mirror of
https://github.com/RPCS3/rpcs3.git
synced 2025-01-01 03:32:07 +00:00
672 lines
14 KiB
C++
672 lines
14 KiB
C++
#include "stdafx.h"
|
|
#include "Log.h"
|
|
#include "Emu/System.h"
|
|
#include "Emu/CPU/CPUThread.h"
|
|
#include "Emu/SysCalls/SysCalls.h"
|
|
#include "Thread.h"
|
|
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#else
|
|
#include <signal.h>
|
|
#include <ucontext.h>
|
|
#endif
|
|
|
|
void SetCurrentThreadDebugName(const char* threadName)
|
|
{
|
|
#if defined(_MSC_VER) // this is VS-specific way to set thread names for the debugger
|
|
|
|
#pragma pack(push,8)
|
|
|
|
struct THREADNAME_INFO
|
|
{
|
|
DWORD dwType;
|
|
LPCSTR szName;
|
|
DWORD dwThreadID;
|
|
DWORD dwFlags;
|
|
} info;
|
|
|
|
#pragma pack(pop)
|
|
|
|
info.dwType = 0x1000;
|
|
info.szName = threadName;
|
|
info.dwThreadID = -1;
|
|
info.dwFlags = 0;
|
|
|
|
__try
|
|
{
|
|
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
|
|
}
|
|
__except (EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
enum x64_reg_t : u32
|
|
{
|
|
X64R_EAX,
|
|
X64R_ECX,
|
|
X64R_EDX,
|
|
X64R_EBX,
|
|
X64R_ESP,
|
|
X64R_EBP,
|
|
X64R_ESI,
|
|
X64R_EDI,
|
|
X64R_R8D,
|
|
X64R_R9D,
|
|
X64R_R10D,
|
|
X64R_R11D,
|
|
X64R_R12D,
|
|
X64R_R13D,
|
|
X64R_R14D,
|
|
X64R_R15D,
|
|
X64R32 = X64R_EAX,
|
|
|
|
X64_IMM32,
|
|
};
|
|
|
|
enum x64_op_t : u32
|
|
{
|
|
X64OP_LOAD, // obtain and put the value into x64 register (from Memory.ReadMMIO32, for example)
|
|
X64OP_STORE, // take the value from x64 register or an immediate and use it (pass in Memory.WriteMMIO32, for example)
|
|
// example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register)
|
|
// example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers)
|
|
};
|
|
|
|
void decode_x64_reg_op(const u8* code, x64_op_t& decoded_op, x64_reg_t& decoded_reg, size_t& decoded_size)
|
|
{
|
|
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
|
|
decoded_size = 0;
|
|
|
|
u8 rex = 0;
|
|
u8 reg = 0; // set to 8 by REX prefix
|
|
u8 pg2 = 0;
|
|
|
|
// check prefixes:
|
|
for (;; code++, decoded_size++)
|
|
{
|
|
switch (const u8 prefix = *code)
|
|
{
|
|
case 0xf0: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (LOCK prefix) found", code - decoded_size, prefix); // group 1
|
|
case 0xf2: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REPNE/REPNZ prefix) found", code - decoded_size, prefix); // group 1
|
|
case 0xf3: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REP/REPE/REPZ prefix) found", code - decoded_size, prefix); // group 1
|
|
|
|
case 0x2e: // group 2
|
|
case 0x36:
|
|
case 0x3e:
|
|
case 0x26:
|
|
case 0x64:
|
|
case 0x65:
|
|
{
|
|
if (!pg2)
|
|
{
|
|
pg2 = prefix; // probably, segment register
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (group 2 prefix) found after 0x%.2X", code - decoded_size, prefix, pg2);
|
|
}
|
|
}
|
|
|
|
case 0x66: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (operand-size override prefix) found", code - decoded_size, prefix); // group 3
|
|
case 0x67: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (address-size override prefix) found", code - decoded_size, prefix); // group 4
|
|
|
|
default:
|
|
{
|
|
if ((prefix & 0xf0) == 0x40) // check REX prefix
|
|
{
|
|
if (rex)
|
|
{
|
|
throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REX prefix) found after 0x%.2X", code - decoded_size, prefix, rex);
|
|
}
|
|
if (prefix & 0x80) // check REX.W bit
|
|
{
|
|
throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REX.W bit) found", code - decoded_size, prefix);
|
|
}
|
|
if (prefix & 0x04) // check REX.R bit
|
|
{
|
|
reg = 8;
|
|
}
|
|
rex = prefix;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
auto get_modRM_r32 = [](const u8* code, const u8 reg_base) -> x64_reg_t
|
|
{
|
|
return (x64_reg_t)((((*code & 0x38) >> 3) | reg_base) + X64R32);
|
|
};
|
|
|
|
auto get_modRM_size = [](const u8* code) -> size_t
|
|
{
|
|
switch (*code >> 6) // check Mod
|
|
{
|
|
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
|
|
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
|
|
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
|
|
default: return 1;
|
|
}
|
|
};
|
|
|
|
decoded_size++;
|
|
switch (const u8 op1 = *code++)
|
|
{
|
|
case 0x89: // MOV r/m32, r32
|
|
{
|
|
decoded_op = X64OP_STORE;
|
|
decoded_reg = get_modRM_r32(code, reg);
|
|
decoded_size += get_modRM_size(code);
|
|
return;
|
|
}
|
|
case 0x8b: // MOV r32, r/m32
|
|
{
|
|
decoded_op = X64OP_LOAD;
|
|
decoded_reg = get_modRM_r32(code, reg);
|
|
decoded_size += get_modRM_size(code);
|
|
return;
|
|
}
|
|
case 0xc7:
|
|
{
|
|
if (get_modRM_r32(code, 0) == X64R_EAX) // MOV r/m32, imm32 (not tested)
|
|
{
|
|
decoded_op = X64OP_STORE;
|
|
decoded_reg = X64_IMM32;
|
|
decoded_size = get_modRM_size(code) + 4;
|
|
return;
|
|
}
|
|
}
|
|
default:
|
|
{
|
|
throw fmt::Format("decode_x64_reg_op(%.16llXh): unsupported opcode found (0x%.2X, 0x%.2X, 0x%.2X)", code - decoded_size, op1, code[0], code[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
void _se_translator(unsigned int u, EXCEPTION_POINTERS* pExp)
|
|
{
|
|
const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)Memory.GetBaseAddr();
|
|
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
|
|
if (u == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull)
|
|
{
|
|
const u32 addr = (u32)addr64;
|
|
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) // RawSPU MMIO registers
|
|
{
|
|
// one x64 instruction is manually decoded and interpreted
|
|
x64_op_t op;
|
|
x64_reg_t reg;
|
|
size_t size;
|
|
decode_x64_reg_op((const u8*)pExp->ContextRecord->Rip, op, reg, size);
|
|
|
|
// get x64 reg value (for store operations)
|
|
u64 reg_value;
|
|
if (reg - X64R32 < 16)
|
|
{
|
|
// load the value from x64 register
|
|
reg_value = (u32)(&pExp->ContextRecord->Rax)[reg - X64R32];
|
|
}
|
|
else if (reg == X64_IMM32)
|
|
{
|
|
// load the immediate value (assuming it's at the end of the instruction)
|
|
reg_value = *(u32*)(pExp->ContextRecord->Rip + size - 4);
|
|
}
|
|
else
|
|
{
|
|
assert(!"Invalid x64_reg_t value");
|
|
}
|
|
|
|
bool save_reg = false;
|
|
|
|
switch (op)
|
|
{
|
|
case X64OP_LOAD:
|
|
{
|
|
assert(!is_writing);
|
|
reg_value = re32(Memory.ReadMMIO32(addr));
|
|
save_reg = true;
|
|
break;
|
|
}
|
|
case X64OP_STORE:
|
|
{
|
|
assert(is_writing);
|
|
Memory.WriteMMIO32(addr, re32((u32)reg_value));
|
|
break;
|
|
}
|
|
default: assert(!"Invalid x64_op_t value");
|
|
}
|
|
|
|
// save x64 reg value (for load operations)
|
|
if (save_reg)
|
|
{
|
|
if (reg - X64R32 < 16)
|
|
{
|
|
// store the value into x64 register
|
|
(&pExp->ContextRecord->Rax)[reg - X64R32] = (u32)reg_value;
|
|
}
|
|
else
|
|
{
|
|
assert(!"Invalid x64_reg_t value (saving)");
|
|
}
|
|
}
|
|
|
|
// skip decoded instruction
|
|
pExp->ContextRecord->Rip += size;
|
|
// restore context (further code shouldn't be reached)
|
|
RtlRestoreContext(pExp->ContextRecord, nullptr);
|
|
|
|
// it's dangerous because destructors won't be executed
|
|
}
|
|
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
|
|
throw fmt::Format("Access violation %s location 0x%x", is_writing ? "writing" : "reading", addr);
|
|
}
|
|
|
|
// else some fatal error (should crash)
|
|
}
|
|
|
|
#else
|
|
|
|
typedef decltype(REG_RIP) reg_table_t;
|
|
static const reg_table_t reg_table[16] =
|
|
{
|
|
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
|
|
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15
|
|
};
|
|
|
|
void signal_handler(int sig, siginfo_t* info, void* uct)
|
|
{
|
|
ucontext_t* const ctx = (ucontext_t*)uct;
|
|
const u64 addr64 = (u64)info->si_addr - (u64)Memory.GetBaseAddr();
|
|
//const bool is_writing = false; // TODO: get it correctly
|
|
if (addr64 < 0x100000000ull)
|
|
{
|
|
const u32 addr = (u32)addr64;
|
|
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) // RawSPU MMIO registers
|
|
{
|
|
// one x64 instruction is manually decoded and interpreted
|
|
x64_op_t op;
|
|
x64_reg_t reg;
|
|
size_t size;
|
|
decode_x64_reg_op((const u8*)ctx->uc_mcontext.gregs[REG_RIP], op, reg, size);
|
|
|
|
// get x64 reg value (for store operations)
|
|
u64 reg_value;
|
|
if (reg - X64R32 < 16)
|
|
{
|
|
// load the value from x64 register
|
|
reg_value = (u32)ctx->uc_mcontext.gregs[reg_table[reg - X64R32]];
|
|
}
|
|
else if (reg == X64_IMM32)
|
|
{
|
|
// load the immediate value (assuming it's at the end of the instruction)
|
|
reg_value = *(u32*)(ctx->uc_mcontext.gregs[REG_RIP] + size - 4);
|
|
}
|
|
else
|
|
{
|
|
assert(!"Invalid x64_reg_t value");
|
|
}
|
|
|
|
bool save_reg = false;
|
|
|
|
switch (op)
|
|
{
|
|
case X64OP_LOAD:
|
|
{
|
|
//assert(!is_writing);
|
|
reg_value = re32(Memory.ReadMMIO32(addr));
|
|
save_reg = true;
|
|
break;
|
|
}
|
|
case X64OP_STORE:
|
|
{
|
|
//assert(is_writing);
|
|
Memory.WriteMMIO32(addr, re32((u32)reg_value));
|
|
break;
|
|
}
|
|
default: assert(!"Invalid x64_op_t value");
|
|
}
|
|
|
|
// save x64 reg value (for load operations)
|
|
if (save_reg)
|
|
{
|
|
if (reg - X64R32 < 16)
|
|
{
|
|
// store the value into x64 register
|
|
ctx->uc_mcontext.gregs[reg_table[reg - X64R32]] = (u32)reg_value;
|
|
}
|
|
else
|
|
{
|
|
assert(!"Invalid x64_reg_t value (saving)");
|
|
}
|
|
}
|
|
|
|
// skip decoded instruction
|
|
ctx->uc_mcontext.gregs[REG_RIP] += size;
|
|
|
|
return; // now execution should proceed
|
|
//setcontext(ctx);
|
|
}
|
|
|
|
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
|
|
throw fmt::Format("Access violation %s location 0x%x", /*is_writing ? "writing" : "reading"*/ "at", addr);
|
|
}
|
|
|
|
// else some fatal error
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
const int sigaction_result = []() -> int
|
|
{
|
|
struct sigaction sa;
|
|
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_sigaction = signal_handler;
|
|
return sigaction(SIGSEGV, &sa, NULL);
|
|
}();
|
|
|
|
#endif
|
|
|
|
thread_local NamedThreadBase* g_tls_this_thread = nullptr;
|
|
std::atomic<u32> g_thread_count(0);
|
|
|
|
NamedThreadBase* GetCurrentNamedThread()
|
|
{
|
|
return g_tls_this_thread;
|
|
}
|
|
|
|
void SetCurrentNamedThread(NamedThreadBase* value)
|
|
{
|
|
auto old_value = g_tls_this_thread;
|
|
|
|
if (old_value == value)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (value && value->m_tls_assigned.exchange(true))
|
|
{
|
|
LOG_ERROR(GENERAL, "Thread '%s' was already assigned to g_tls_this_thread of another thread", value->GetThreadName().c_str());
|
|
g_tls_this_thread = nullptr;
|
|
}
|
|
else
|
|
{
|
|
g_tls_this_thread = value;
|
|
}
|
|
|
|
if (old_value)
|
|
{
|
|
old_value->m_tls_assigned = false;
|
|
}
|
|
}
|
|
|
|
std::string NamedThreadBase::GetThreadName() const
|
|
{
|
|
return m_name;
|
|
}
|
|
|
|
void NamedThreadBase::SetThreadName(const std::string& name)
|
|
{
|
|
m_name = name;
|
|
}
|
|
|
|
void NamedThreadBase::WaitForAnySignal(u64 time) // wait for Notify() signal or sleep
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_signal_mtx);
|
|
m_signal_cv.wait_for(lock, std::chrono::milliseconds(time));
|
|
}
|
|
|
|
void NamedThreadBase::Notify() // wake up waiting thread or nothing
|
|
{
|
|
m_signal_cv.notify_one();
|
|
}
|
|
|
|
ThreadBase::ThreadBase(const std::string& name)
|
|
: NamedThreadBase(name)
|
|
, m_executor(nullptr)
|
|
, m_destroy(false)
|
|
, m_alive(false)
|
|
{
|
|
}
|
|
|
|
ThreadBase::~ThreadBase()
|
|
{
|
|
if(IsAlive())
|
|
Stop(false);
|
|
|
|
delete m_executor;
|
|
m_executor = nullptr;
|
|
}
|
|
|
|
void ThreadBase::Start()
|
|
{
|
|
if(m_executor) Stop();
|
|
|
|
std::lock_guard<std::mutex> lock(m_main_mutex);
|
|
|
|
m_destroy = false;
|
|
m_alive = true;
|
|
|
|
m_executor = new std::thread([this]()
|
|
{
|
|
SetCurrentThreadDebugName(GetThreadName().c_str());
|
|
|
|
#ifdef _WIN32
|
|
auto old_se_translator = _set_se_translator(_se_translator);
|
|
#else
|
|
if (sigaction_result == -1) assert(!"sigaction() failed");
|
|
#endif
|
|
|
|
SetCurrentNamedThread(this);
|
|
g_thread_count++;
|
|
|
|
try
|
|
{
|
|
Task();
|
|
}
|
|
catch (const char* e)
|
|
{
|
|
LOG_ERROR(GENERAL, "%s: %s", GetThreadName().c_str(), e);
|
|
}
|
|
catch (const std::string& e)
|
|
{
|
|
LOG_ERROR(GENERAL, "%s: %s", GetThreadName().c_str(), e.c_str());
|
|
}
|
|
|
|
m_alive = false;
|
|
SetCurrentNamedThread(nullptr);
|
|
g_thread_count--;
|
|
|
|
#ifdef _WIN32
|
|
_set_se_translator(old_se_translator);
|
|
#endif
|
|
});
|
|
}
|
|
|
|
void ThreadBase::Stop(bool wait, bool send_destroy)
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_main_mutex);
|
|
|
|
if (send_destroy)
|
|
m_destroy = true;
|
|
|
|
if(!m_executor)
|
|
return;
|
|
|
|
if(wait && m_executor->joinable() && m_alive)
|
|
{
|
|
m_executor->join();
|
|
}
|
|
else
|
|
{
|
|
m_executor->detach();
|
|
}
|
|
|
|
delete m_executor;
|
|
m_executor = nullptr;
|
|
}
|
|
|
|
bool ThreadBase::Join() const
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_main_mutex);
|
|
if(m_executor->joinable() && m_alive && m_executor != nullptr)
|
|
{
|
|
m_executor->join();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ThreadBase::IsAlive() const
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_main_mutex);
|
|
return m_alive;
|
|
}
|
|
|
|
bool ThreadBase::TestDestroy() const
|
|
{
|
|
return m_destroy;
|
|
}
|
|
|
|
thread::thread(const std::string& name, std::function<void()> func) : m_name(name)
|
|
{
|
|
start(func);
|
|
}
|
|
|
|
thread::thread(const std::string& name) : m_name(name)
|
|
{
|
|
}
|
|
|
|
thread::thread()
|
|
{
|
|
}
|
|
|
|
void thread::start(std::function<void()> func)
|
|
{
|
|
std::string name = m_name;
|
|
|
|
m_thr = std::thread([func, name]()
|
|
{
|
|
SetCurrentThreadDebugName(name.c_str());
|
|
|
|
#ifdef _WIN32
|
|
auto old_se_translator = _set_se_translator(_se_translator);
|
|
#else
|
|
if (sigaction_result == -1) assert(!"sigaction() failed");
|
|
#endif
|
|
|
|
NamedThreadBase info(name);
|
|
SetCurrentNamedThread(&info);
|
|
g_thread_count++;
|
|
|
|
try
|
|
{
|
|
func();
|
|
}
|
|
catch (const char* e)
|
|
{
|
|
LOG_ERROR(GENERAL, "%s: %s", name.c_str(), e);
|
|
}
|
|
catch (const std::string& e)
|
|
{
|
|
LOG_ERROR(GENERAL, "%s: %s", name.c_str(), e.c_str());
|
|
}
|
|
|
|
SetCurrentNamedThread(nullptr);
|
|
g_thread_count--;
|
|
|
|
#ifdef _WIN32
|
|
_set_se_translator(old_se_translator);
|
|
#endif
|
|
});
|
|
}
|
|
|
|
void thread::detach()
|
|
{
|
|
m_thr.detach();
|
|
}
|
|
|
|
void thread::join()
|
|
{
|
|
m_thr.join();
|
|
}
|
|
|
|
bool thread::joinable() const
|
|
{
|
|
return m_thr.joinable();
|
|
}
|
|
|
|
bool waiter_map_t::is_stopped(u64 signal_id)
|
|
{
|
|
if (Emu.IsStopped())
|
|
{
|
|
LOG_WARNING(Log::HLE, "%s: waiter_op() aborted (signal_id=0x%llx)", m_name.c_str(), signal_id);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void waiter_map_t::waiter_reg_t::init()
|
|
{
|
|
if (!thread)
|
|
{
|
|
thread = GetCurrentNamedThread();
|
|
|
|
std::lock_guard<std::mutex> lock(map.m_mutex);
|
|
|
|
// add waiter
|
|
map.m_waiters.push_back({ signal_id, thread });
|
|
}
|
|
}
|
|
|
|
waiter_map_t::waiter_reg_t::~waiter_reg_t()
|
|
{
|
|
if (thread)
|
|
{
|
|
std::lock_guard<std::mutex> lock(map.m_mutex);
|
|
|
|
// remove waiter
|
|
for (s64 i = map.m_waiters.size() - 1; i >= 0; i--)
|
|
{
|
|
if (map.m_waiters[i].signal_id == signal_id && map.m_waiters[i].thread == thread)
|
|
{
|
|
map.m_waiters.erase(map.m_waiters.begin() + i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
LOG_ERROR(HLE, "%s(): waiter not found (signal_id=0x%llx, map='%s')", __FUNCTION__, signal_id, map.m_name.c_str());
|
|
Emu.Pause();
|
|
}
|
|
}
|
|
|
|
void waiter_map_t::notify(u64 signal_id)
|
|
{
|
|
if (m_waiters.size())
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
|
|
// find waiter and signal
|
|
for (auto& v : m_waiters)
|
|
{
|
|
if (v.signal_id == signal_id)
|
|
{
|
|
v.thread->Notify();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool squeue_test_exit(const volatile bool* do_exit)
|
|
{
|
|
return Emu.IsStopped() || (do_exit && *do_exit);
|
|
}
|