group 2 prefix) found after 0x%.2X", code - decoded_size, prefix, pg2);
}
}
case 0x66: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (operand-size override prefix) found", code - decoded_size, prefix); // group 3
case 0x67: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (address-size override prefix) found", code - decoded_size, prefix); // group 4
default:
{
if ((prefix & 0xf0) == 0x40) // check REX prefix
{
if (rex)
{
throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REX prefix) found after 0x%.2X", code - decoded_size, prefix, rex);
}
if (prefix & 0x80) // check REX.W bit
{
throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REX.W bit) found", code - decoded_size, prefix);
}
if (prefix & 0x04) // check REX.R bit
{
reg = 8;
}
rex = prefix;
continue;
}
}
}
break;
}
auto get_modRM_r32 = [](const u8* code, const u8 reg_base) -> x64_reg_t
{
return (x64_reg_t)((((*code & 0x38) >> 3) | reg_base) + X64R32);
};
auto get_modRM_size = [](const u8* code) -> size_t
{
switch (*code >> 6) // check Mod
{
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
default: return 1;
}
};
decoded_size++;
switch (const u8 op1 = *code++)
{
case 0x89: // MOV r/m32, r32
{
decoded_op = X64OP_STORE;
decoded_reg = get_modRM_r32(code, reg);
decoded_size += get_modRM_size(code);
return;
}
case 0x8b: // MOV r32, r/m32
{
decoded_op = X64OP_LOAD;
decoded_reg = get_modRM_r32(code, reg);
decoded_size += get_modRM_size(code);
return;
}
case 0xc7:
{
if (get_modRM_r32(code, 0) == X64R_EAX) // MOV r/m32, imm32 (not tested)
{
decoded_op = X64OP_STORE;
decoded_reg = X64_IMM32;
decoded_size = get_modRM_size(code) + 4;
return;
}
}
default:
{
throw fmt::Format("decode_x64_reg_op(%.16llXh): unsupported opcode found (0x%.2X, 0x%.2X, 0x%.2X)", code - decoded_size, op1, code[0], code[1]);
}
}
}
#ifdef _WIN32
void _se_translator(unsigned int u, EXCEPTION_POINTERS* pExp)
{
const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)Memory.GetBaseAddr();
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
if (u == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull)
{
const u32 addr = (u32)addr64;
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) // RawSPU MMIO registers
{
// one x64 instruction is manually decoded and interpreted
x64_op_t op;
x64_reg_t reg;
size_t size;
decode_x64_reg_op((const u8*)pExp->ContextRecord->Rip, op, reg, size);
// get x64 reg value (for store operations)
u64 reg_value;
if (reg - X64R32 < 16)
{
// load the value from x64 register
reg_value = (u32)(&pExp->ContextRecord->Rax)[reg - X64R32];
}
else if (reg == X64_IMM32)
{
// load the immediate value (assuming it's at the end of the instruction)
reg_value = *(u32*)(pExp->ContextRecord->Rip + size - 4);
}
else
{
assert(!"Invalid x64_reg_t value");
}
bool save_reg = false;
switch (op)
{
case X64OP_LOAD:
{
assert(!is_writing);
reg_value = re32(Memory.ReadMMIO32(addr));
save_reg = true;
break;
}
case X64OP_STORE:
{
assert(is_writing);
Memory.WriteMMIO32(addr, re32((u32)reg_value));
break;
}
default: assert(!"Invalid x64_op_t value");
}
// save x64 reg value (for load operations)
if (save_reg)
{
if (reg - X64R32 < 16)
{
// store the value into x64 register
(&pExp->ContextRecord->Rax)[reg - X64R32] = (u32)reg_value;
}
else
{
assert(!"Invalid x64_reg_t value (saving)");
}
}
// skip decoded instruction
pExp->ContextRecord->Rip += size;
// restore context (further code shouldn't be reached)
RtlRestoreContext(pExp->ContextRecord, nullptr);
// it's dangerous because destructors won't be executed
}
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
throw fmt::Format("Access violation %s location 0x%x", is_writing ? "writing" : "reading", addr);
}
// else some fatal error (should crash)
}
#else
typedef decltype(REG_RIP) reg_table_t;
static const reg_table_t reg_table[16] =
{
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15
};
void signal_handler(int sig, siginfo_t* info, void* uct)
{
ucontext_t* const ctx = (ucontext_t*)uct;
const u64 addr64 = (u64)info->si_addr - (u64)Memory.GetBaseAddr();
//const bool is_writing = false; // TODO: get it correctly
if (addr64 < 0x100000000ull)
{
const u32 addr = (u32)addr64;
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) // RawSPU MMIO registers
{
// one x64 instruction is manually decoded and interpreted
x64_op_t op;
x64_reg_t reg;
size_t size;
decode_x64_reg_op((const u8*)ctx->uc_mcontext.gregs[REG_RIP], op, reg, size);
// get x64 reg value (for store operations)
u64 reg_value;
if (reg - X64R32 < 16)
{
// load the value from x64 register
reg_value = (u32)ctx->uc_mcontext.gregs[reg_table[reg - X64R32]];
}
else if (reg == X64_IMM32)
{
// load the immediate value (assuming it's at the end of the instruction)
reg_value = *(u32*)(ctx->uc_mcontext.gregs[REG_RIP] + size - 4);
}
else
{
assert(!"Invalid x64_reg_t value");
}
bool save_reg = false;
switch (op)
{
case X64OP_LOAD:
{
//assert(!is_writing);
reg_value = re32(Memory.ReadMMIO32(addr));
save_reg = true;
break;
}
case X64OP_STORE:
{
//assert(is_writing);
Memory.WriteMMIO32(addr, re32((u32)reg_value));
break;
}
default: assert(!"Invalid x64_op_t value");
}
// save x64 reg value (for load operations)
if (save_reg)
{
if (reg - X64R32 < 16)
{
// store the value into x64 register
ctx->uc_mcontext.gregs[reg_table[reg - X64R32]] = (u32)reg_value;
}
else
{
assert(!"Invalid x64_reg_t value (saving)");
}
}
// skip decoded instruction
ctx->uc_mcontext.gregs[REG_RIP] += size;
return; // now execution should proceed
//setcontext(ctx);
}
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
throw fmt::Format("Access violation %s location 0x%x", /*is_writing ? "writing" : "reading"*/ "at", addr);
}
// else some fatal error
exit(EXIT_FAILURE);
}
const int sigaction_result = []() -> int
{
struct sigaction sa;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = signal_handler;
return sigaction(SIGSEGV, &sa, NULL);
}();
#endif
thread_local NamedThreadBase* g_tls_this_thread = nullptr;
std::atomic<u32> g_thread_count(0);
NamedThreadBase* GetCurrentNamedThread()
{
return g_tls_this_thread;
}
void SetCurrentNamedThread(NamedThreadBase* value)
{
auto old_value = g_tls_this_thread;
if (old_value == value)
{
return;
}
if (value && value->m_tls_assigned.exchange(true))
{
LOG_ERROR(GENERAL, "Thread '%s' was already assigned to g_tls_this_thread of another thread", value->GetThreadName().c_str());
g_tls_this_thread = nullptr;
}
else
{
g_tls_this_thread = value;
}
if (old_value)
{
old_value->m_tls_assigned = false;
}
}
std::string NamedThreadBase::GetThreadName() const
{
return m_name;
}
void NamedThreadBase::SetThreadName(const std::string& name)
{
m_name = name;
}
void NamedThreadBase::WaitForAnySignal(u64 time) // wait for Notify() signal or sleep
{
std::unique_lock<std::mutex> lock(m_signal_mtx);
m_signal_cv.wait_for(lock, std::chrono::milliseconds(time));
}
void NamedThreadBase::Notify() // wake up waiting thread or nothing
{
m_signal_cv.notify_one();
}
ThreadBase::ThreadBase(const std::string& name)
: NamedThreadBase(name)
, m_executor(nullptr)
, m_destroy(false)
, m_alive(false)
{
}
ThreadBase::~ThreadBase()
{
if(IsAlive())
Stop(false);
delete m_executor;
m_executor = nullptr;
}
void ThreadBase::Start()
{
if(m_executor) Stop();
std::lock_guard<std::mutex> lock(m_main_mutex);
m_destroy = false;
m_alive = true;
m_executor = new std::thread([this]()
{
SetCurrentThreadDebugName(GetThreadName().c_str());
#ifdef _WIN32
auto old_se_translator = _set_se_translator(_se_translator);
#else
if (sigaction_result == -1) assert(!"sigaction() failed");
#endif
SetCurrentNamedThread(this);
g_thread_count++;
try
{
Task();
}
catch (const char* e)
{
LOG_ERROR(GENERAL, "%s: %s", GetThreadName().c_str(), e);
}
catch (const std::string& e)
{
LOG_ERROR(GENERAL, "%s: %s", GetThreadName().c_str(), e.c_str());
}
m_alive = false;
SetCurrentNamedThread(nullptr);
g_thread_count--;
#ifdef _WIN32
_set_se_translator(old_se_translator);
#endif
});
}
void ThreadBase::Stop(bool wait, bool send_destroy)
{
std::lock_guard<std::mutex> lock(m_main_mutex);
if (send_destroy)
m_destroy = true;
if(!m_executor)
return;
if(wait && m_executor->joinable() && m_alive)
{
m_executor->join();
}
else
{
m_executor->detach();
}
delete m_executor;
m_executor = nullptr;
}
bool ThreadBase::Join() const
{
std::lock_guard<std::mutex> lock(m_main_mutex);
if(m_executor->joinable() && m_alive && m_executor != nullptr)
{
m_executor->join();
return true;
}
return false;
}
bool ThreadBase::IsAlive() const
{
std::lock_guard<std::mutex> lock(m_main_mutex);
return m_alive;
}
bool ThreadBase::TestDestroy() const
{
return m_destroy;
}
thread::thread(const std::string& name, std::function<void()> func) : m_name(name)
{
start(func);
}
thread::thread(const std::string& name) : m_name(name)
{
}
thread::thread()
{
}
void thread::start(std::function<void()> func)
{
std::string name = m_name;
m_thr = std::thread([func, name]()
{
SetCurrentThreadDebugName(name.c_str());
#ifdef _WIN32
auto old_se_translator = _set_se_translator(_se_translator);
#else
if (sigaction_result == -1) assert(!"sigaction() failed");
#endif
NamedThreadBase info(name);
SetCurrentNamedThread(&info);
g_thread_count++;
try
{
func();
}
catch (const char* e)
{
LOG_ERROR(GENERAL, "%s: %s", name.c_str(), e);
}
catch (const std::string& e)
{
LOG_ERROR(GENERAL, "%s: %s", name.c_str(), e.c_str());
}
SetCurrentNamedThread(nullptr);
g_thread_count--;
#ifdef _WIN32
_set_se_translator(old_se_translator);
#endif
});
}
void thread::detach()
{
m_thr.detach();
}
void thread::join()
{
m_thr.join();
}
bool thread::joinable() const
{
return m_thr.joinable();
}
bool waiter_map_t::is_stopped(u64 signal_id)
{
if (Emu.IsStopped())
{
LOG_WARNING(Log::HLE, "%s: waiter_op() aborted (signal_id=0x%llx)", m_name.c_str(), signal_id);
return true;
}
return false;
}
void waiter_map_t::waiter_reg_t::init()
{
if (!thread)
{
thread = GetCurrentNamedThread();
std::lock_guard<std::mutex> lock(map.m_mutex);
// add waiter
map.m_waiters.push_back({ signal_id, thread });
}
}
waiter_map_t::waiter_reg_t::~waiter_reg_t()
{
if (thread)
{
std::lock_guard<std::mutex> lock(map.m_mutex);
// remove waiter
for (s64 i = map.m_waiters.size() - 1; i >= 0; i--)
{
if (map.m_waiters[i].signal_id == signal_id && map.m_waiters[i].thread == thread)
{
map.m_waiters.erase(map.m_waiters.begin() + i);
return;
}
}
LOG_ERROR(HLE, "%s(): waiter not found (signal_id=0x%llx, map='%s')", __FUNCTION__, signal_id, map.m_name.c_str());
Emu.Pause();
}
}
void waiter_map_t::notify(u64 signal_id)
{
if (m_waiters.size())
{
std::lock_guard<std::mutex> lock(m_mutex);
// find waiter and signal
for (auto& v : m_waiters)
{
if (v.signal_id == signal_id)
{
v.thread->Notify();
}
}
}
}
bool squeue_test_exit(const volatile bool* do_exit)
{
return Emu.IsStopped() || (do_exit && *do_exit);
}