rpcs3/rpcs3/Emu/RSX/GL/GLHelpers.h
2020-04-11 21:21:15 +03:00

2936 lines
66 KiB
C++

#pragma once
#include <exception>
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include <unordered_map>
#include <algorithm>
#include "GLExecutionState.h"
#include "../GCM.h"
#include "../Common/TextureUtils.h"
#include "Emu/system_config.h"
#include "Utilities/geometry.h"
#include "util/logs.hpp"
#define GL_FRAGMENT_TEXTURES_START 0
#define GL_VERTEX_TEXTURES_START (GL_FRAGMENT_TEXTURES_START + 16)
#define GL_STENCIL_MIRRORS_START (GL_VERTEX_TEXTURES_START + 4)
#define GL_STREAM_BUFFER_START (GL_STENCIL_MIRRORS_START + 16)
#define GL_VERTEX_PARAMS_BIND_SLOT 0
#define GL_VERTEX_LAYOUT_BIND_SLOT 1
#define GL_VERTEX_CONSTANT_BUFFERS_BIND_SLOT 2
#define GL_FRAGMENT_CONSTANT_BUFFERS_BIND_SLOT 3
#define GL_FRAGMENT_STATE_BIND_SLOT 4
#define GL_FRAGMENT_TEXTURE_PARAMS_BIND_SLOT 5
#define GL_COMPUTE_BUFFER_SLOT(index) (index + 6)
inline static void _SelectTexture(int unit) { glActiveTexture(GL_TEXTURE0 + unit); }
namespace gl
{
#ifdef _DEBUG
struct __glcheck_impl_t
{
const char* file;
const char* function;
int line;
constexpr __glcheck_impl_t(const char* file, const char* function, int line)
: file(file)
, function(function)
, line(line)
{
}
~__glcheck_impl_t() noexcept(false)
{
if (GLenum err = glGetError())
{
std::string error;
switch (err)
{
case GL_INVALID_OPERATION: error = "invalid operation"; break;
case GL_INVALID_ENUM: error = "invalid enum"; break;
case GL_INVALID_VALUE: error = "invalid value"; break;
case GL_OUT_OF_MEMORY: error = "out of memory"; break;
case GL_INVALID_FRAMEBUFFER_OPERATION: error = "invalid framebuffer operation"; break;
default: error = "unknown error"; break;
}
fmt::throw_exception("OpenGL error: %s\n(in file %s:%d, function %s)", error, file, line, function);
}
}
};
#define __glcheck ::gl::__glcheck_impl_t{ __FILE__, __FUNCTION__, __LINE__ },
#else
#define __glcheck
#endif
//Function call wrapped in ARB_DSA vs EXT_DSA compat check
#define DSA_CALL(func, texture_name, target, ...)\
if (::gl::get_driver_caps().ARB_dsa_supported)\
gl##func(texture_name, __VA_ARGS__);\
else\
gl##func##EXT(texture_name, target, __VA_ARGS__);
class capabilities;
class blitter;
void enable_debugging();
capabilities& get_driver_caps();
bool is_primitive_native(rsx::primitive_type in);
GLenum draw_mode(rsx::primitive_type in);
void set_primary_context_thread();
bool is_primary_context_thread();
// Texture helpers
std::array<GLenum, 4> apply_swizzle_remap(const std::array<GLenum, 4>& swizzle_remap, const std::pair<std::array<u8, 4>, std::array<u8, 4>>& decoded_remap);
class exception : public std::exception
{
protected:
std::string m_what;
public:
const char* what() const noexcept override
{
return m_what.c_str();
}
};
class capabilities
{
public:
bool EXT_dsa_supported = false;
bool ARB_dsa_supported = false;
bool ARB_buffer_storage_supported = false;
bool ARB_texture_buffer_supported = false;
bool ARB_shader_draw_parameters_supported = false;
bool ARB_depth_buffer_float_supported = false;
bool ARB_texture_barrier_supported = false;
bool NV_texture_barrier_supported = false;
bool NV_gpu_shader5_supported = false;
bool AMD_gpu_shader_half_float_supported = false;
bool ARB_compute_shader_supported = false;
bool initialized = false;
bool vendor_INTEL = false; // has broken GLSL compiler
bool vendor_AMD = false; // has broken ARB_multidraw
bool vendor_NVIDIA = false; // has NaN poisoning issues
bool vendor_MESA = false; // requires CLIENT_STORAGE bit set for streaming buffers
bool check(const std::string& ext_name, const char* test)
{
if (ext_name == test)
{
rsx_log.notice("Extension %s is supported", ext_name);
return true;
}
return false;
}
void initialize()
{
int find_count = 11;
int ext_count = 0;
glGetIntegerv(GL_NUM_EXTENSIONS, &ext_count);
for (int i = 0; i < ext_count; i++)
{
if (!find_count) break;
const std::string ext_name = reinterpret_cast<const char*>(glGetStringi(GL_EXTENSIONS, i));
if (check(ext_name, "GL_ARB_shader_draw_parameters"))
{
ARB_shader_draw_parameters_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_EXT_direct_state_access"))
{
EXT_dsa_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_ARB_direct_state_access"))
{
ARB_dsa_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_ARB_buffer_storage"))
{
ARB_buffer_storage_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_ARB_texture_buffer_object"))
{
ARB_texture_buffer_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_ARB_depth_buffer_float"))
{
ARB_depth_buffer_float_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_ARB_texture_barrier"))
{
ARB_texture_barrier_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_NV_texture_barrier"))
{
NV_texture_barrier_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_NV_gpu_shader5"))
{
NV_gpu_shader5_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_AMD_gpu_shader_half_float"))
{
AMD_gpu_shader_half_float_supported = true;
find_count--;
continue;
}
if (check(ext_name, "GL_ARB_compute_shader"))
{
ARB_compute_shader_supported = true;
find_count--;
continue;
}
}
// Workaround for intel drivers which have terrible capability reporting
std::string vendor_string = reinterpret_cast<const char*>(glGetString(GL_VENDOR));
if (!vendor_string.empty())
{
std::transform(vendor_string.begin(), vendor_string.end(), vendor_string.begin(), ::tolower);
}
else
{
rsx_log.error("Failed to get vendor string from driver. Are we missing a context?");
vendor_string = "intel"; //lowest acceptable value
}
if (vendor_string.find("intel") != umax)
{
int version_major = 0;
int version_minor = 0;
glGetIntegerv(GL_MAJOR_VERSION, &version_major);
glGetIntegerv(GL_MINOR_VERSION, &version_minor);
vendor_INTEL = true;
//Texture buffers moved into core at GL 3.3
if (version_major > 3 || (version_major == 3 && version_minor >= 3))
ARB_texture_buffer_supported = true;
//Check for expected library entry-points for some required functions
if (!ARB_buffer_storage_supported && glBufferStorage && glMapBufferRange)
ARB_buffer_storage_supported = true;
if (!ARB_dsa_supported && glGetTextureImage && glTextureBufferRange)
ARB_dsa_supported = true;
if (!EXT_dsa_supported && glGetTextureImageEXT && glTextureBufferRangeEXT)
EXT_dsa_supported = true;
}
else if (vendor_string.find("nvidia") != umax)
{
vendor_NVIDIA = true;
}
else if (vendor_string.find("x.org") != umax)
{
vendor_MESA = true;
}
#ifdef _WIN32
else if (vendor_string.find("amd") != umax || vendor_string.find("ati") != umax)
{
vendor_AMD = true;
}
#endif
initialized = true;
}
};
class fence
{
GLsync m_value = nullptr;
GLenum flags = GL_SYNC_FLUSH_COMMANDS_BIT;
bool signaled = false;
public:
fence() = default;
~fence() = default;
void create()
{
m_value = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
flags = GL_SYNC_FLUSH_COMMANDS_BIT;
}
void destroy()
{
glDeleteSync(m_value);
m_value = nullptr;
}
void reset()
{
if (m_value != nullptr)
destroy();
create();
}
bool is_empty()
{
return (m_value == nullptr);
}
bool check_signaled()
{
verify(HERE), m_value != nullptr;
if (signaled)
return true;
if (flags)
{
GLenum err = glClientWaitSync(m_value, flags, 0);
flags = 0;
if (!(err == GL_ALREADY_SIGNALED || err == GL_CONDITION_SATISFIED))
return false;
}
else
{
GLint status = GL_UNSIGNALED;
GLint tmp;
glGetSynciv(m_value, GL_SYNC_STATUS, 4, &tmp, &status);
if (status != GL_SIGNALED)
return false;
}
signaled = true;
return true;
}
bool wait_for_signal()
{
verify(HERE), m_value != nullptr;
if (signaled == GL_FALSE)
{
GLenum err = GL_WAIT_FAILED;
bool done = false;
while (!done)
{
if (flags)
{
err = glClientWaitSync(m_value, flags, 0);
flags = 0;
switch (err)
{
default:
rsx_log.error("gl::fence sync returned unknown error 0x%X", err);
case GL_ALREADY_SIGNALED:
case GL_CONDITION_SATISFIED:
done = true;
break;
case GL_TIMEOUT_EXPIRED:
continue;
}
}
else
{
GLint status = GL_UNSIGNALED;
GLint tmp;
glGetSynciv(m_value, GL_SYNC_STATUS, 4, &tmp, &status);
if (status == GL_SIGNALED)
break;
}
}
signaled = (err == GL_ALREADY_SIGNALED || err == GL_CONDITION_SATISFIED);
}
glDeleteSync(m_value);
m_value = nullptr;
return signaled;
}
void server_wait_sync() const
{
verify(HERE), m_value != nullptr;
glWaitSync(m_value, 0, GL_TIMEOUT_IGNORED);
}
};
template<typename Type, uint BindId, uint GetStateId>
class save_binding_state_base
{
GLint m_last_binding;
public:
save_binding_state_base(const Type& new_state) : save_binding_state_base()
{
new_state.bind();
}
save_binding_state_base()
{
glGetIntegerv(GetStateId, &m_last_binding);
}
~save_binding_state_base()
{
glBindBuffer(BindId, m_last_binding);
}
};
enum class filter
{
nearest = GL_NEAREST,
linear = GL_LINEAR
};
enum class min_filter
{
nearest = GL_NEAREST,
linear = GL_LINEAR,
nearest_mipmap_nearest = GL_NEAREST_MIPMAP_NEAREST,
nearest_mipmap_linear = GL_NEAREST_MIPMAP_LINEAR,
linear_mipmap_nearest = GL_LINEAR_MIPMAP_NEAREST,
linear_mipmap_linear = GL_LINEAR_MIPMAP_LINEAR
};
enum class buffers
{
none = 0,
color = GL_COLOR_BUFFER_BIT,
depth = GL_DEPTH_BUFFER_BIT,
stencil = GL_STENCIL_BUFFER_BIT,
color_depth = color | depth,
color_depth_stencil = color | depth | stencil,
color_stencil = color | stencil,
depth_stencil = depth | stencil
};
class pixel_pack_settings
{
bool m_swap_bytes = false;
bool m_lsb_first = false;
int m_row_length = 0;
int m_image_height = 0;
int m_skip_rows = 0;
int m_skip_pixels = 0;
int m_skip_images = 0;
int m_alignment = 4;
public:
void apply() const
{
glPixelStorei(GL_PACK_SWAP_BYTES, m_swap_bytes ? GL_TRUE : GL_FALSE);
glPixelStorei(GL_PACK_LSB_FIRST, m_lsb_first ? GL_TRUE : GL_FALSE);
glPixelStorei(GL_PACK_ROW_LENGTH, m_row_length);
glPixelStorei(GL_PACK_IMAGE_HEIGHT, m_image_height);
glPixelStorei(GL_PACK_SKIP_ROWS, m_skip_rows);
glPixelStorei(GL_PACK_SKIP_PIXELS, m_skip_pixels);
glPixelStorei(GL_PACK_SKIP_IMAGES, m_skip_images);
glPixelStorei(GL_PACK_ALIGNMENT, m_alignment);
}
pixel_pack_settings& swap_bytes(bool value = true)
{
m_swap_bytes = value;
return *this;
}
pixel_pack_settings& lsb_first(bool value = true)
{
m_lsb_first = value;
return *this;
}
pixel_pack_settings& row_length(int value)
{
m_row_length = value;
return *this;
}
pixel_pack_settings& image_height(int value)
{
m_image_height = value;
return *this;
}
pixel_pack_settings& skip_rows(int value)
{
m_skip_rows = value;
return *this;
}
pixel_pack_settings& skip_pixels(int value)
{
m_skip_pixels = value;
return *this;
}
pixel_pack_settings& skip_images(int value)
{
m_skip_images = value;
return *this;
}
pixel_pack_settings& alignment(int value)
{
m_alignment = value;
return *this;
}
};
class pixel_unpack_settings
{
bool m_swap_bytes = false;
bool m_lsb_first = false;
int m_row_length = 0;
int m_image_height = 0;
int m_skip_rows = 0;
int m_skip_pixels = 0;
int m_skip_images = 0;
int m_alignment = 4;
public:
void apply() const
{
glPixelStorei(GL_UNPACK_SWAP_BYTES, m_swap_bytes ? GL_TRUE : GL_FALSE);
glPixelStorei(GL_UNPACK_LSB_FIRST, m_lsb_first ? GL_TRUE : GL_FALSE);
glPixelStorei(GL_UNPACK_ROW_LENGTH, m_row_length);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, m_image_height);
glPixelStorei(GL_UNPACK_SKIP_ROWS, m_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, m_skip_pixels);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, m_skip_images);
glPixelStorei(GL_UNPACK_ALIGNMENT, m_alignment);
}
pixel_unpack_settings& swap_bytes(bool value = true)
{
m_swap_bytes = value;
return *this;
}
pixel_unpack_settings& lsb_first(bool value = true)
{
m_lsb_first = value;
return *this;
}
pixel_unpack_settings& row_length(int value)
{
m_row_length = value;
return *this;
}
pixel_unpack_settings& image_height(int value)
{
m_image_height = value;
return *this;
}
pixel_unpack_settings& skip_rows(int value)
{
m_skip_rows = value;
return *this;
}
pixel_unpack_settings& skip_pixels(int value)
{
m_skip_pixels = value;
return *this;
}
pixel_unpack_settings& skip_images(int value)
{
m_skip_images = value;
return *this;
}
pixel_unpack_settings& alignment(int value)
{
m_alignment = value;
return *this;
}
};
class vao;
class attrib_t;
class buffer_pointer
{
public:
enum class type
{
s8 = GL_BYTE,
u8 = GL_UNSIGNED_BYTE,
s16 = GL_SHORT,
u16 = GL_UNSIGNED_SHORT,
s32 = GL_INT,
u32 = GL_UNSIGNED_INT,
f16 = GL_HALF_FLOAT,
f32 = GL_FLOAT,
f64 = GL_DOUBLE,
fixed = GL_FIXED,
s32_2_10_10_10_rev = GL_INT_2_10_10_10_REV,
u32_2_10_10_10_rev = GL_UNSIGNED_INT_2_10_10_10_REV,
u32_10f_11f_11f_rev = GL_UNSIGNED_INT_10F_11F_11F_REV
};
private:
vao* m_vao;
u32 m_offset;
u32 m_stride;
u32 m_size = 4;
type m_type = type::f32;
bool m_normalize = false;
public:
buffer_pointer(vao* vao, u32 offset = 0, u32 stride = 0)
: m_vao(vao)
, m_offset(offset)
, m_stride(stride)
{
}
const class ::gl::vao& get_vao() const
{
return *m_vao;
}
class ::gl::vao& get_vao()
{
return *m_vao;
}
buffer_pointer& offset(u32 value)
{
m_offset = value;
return *this;
}
u32 offset() const
{
return m_offset;
}
buffer_pointer& stride(u32 value)
{
m_stride = value;
return *this;
}
u32 stride() const
{
return m_stride;
}
buffer_pointer& size(u32 value)
{
m_size = value;
return *this;
}
u32 size() const
{
return m_size;
}
buffer_pointer& set_type(type value)
{
m_type = value;
return *this;
}
type get_type() const
{
return m_type;
}
buffer_pointer& normalize(bool value)
{
m_normalize = value;
return *this;
}
bool normalize() const
{
return m_normalize;
}
buffer_pointer& operator >> (u32 value)
{
return stride(value);
}
buffer_pointer& config(type type_ = type::f32, u32 size_ = 4, bool normalize_ = false)
{
return set_type(type_).size(size_).normalize(normalize_);
}
};
class buffer
{
public:
enum class target
{
pixel_pack = GL_PIXEL_PACK_BUFFER,
pixel_unpack = GL_PIXEL_UNPACK_BUFFER,
array = GL_ARRAY_BUFFER,
element_array = GL_ELEMENT_ARRAY_BUFFER,
uniform = GL_UNIFORM_BUFFER,
texture = GL_TEXTURE_BUFFER,
ssbo = GL_SHADER_STORAGE_BUFFER
};
enum class access
{
read = GL_READ_ONLY,
write = GL_WRITE_ONLY,
read_write = GL_READ_WRITE
};
enum class memory_type
{
undefined = 0,
local = 1,
host_visible = 2
};
class save_binding_state
{
GLint m_last_binding;
GLenum m_target;
public:
save_binding_state(target target_, const buffer& new_state) : save_binding_state(target_)
{
new_state.bind(target_);
}
save_binding_state(target target_)
{
GLenum pname;
switch (target_)
{
case target::pixel_pack: pname = GL_PIXEL_PACK_BUFFER_BINDING; break;
case target::pixel_unpack: pname = GL_PIXEL_UNPACK_BUFFER_BINDING; break;
case target::array: pname = GL_ARRAY_BUFFER_BINDING; break;
case target::element_array: pname = GL_ELEMENT_ARRAY_BUFFER_BINDING; break;
case target::uniform: pname = GL_UNIFORM_BUFFER_BINDING; break;
case target::texture: pname = GL_TEXTURE_BUFFER_BINDING; break;
case target::ssbo: pname = GL_SHADER_STORAGE_BUFFER_BINDING; break;
}
glGetIntegerv(pname, &m_last_binding);
m_target = static_cast<GLenum>(target_);
}
~save_binding_state()
{
glBindBuffer(m_target, m_last_binding);
}
};
protected:
GLuint m_id = GL_NONE;
GLsizeiptr m_size = 0;
target m_target = target::array;
memory_type m_memory_type = memory_type::undefined;
void allocate(GLsizeiptr size, const void* data_, memory_type type, GLenum usage)
{
if (const auto& caps = get_driver_caps();
caps.ARB_buffer_storage_supported)
{
target target_ = current_target();
save_binding_state save(target_, *this);
GLenum flags = 0;
if (type == memory_type::host_visible)
{
switch (usage)
{
case GL_STREAM_DRAW:
case GL_STATIC_DRAW:
case GL_DYNAMIC_DRAW:
flags |= GL_MAP_WRITE_BIT;
break;
case GL_STREAM_READ:
case GL_STATIC_READ:
case GL_DYNAMIC_READ:
flags |= GL_MAP_READ_BIT;
break;
default:
fmt::throw_exception("Unsupported buffer usage 0x%x", usage);
}
}
if ((flags & GL_MAP_READ_BIT) && !caps.vendor_AMD)
{
// This flag stops NVIDIA from allocating read-only memory in VRAM.
// NOTE: On AMD, allocating client-side memory via CLIENT_STORAGE_BIT or
// making use of GL_AMD_pinned_memory brings everything down to a crawl.
// Afaict there is no reason for this; disabling pixel pack/unpack operations does not alleviate the problem.
// The driver seems to eventually figure out the optimal storage location by itself.
flags |= GL_CLIENT_STORAGE_BIT;
}
glBufferStorage(static_cast<GLenum>(target_), size, data_, flags);
m_size = size;
}
else
{
data(size, data_, usage);
}
m_memory_type = type;
}
public:
buffer() = default;
buffer(const buffer&) = delete;
buffer(GLuint id)
{
set_id(id);
}
~buffer()
{
if (created())
remove();
}
void recreate()
{
if (created())
{
remove();
}
create();
}
void recreate(GLsizeiptr size, const void* data = nullptr)
{
if (created())
{
remove();
}
create(size, data);
}
void create()
{
glGenBuffers(1, &m_id);
}
void create(GLsizeiptr size, const void* data_ = nullptr, memory_type type = memory_type::local, GLenum usage = GL_STREAM_DRAW)
{
create();
allocate(size, data_, type, usage);
}
void create(target target_, GLsizeiptr size, const void* data_ = nullptr, memory_type type = memory_type::local, GLenum usage = GL_STREAM_DRAW)
{
create();
m_target = target_;
allocate(size, data_, type, usage);
}
void bind(target target_) const
{
glBindBuffer(static_cast<GLenum>(target_), m_id);
}
void bind() const
{
bind(current_target());
}
target current_target() const
{
return m_target;
}
void remove()
{
glDeleteBuffers(1, &m_id);
m_id = 0;
}
GLsizeiptr size() const
{
return m_size;
}
uint id() const
{
return m_id;
}
void set_id(uint id)
{
m_id = id;
}
bool created() const
{
return m_id != 0;
}
explicit operator bool() const
{
return created();
}
void data(GLsizeiptr size, const void* data_ = nullptr, GLenum usage = GL_STREAM_DRAW)
{
verify(HERE), m_memory_type != memory_type::local;
target target_ = current_target();
save_binding_state save(target_, *this);
glBufferData(static_cast<GLenum>(target_), size, data_, usage);
m_size = size;
}
GLubyte* map(access access_)
{
verify(HERE), m_memory_type == memory_type::host_visible;
bind(current_target());
return reinterpret_cast<GLubyte*>(glMapBuffer(static_cast<GLenum>(current_target()), static_cast<GLenum>(access_)));
}
void unmap()
{
verify(HERE), m_memory_type == memory_type::host_visible;
glUnmapBuffer(static_cast<GLenum>(current_target()));
}
void bind_range(u32 index, u32 offset, u32 size) const
{
glBindBufferRange(static_cast<GLenum>(current_target()), index, id(), offset, size);
}
void bind_range(target target_, u32 index, u32 offset, u32 size) const
{
glBindBufferRange(static_cast<GLenum>(target_), index, id(), offset, size);
}
};
class ring_buffer : public buffer
{
protected:
u32 m_data_loc = 0;
void *m_memory_mapping = nullptr;
fence m_fence;
public:
virtual void recreate(GLsizeiptr size, const void* data = nullptr)
{
if (m_id)
{
m_fence.wait_for_signal();
remove();
}
buffer::create();
GLbitfield buffer_storage_flags = GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT;
if (gl::get_driver_caps().vendor_MESA) buffer_storage_flags |= GL_CLIENT_STORAGE_BIT;
glBindBuffer(static_cast<GLenum>(m_target), m_id);
glBufferStorage(static_cast<GLenum>(m_target), size, data, buffer_storage_flags);
m_memory_mapping = glMapBufferRange(static_cast<GLenum>(m_target), 0, size, GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT);
verify(HERE), m_memory_mapping != nullptr;
m_data_loc = 0;
m_size = ::narrow<u32>(size);
}
void create(target target_, GLsizeiptr size, const void* data_ = nullptr)
{
m_target = target_;
recreate(size, data_);
}
virtual std::pair<void*, u32> alloc_from_heap(u32 alloc_size, u16 alignment)
{
u32 offset = m_data_loc;
if (m_data_loc) offset = align(offset, alignment);
if ((offset + alloc_size) > m_size)
{
if (!m_fence.is_empty())
{
m_fence.wait_for_signal();
}
else
{
rsx_log.error("OOM Error: Ring buffer was likely being used without notify() being called");
glFinish();
}
m_data_loc = 0;
offset = 0;
}
//Align data loc to 256; allows some "guard" region so we dont trample our own data inadvertently
m_data_loc = align(offset + alloc_size, 256);
return std::make_pair(static_cast<char*>(m_memory_mapping) + offset, offset);
}
virtual void remove()
{
if (m_memory_mapping)
{
glBindBuffer(static_cast<GLenum>(m_target), m_id);
glUnmapBuffer(static_cast<GLenum>(m_target));
m_memory_mapping = nullptr;
m_data_loc = 0;
m_size = 0;
}
glDeleteBuffers(1, &m_id);
m_id = 0;
}
virtual void reserve_storage_on_heap(u32 /*alloc_size*/) {}
virtual void unmap() {}
//Notification of a draw command
virtual void notify()
{
//Insert fence about 25% into the buffer
if (m_fence.is_empty() && (m_data_loc > (m_size >> 2)))
m_fence.reset();
}
};
class legacy_ring_buffer : public ring_buffer
{
u32 m_mapped_bytes = 0;
u32 m_mapping_offset = 0;
u32 m_alignment_offset = 0;
public:
void recreate(GLsizeiptr size, const void* data = nullptr) override
{
if (m_id)
remove();
buffer::create();
buffer::data(size, data, GL_DYNAMIC_DRAW);
m_memory_type = memory_type::host_visible;
m_memory_mapping = nullptr;
m_data_loc = 0;
m_size = ::narrow<u32>(size);
}
void create(target target_, GLsizeiptr size, const void* data_ = nullptr)
{
m_target = target_;
recreate(size, data_);
}
void reserve_storage_on_heap(u32 alloc_size) override
{
verify (HERE), m_memory_mapping == nullptr;
u32 offset = m_data_loc;
if (m_data_loc) offset = align(offset, 256);
const u32 block_size = align(alloc_size + 16, 256); //Overallocate just in case we need to realign base
if ((offset + block_size) > m_size)
{
buffer::data(m_size, nullptr, GL_DYNAMIC_DRAW);
m_data_loc = 0;
}
glBindBuffer(static_cast<GLenum>(m_target), m_id);
m_memory_mapping = glMapBufferRange(static_cast<GLenum>(m_target), m_data_loc, block_size, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_UNSYNCHRONIZED_BIT);
m_mapped_bytes = block_size;
m_mapping_offset = m_data_loc;
m_alignment_offset = 0;
//When using debugging tools, the mapped base might not be aligned as expected
const u64 mapped_address_base = reinterpret_cast<u64>(m_memory_mapping);
if (mapped_address_base & 0xF)
{
//Unaligned result was returned. We have to modify the base address a bit
//We lose some memory here, but the 16 byte overallocation above makes up for it
const u64 new_base = (mapped_address_base & ~0xF) + 16;
const u64 diff_bytes = new_base - mapped_address_base;
m_memory_mapping = reinterpret_cast<void*>(new_base);
m_mapped_bytes -= ::narrow<u32>(diff_bytes);
m_alignment_offset = ::narrow<u32>(diff_bytes);
}
verify(HERE), m_mapped_bytes >= alloc_size;
}
std::pair<void*, u32> alloc_from_heap(u32 alloc_size, u16 alignment) override
{
u32 offset = m_data_loc;
if (m_data_loc) offset = align(offset, alignment);
u32 padding = (offset - m_data_loc);
u32 real_size = align(padding + alloc_size, alignment); //Ensures we leave the loc pointer aligned after we exit
if (real_size > m_mapped_bytes)
{
//Missed allocation. We take a performance hit on doing this.
//Overallocate slightly for the next allocation if requested size is too small
unmap();
reserve_storage_on_heap(std::max(real_size, 4096U));
offset = m_data_loc;
if (m_data_loc) offset = align(offset, alignment);
padding = (offset - m_data_loc);
real_size = align(padding + alloc_size, alignment);
}
m_data_loc = offset + real_size;
m_mapped_bytes -= real_size;
u32 local_offset = (offset - m_mapping_offset);
return std::make_pair(static_cast<char*>(m_memory_mapping) + local_offset, offset + m_alignment_offset);
}
void remove() override
{
ring_buffer::remove();
m_mapped_bytes = 0;
}
void unmap() override
{
buffer::bind();
buffer::unmap();
m_memory_mapping = nullptr;
m_mapped_bytes = 0;
m_mapping_offset = 0;
}
void notify() override {}
};
class buffer_view
{
buffer* m_buffer = nullptr;
u32 m_offset = 0;
u32 m_range = 0;
GLenum m_format = GL_R8UI;
public:
buffer_view(buffer *_buffer, u32 offset, u32 range, GLenum format = GL_R8UI)
: m_buffer(_buffer), m_offset(offset), m_range(range), m_format(format)
{}
buffer_view() = default;
void update(buffer *_buffer, u32 offset, u32 range, GLenum format = GL_R8UI)
{
verify(HERE), _buffer->size() >= (offset + range);
m_buffer = _buffer;
m_offset = offset;
m_range = range;
m_format = format;
}
u32 offset() const
{
return m_offset;
}
u32 range() const
{
return m_range;
}
u32 format() const
{
return m_format;
}
buffer* value() const
{
return m_buffer;
}
bool in_range(u32 address, u32 size, u32& new_offset) const
{
if (address < m_offset)
return false;
const u32 _offset = address - m_offset;
if (m_range < _offset)
return false;
const auto remaining = m_range - _offset;
if (size <= remaining)
{
new_offset = _offset;
return true;
}
return false;
}
};
class vao
{
template<buffer::target BindId, uint GetStateId>
class entry
{
vao& m_parent;
public:
using save_binding_state = save_binding_state_base<entry, (static_cast<GLuint>(BindId)), GetStateId>;
entry(vao* parent) noexcept : m_parent(*parent)
{
}
entry& operator = (const buffer& buf) noexcept
{
m_parent.bind();
buf.bind(BindId);
return *this;
}
};
GLuint m_id = GL_NONE;
public:
entry<buffer::target::pixel_pack, GL_PIXEL_PACK_BUFFER_BINDING> pixel_pack_buffer{ this };
entry<buffer::target::pixel_unpack, GL_PIXEL_UNPACK_BUFFER_BINDING> pixel_unpack_buffer{ this };
entry<buffer::target::array, GL_ARRAY_BUFFER_BINDING> array_buffer{ this };
entry<buffer::target::element_array, GL_ELEMENT_ARRAY_BUFFER_BINDING> element_array_buffer{ this };
vao() = default;
vao(const vao&) = delete;
vao(vao&& vao_) noexcept
{
swap(vao_);
}
vao(GLuint id) noexcept
{
set_id(id);
}
~vao() noexcept
{
if (created())
remove();
}
void swap(vao& vao_) noexcept
{
auto my_old_id = id();
set_id(vao_.id());
vao_.set_id(my_old_id);
}
vao& operator = (const vao& rhs) = delete;
vao& operator = (vao&& rhs) noexcept
{
swap(rhs);
return *this;
}
void bind() const noexcept
{
glBindVertexArray(m_id);
}
void create() noexcept
{
glGenVertexArrays(1, &m_id);
}
void remove() noexcept
{
glDeleteVertexArrays(1, &m_id);
m_id = GL_NONE;
}
uint id() const noexcept
{
return m_id;
}
void set_id(uint id) noexcept
{
m_id = id;
}
bool created() const noexcept
{
return m_id != GL_NONE;
}
explicit operator bool() const noexcept
{
return created();
}
void enable_for_attributes(std::initializer_list<GLuint> indexes) noexcept
{
for (auto &index : indexes)
{
glEnableVertexAttribArray(index);
}
}
void disable_for_attributes(std::initializer_list<GLuint> indexes) noexcept
{
for (auto &index : indexes)
{
glDisableVertexAttribArray(index);
}
}
void enable_for_attribute(GLuint index) noexcept
{
enable_for_attributes({ index });
}
void disable_for_attribute(GLuint index) noexcept
{
disable_for_attributes({ index });
}
buffer_pointer operator + (u32 offset) noexcept
{
return{ this, offset };
}
buffer_pointer operator >> (u32 stride) noexcept
{
return{ this, {}, stride };
}
operator buffer_pointer() noexcept
{
return{ this };
}
attrib_t operator [] (u32 index) const noexcept;
};
class attrib_t
{
GLint m_location;
public:
attrib_t(GLint location)
: m_location(location)
{
}
GLint location() const
{
return m_location;
}
void operator = (float rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib1f(location(), rhs); }
void operator = (double rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib1d(location(), rhs); }
void operator = (const color1f& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib1f(location(), rhs.r); }
void operator = (const color1d& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib1d(location(), rhs.r); }
void operator = (const color2f& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib2f(location(), rhs.r, rhs.g); }
void operator = (const color2d& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib2d(location(), rhs.r, rhs.g); }
void operator = (const color3f& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib3f(location(), rhs.r, rhs.g, rhs.b); }
void operator = (const color3d& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib3d(location(), rhs.r, rhs.g, rhs.b); }
void operator = (const color4f& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib4f(location(), rhs.r, rhs.g, rhs.b, rhs.a); }
void operator = (const color4d& rhs) const { glDisableVertexAttribArray(location()); glVertexAttrib4d(location(), rhs.r, rhs.g, rhs.b, rhs.a); }
void operator = (buffer_pointer& pointer) const
{
pointer.get_vao().enable_for_attribute(m_location);
glVertexAttribPointer(location(), pointer.size(), static_cast<GLenum>(pointer.get_type()), pointer.normalize(),
pointer.stride(), reinterpret_cast<const void*>(u64{pointer.offset()}));
}
};
enum image_aspect : u32
{
color = 1,
depth = 2,
stencil = 4
};
class texture
{
public:
enum class type
{
ubyte = GL_UNSIGNED_BYTE,
ushort = GL_UNSIGNED_SHORT,
uint = GL_UNSIGNED_INT,
ubyte_3_3_2 = GL_UNSIGNED_BYTE_3_3_2,
ubyte_2_3_3_rev = GL_UNSIGNED_BYTE_2_3_3_REV,
ushort_5_6_5 = GL_UNSIGNED_SHORT_5_6_5,
ushort_5_6_5_rev = GL_UNSIGNED_SHORT_5_6_5_REV,
ushort_4_4_4_4 = GL_UNSIGNED_SHORT_4_4_4_4,
ushort_4_4_4_4_rev = GL_UNSIGNED_SHORT_4_4_4_4_REV,
ushort_5_5_5_1 = GL_UNSIGNED_SHORT_5_5_5_1,
ushort_1_5_5_5_rev = GL_UNSIGNED_SHORT_1_5_5_5_REV,
uint_8_8_8_8 = GL_UNSIGNED_INT_8_8_8_8,
uint_8_8_8_8_rev = GL_UNSIGNED_INT_8_8_8_8_REV,
uint_10_10_10_2 = GL_UNSIGNED_INT_10_10_10_2,
uint_2_10_10_10_rev = GL_UNSIGNED_INT_2_10_10_10_REV,
uint_24_8 = GL_UNSIGNED_INT_24_8,
float32_uint8 = GL_FLOAT_32_UNSIGNED_INT_24_8_REV,
sbyte = GL_BYTE,
sshort = GL_SHORT,
sint = GL_INT,
f16 = GL_HALF_FLOAT,
f32 = GL_FLOAT,
f64 = GL_DOUBLE,
};
enum class channel
{
zero = GL_ZERO,
one = GL_ONE,
r = GL_RED,
g = GL_GREEN,
b = GL_BLUE,
a = GL_ALPHA,
};
enum class format
{
r = GL_RED,
rg = GL_RG,
rgb = GL_RGB,
rgba = GL_RGBA,
bgr = GL_BGR,
bgra = GL_BGRA,
stencil = GL_STENCIL_INDEX,
depth = GL_DEPTH_COMPONENT,
depth_stencil = GL_DEPTH_STENCIL
};
enum class internal_format
{
r = GL_RED,
rg = GL_RG,
rgb = GL_RGB,
rgba = GL_RGBA,
bgr = GL_BGR,
bgra = GL_BGRA,
stencil = GL_STENCIL_INDEX,
stencil8 = GL_STENCIL_INDEX8,
depth = GL_DEPTH_COMPONENT,
depth16 = GL_DEPTH_COMPONENT16,
depth_stencil = GL_DEPTH_STENCIL,
depth24_stencil8 = GL_DEPTH24_STENCIL8,
depth32f_stencil8 = GL_DEPTH32F_STENCIL8,
compressed_rgb_s3tc_dxt1 = GL_COMPRESSED_RGB_S3TC_DXT1_EXT,
compressed_rgba_s3tc_dxt1 = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT,
compressed_rgba_s3tc_dxt3 = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT,
compressed_rgba_s3tc_dxt5 = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT,
//Sized internal formats, see opengl spec document on glTexImage2D, table 3
rgba8 = GL_RGBA8,
rgb565 = GL_RGB565,
rgb5a1 = GL_RGB5_A1,
rgba4 = GL_RGBA4,
r8 = GL_R8,
r16 = GL_R16,
r32f = GL_R32F,
rg8 = GL_RG8,
rg16 = GL_RG16,
rg16f = GL_RG16F,
rgba16f = GL_RGBA16F,
rgba32f = GL_RGBA32F
};
enum class wrap
{
repeat = GL_REPEAT,
mirrored_repeat = GL_MIRRORED_REPEAT,
clamp_to_edge = GL_CLAMP_TO_EDGE,
clamp_to_border = GL_CLAMP_TO_BORDER,
mirror_clamp = GL_MIRROR_CLAMP_EXT,
//mirror_clamp_to_edge = GL_MIRROR_CLAMP_TO_EDGE,
mirror_clamp_to_border = GL_MIRROR_CLAMP_TO_BORDER_EXT
};
enum class compare_mode
{
none = GL_NONE,
ref_to_texture = GL_COMPARE_REF_TO_TEXTURE
};
enum class compare_func
{
never = GL_NEVER,
less = GL_LESS,
equal = GL_EQUAL,
lequal = GL_LEQUAL,
greater = GL_GREATER,
notequal = GL_NOTEQUAL,
gequal = GL_GEQUAL,
always = GL_ALWAYS
};
enum class target
{
texture1D = GL_TEXTURE_1D,
texture2D = GL_TEXTURE_2D,
texture3D = GL_TEXTURE_3D,
textureCUBE = GL_TEXTURE_CUBE_MAP,
textureBuffer = GL_TEXTURE_BUFFER
};
enum class channel_type
{
none = GL_NONE,
signed_normalized = GL_SIGNED_NORMALIZED,
unsigned_normalized = GL_UNSIGNED_NORMALIZED,
float_ = GL_FLOAT,
int_ = GL_INT,
uint_ = GL_UNSIGNED_INT
};
enum class channel_name
{
red = GL_TEXTURE_RED_TYPE,
green = GL_TEXTURE_GREEN_TYPE,
blue = GL_TEXTURE_BLUE_TYPE,
alpha = GL_TEXTURE_ALPHA_TYPE,
depth = GL_TEXTURE_DEPTH_TYPE
};
protected:
GLuint m_id = 0;
GLuint m_width = 0;
GLuint m_height = 0;
GLuint m_depth = 0;
GLuint m_mipmaps = 0;
GLuint m_pitch = 0;
GLuint m_compressed = GL_FALSE;
GLuint m_aspect_flags = 0;
target m_target = target::texture2D;
internal_format m_internal_format = internal_format::rgba8;
std::array<GLenum, 4> m_component_layout;
private:
class save_binding_state
{
GLenum target = GL_NONE;
GLuint old_binding = GL_NONE;
public:
save_binding_state(GLenum target)
{
this->target = target;
switch (target)
{
case GL_TEXTURE_1D:
glGetIntegerv(GL_TEXTURE_BINDING_1D, reinterpret_cast<GLint*>(&old_binding));
break;
case GL_TEXTURE_2D:
glGetIntegerv(GL_TEXTURE_BINDING_2D, reinterpret_cast<GLint*>(&old_binding));
break;
case GL_TEXTURE_3D:
glGetIntegerv(GL_TEXTURE_BINDING_3D, reinterpret_cast<GLint*>(&old_binding));
break;
case GL_TEXTURE_CUBE_MAP:
glGetIntegerv(GL_TEXTURE_BINDING_CUBE_MAP, reinterpret_cast<GLint*>(&old_binding));
break;
case GL_TEXTURE_2D_ARRAY:
glGetIntegerv(GL_TEXTURE_BINDING_2D_ARRAY, reinterpret_cast<GLint*>(&old_binding));
break;
case GL_TEXTURE_BUFFER:
glGetIntegerv(GL_TEXTURE_BINDING_BUFFER, reinterpret_cast<GLint*>(&old_binding));
break;
}
}
~save_binding_state()
{
glBindTexture(target, old_binding);
}
};
public:
texture(const texture&) = delete;
texture(texture&& texture_) = delete;
texture(GLenum target, GLuint width, GLuint height, GLuint depth, GLuint mipmaps, GLenum sized_format)
{
save_binding_state save(target);
glGenTextures(1, &m_id);
glBindTexture(target, m_id); //Must bind to initialize the new texture
switch (target)
{
default:
fmt::throw_exception("Invalid image target 0x%X" HERE, target);
case GL_TEXTURE_1D:
glTexStorage1D(target, mipmaps, sized_format, width);
height = depth = 1;
break;
case GL_TEXTURE_2D:
case GL_TEXTURE_CUBE_MAP:
glTexStorage2D(target, mipmaps, sized_format, width, height);
depth = 1;
break;
case GL_TEXTURE_3D:
case GL_TEXTURE_2D_ARRAY:
glTexStorage3D(target, mipmaps, sized_format, width, height, depth);
break;
case GL_TEXTURE_BUFFER:
break;
}
if (target != GL_TEXTURE_BUFFER)
{
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_REPEAT);
glTexParameteri(target, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, mipmaps - 1);
m_width = width;
m_height = height;
m_depth = depth;
m_mipmaps = mipmaps;
m_aspect_flags = image_aspect::color;
switch (sized_format)
{
case GL_DEPTH_COMPONENT16:
{
m_pitch = width * 2;
m_aspect_flags = image_aspect::depth;
break;
}
case GL_DEPTH_COMPONENT32: // Unimplemented decode
case GL_DEPTH24_STENCIL8:
case GL_DEPTH32F_STENCIL8:
{
m_pitch = width * 4;
m_aspect_flags = image_aspect::depth | image_aspect::stencil;
break;
}
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
{
m_compressed = true;
m_pitch = width / 2;
break;
}
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
{
m_compressed = true;
m_pitch = width;
break;
}
default:
{
GLenum query_target = (target == GL_TEXTURE_CUBE_MAP) ? GL_TEXTURE_CUBE_MAP_POSITIVE_X : target;
GLint r, g, b, a;
glGetTexLevelParameteriv(query_target, 0, GL_TEXTURE_RED_SIZE, &r);
glGetTexLevelParameteriv(query_target, 0, GL_TEXTURE_GREEN_SIZE, &g);
glGetTexLevelParameteriv(query_target, 0, GL_TEXTURE_BLUE_SIZE, &b);
glGetTexLevelParameteriv(query_target, 0, GL_TEXTURE_ALPHA_SIZE, &a);
m_pitch = width * (r + g + b + a) / 8;
break;
}
}
if (!m_pitch)
{
fmt::throw_exception("Unhandled GL format 0x%X" HERE, sized_format);
}
}
m_target = static_cast<texture::target>(target);
m_internal_format = static_cast<internal_format>(sized_format);
m_component_layout = { GL_ALPHA, GL_RED, GL_GREEN, GL_BLUE };
}
virtual ~texture()
{
glDeleteTextures(1, &m_id);
}
void set_native_component_layout(const std::array<GLenum, 4>& layout)
{
m_component_layout[0] = layout[0];
m_component_layout[1] = layout[1];
m_component_layout[2] = layout[2];
m_component_layout[3] = layout[3];
}
target get_target() const noexcept
{
return m_target;
}
static bool compressed_format(internal_format format_) noexcept
{
switch (format_)
{
case internal_format::compressed_rgb_s3tc_dxt1:
case internal_format::compressed_rgba_s3tc_dxt1:
case internal_format::compressed_rgba_s3tc_dxt3:
case internal_format::compressed_rgba_s3tc_dxt5:
return true;
default:
return false;
}
}
uint id() const noexcept
{
return m_id;
}
explicit operator bool() const noexcept
{
return (m_id != 0);
}
GLuint width() const
{
return m_width;
}
GLuint height() const
{
return m_height;
}
GLuint depth() const
{
return m_depth;
}
GLuint levels() const
{
return m_mipmaps;
}
GLuint pitch() const
{
return m_pitch;
}
GLboolean compressed() const
{
return m_compressed;
}
GLuint aspect() const
{
return m_aspect_flags;
}
sizeu size2D() const
{
return{ m_width, m_height };
}
size3u size3D() const
{
const auto depth = (m_target == target::textureCUBE) ? 6 : m_depth;
return{ m_width, m_height, depth };
}
texture::internal_format get_internal_format() const
{
return m_internal_format;
}
std::array<GLenum, 4> get_native_component_layout() const
{
return m_component_layout;
}
void copy_from(const void* src, texture::format format, texture::type type, const coord3u region, const pixel_unpack_settings& pixel_settings)
{
pixel_settings.apply();
switch (const auto target_ =static_cast<GLenum>(m_target))
{
case GL_TEXTURE_1D:
{
DSA_CALL(TextureSubImage1D, m_id, GL_TEXTURE_1D, 0, region.x, region.width, static_cast<GLenum>(format), static_cast<GLenum>(type), src);
break;
}
case GL_TEXTURE_2D:
{
DSA_CALL(TextureSubImage2D, m_id, GL_TEXTURE_2D, 0, region.x, region.y, region.width, region.height, static_cast<GLenum>(format), static_cast<GLenum>(type), src);
break;
}
case GL_TEXTURE_3D:
case GL_TEXTURE_2D_ARRAY:
{
DSA_CALL(TextureSubImage3D, m_id, target_, 0, region.x, region.y, region.z, region.width, region.height, region.depth, static_cast<GLenum>(format), static_cast<GLenum>(type), src);
break;
}
case GL_TEXTURE_CUBE_MAP:
{
if (get_driver_caps().ARB_dsa_supported)
{
glTextureSubImage3D(m_id, 0, region.x, region.y, region.z, region.width, region.height, region.depth, static_cast<GLenum>(format), static_cast<GLenum>(type), src);
}
else
{
rsx_log.warning("Cubemap upload via texture::copy_from is halfplemented!");
auto ptr = static_cast<const u8*>(src);
const auto end = std::min(6u, region.z + region.depth);
for (unsigned face = region.z; face < end; ++face)
{
glTextureSubImage2DEXT(m_id, GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, region.x, region.y, region.width, region.height, static_cast<GLenum>(format), static_cast<GLenum>(type), ptr);
ptr += (region.width * region.height * 4); //TODO
}
}
break;
}
}
}
void copy_from(const void* src, texture::format format, texture::type type, const pixel_unpack_settings& pixel_settings)
{
const coord3u region = { {}, size3D() };
copy_from(src, format, type, region, pixel_settings);
}
void copy_from(buffer &buf, u32 gl_format_type, u32 offset, u32 length)
{
if (get_target() != target::textureBuffer)
fmt::throw_exception("OpenGL error: texture cannot copy from buffer" HERE);
DSA_CALL(TextureBufferRange, m_id, GL_TEXTURE_BUFFER, gl_format_type, buf.id(), offset, length);
}
void copy_from(buffer_view &view)
{
copy_from(*view.value(), view.format(), view.offset(), view.range());
}
void copy_to(void* dst, texture::format format, texture::type type, const coord3u& region, const pixel_pack_settings& pixel_settings) const
{
pixel_settings.apply();
const auto& caps = get_driver_caps();
if (!region.x && !region.y && !region.z &&
region.width == m_width && region.height == m_height && region.depth == m_depth)
{
if (caps.ARB_dsa_supported)
glGetTextureImage(m_id, 0, static_cast<GLenum>(format), static_cast<GLenum>(type), INT32_MAX, dst);
else
glGetTextureImageEXT(m_id, static_cast<GLenum>(m_target), 0, static_cast<GLenum>(format), static_cast<GLenum>(type), dst);
}
else if (caps.ARB_dsa_supported)
{
glGetTextureSubImage(m_id, 0, region.x, region.y, region.z, region.width, region.height, region.depth,
static_cast<GLenum>(format), static_cast<GLenum>(type), INT32_MAX, dst);
}
else
{
// Worst case scenario. For some reason, EXT_dsa does not have glGetTextureSubImage
const auto target_ = static_cast<GLenum>(m_target);
texture tmp{ target_, region.width, region.height, region.depth, 1, static_cast<GLenum>(m_internal_format) };
glCopyImageSubData(m_id, target_, 0, region.x, region.y, region.z, tmp.id(), target_, 0, 0, 0, 0,
region.width, region.height, region.depth);
const coord3u region2 = { {0, 0, 0}, region.size };
tmp.copy_to(dst, format, type, region2, pixel_settings);
}
}
void copy_to(void* dst, texture::format format, texture::type type, const pixel_pack_settings& pixel_settings) const
{
const coord3u region = { {}, size3D() };
copy_to(dst, format, type, region, pixel_settings);
}
};
class texture_view
{
GLuint m_id = 0;
GLenum m_target = 0;
GLenum m_format = 0;
GLenum m_aspect_flags = 0;
texture *m_image_data = nullptr;
GLenum component_swizzle[4];
void create(texture* data, GLenum target, GLenum sized_format, GLenum aspect_flags, const GLenum* argb_swizzle = nullptr)
{
m_target = target;
m_format = sized_format;
m_image_data = data;
m_aspect_flags = aspect_flags;
u32 num_layers;
switch (target)
{
default:
num_layers = 1; break;
case GL_TEXTURE_CUBE_MAP:
num_layers = 6; break;
case GL_TEXTURE_2D_ARRAY:
num_layers = data->depth(); break;
}
glGenTextures(1, &m_id);
glTextureView(m_id, target, data->id(), sized_format, 0, data->levels(), 0, num_layers);
if (argb_swizzle)
{
component_swizzle[0] = argb_swizzle[1];
component_swizzle[1] = argb_swizzle[2];
component_swizzle[2] = argb_swizzle[3];
component_swizzle[3] = argb_swizzle[0];
glBindTexture(m_target, m_id);
glTexParameteriv(m_target, GL_TEXTURE_SWIZZLE_RGBA, reinterpret_cast<GLint*>(component_swizzle));
}
else
{
component_swizzle[0] = GL_RED;
component_swizzle[1] = GL_GREEN;
component_swizzle[2] = GL_BLUE;
component_swizzle[3] = GL_ALPHA;
}
if (aspect_flags & image_aspect::stencil)
{
constexpr u32 depth_stencil_mask = (image_aspect::depth | image_aspect::stencil);
verify("Invalid aspect mask combination" HERE), (aspect_flags & depth_stencil_mask) != depth_stencil_mask;
glBindTexture(m_target, m_id);
glTexParameteri(m_target, GL_DEPTH_STENCIL_TEXTURE_MODE, GL_STENCIL_INDEX);
}
}
public:
texture_view(const texture_view&) = delete;
texture_view(texture_view&&) = delete;
texture_view(texture* data, GLenum target, GLenum sized_format,
const GLenum* argb_swizzle = nullptr,
GLenum aspect_flags = image_aspect::color | image_aspect::depth)
{
create(data, target, sized_format, aspect_flags, argb_swizzle);
}
texture_view(texture* data, const GLenum* argb_swizzle = nullptr,
GLenum aspect_flags = image_aspect::color | image_aspect::depth)
{
GLenum target = static_cast<GLenum>(data->get_target());
GLenum sized_format = static_cast<GLenum>(data->get_internal_format());
create(data, target, sized_format, aspect_flags, argb_swizzle);
}
~texture_view()
{
glDeleteTextures(1, &m_id);
}
GLuint id() const
{
return m_id;
}
GLenum target() const
{
return m_target;
}
GLenum internal_format() const
{
return m_format;
}
GLenum aspect() const
{
return m_aspect_flags;
}
bool compare_swizzle(const GLenum* argb_swizzle) const
{
return (argb_swizzle[0] == component_swizzle[3] &&
argb_swizzle[1] == component_swizzle[0] &&
argb_swizzle[2] == component_swizzle[1] &&
argb_swizzle[3] == component_swizzle[2]);
}
void bind() const
{
glBindTexture(m_target, m_id);
}
texture* image() const
{
return m_image_data;
}
std::array<GLenum, 4> component_mapping() const
{
return{ component_swizzle[3], component_swizzle[0], component_swizzle[1], component_swizzle[2] };
}
u32 encoded_component_map() const
{
// Unused, OGL supports proper component swizzles
return 0u;
}
};
class viewable_image : public texture
{
std::unordered_multimap<u32, std::unique_ptr<texture_view>> views;
public:
using texture::texture;
texture_view* get_view(u32 remap_encoding, const std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap, GLenum aspect_flags = image_aspect::color | image_aspect::depth)
{
auto found = views.equal_range(remap_encoding);
for (auto It = found.first; It != found.second; ++It)
{
if (It->second->aspect() & aspect_flags)
{
return It->second.get();
}
}
verify(HERE), aspect() & aspect_flags;
auto mapping = apply_swizzle_remap(get_native_component_layout(), remap);
auto view = std::make_unique<texture_view>(this, mapping.data(), aspect_flags);
auto result = view.get();
views.emplace(remap_encoding, std::move(view));
return result;
}
void set_native_component_layout(const std::array<GLenum, 4>& layout)
{
if (m_component_layout[0] != layout[0] ||
m_component_layout[1] != layout[1] ||
m_component_layout[2] != layout[2] ||
m_component_layout[3] != layout[3])
{
texture::set_native_component_layout(layout);
views.clear();
}
}
};
class rbo
{
GLuint m_id = 0;
public:
rbo() = default;
rbo(GLuint id)
{
set_id(id);
}
~rbo()
{
if (created())
remove();
}
class save_binding_state
{
GLint m_old_value;
public:
save_binding_state(const rbo& new_state)
{
glGetIntegerv(GL_RENDERBUFFER_BINDING, &m_old_value);
new_state.bind();
}
~save_binding_state()
{
glBindRenderbuffer(GL_RENDERBUFFER, m_old_value);
}
};
void recreate()
{
if (created())
remove();
create();
}
void recreate(texture::format format, u32 width, u32 height)
{
if (created())
remove();
create(format, width, height);
}
void create()
{
glGenRenderbuffers(1, &m_id);
}
void create(texture::format format, u32 width, u32 height)
{
create();
storage(format, width, height);
}
void bind() const
{
glBindRenderbuffer(GL_RENDERBUFFER, m_id);
}
void storage(texture::format format, u32 width, u32 height)
{
save_binding_state save(*this);
glRenderbufferStorage(GL_RENDERBUFFER, static_cast<GLenum>(format), width, height);
}
void remove()
{
glDeleteRenderbuffers(1, &m_id);
m_id = 0;
}
uint id() const
{
return m_id;
}
void set_id(uint id)
{
m_id = id;
}
bool created() const
{
return m_id != 0;
}
explicit operator bool() const
{
return created();
}
};
enum class indices_type
{
ubyte = GL_UNSIGNED_BYTE,
ushort = GL_UNSIGNED_SHORT,
uint = GL_UNSIGNED_INT
};
class fbo
{
GLuint m_id = GL_NONE;
size2i m_size;
protected:
std::unordered_map<GLenum, GLuint> m_resource_bindings;
public:
fbo() = default;
fbo(GLuint id)
{
set_id(id);
}
~fbo()
{
if (created())
remove();
}
class save_binding_state
{
GLint m_last_binding;
bool reset = true;
public:
save_binding_state(const fbo& new_binding)
{
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &m_last_binding);
if (m_last_binding + 0u != new_binding.id())
new_binding.bind();
else
reset = false;
}
~save_binding_state()
{
if (reset)
glBindFramebuffer(GL_FRAMEBUFFER, m_last_binding);
}
};
class attachment
{
public:
enum class type
{
color = GL_COLOR_ATTACHMENT0,
depth = GL_DEPTH_ATTACHMENT,
stencil = GL_STENCIL_ATTACHMENT,
depth_stencil = GL_DEPTH_STENCIL_ATTACHMENT
};
protected:
GLuint m_id = GL_NONE;
fbo &m_parent;
public:
attachment(fbo& parent, type type)
: m_id(static_cast<int>(type))
, m_parent(parent)
{
}
void set_id(uint id)
{
m_id = id;
}
uint id() const
{
return m_id;
}
GLuint resource_id() const
{
const auto found = m_parent.m_resource_bindings.find(m_id);
if (found != m_parent.m_resource_bindings.end())
{
return found->second;
}
return GL_NONE;
}
void operator = (const rbo& rhs)
{
save_binding_state save(m_parent);
m_parent.m_resource_bindings[m_id] = rhs.id();
glFramebufferRenderbuffer(GL_FRAMEBUFFER, m_id, GL_RENDERBUFFER, rhs.id());
}
void operator = (const texture& rhs)
{
save_binding_state save(m_parent);
verify(HERE), rhs.get_target() == texture::target::texture2D;
m_parent.m_resource_bindings[m_id] = rhs.id();
glFramebufferTexture2D(GL_FRAMEBUFFER, m_id, GL_TEXTURE_2D, rhs.id(), 0);
}
void operator = (const GLuint rhs)
{
save_binding_state save(m_parent);
m_parent.m_resource_bindings[m_id] = rhs;
glFramebufferTexture2D(GL_FRAMEBUFFER, m_id, GL_TEXTURE_2D, rhs, 0);
}
};
class indexed_attachment : public attachment
{
public:
indexed_attachment(fbo& parent, type type) : attachment(parent, type)
{
}
attachment operator[](int index) const
{
return{ m_parent, type(id() + index) };
}
std::vector<attachment> range(int from, int count) const
{
std::vector<attachment> result;
for (int i = from; i < from + count; ++i)
result.push_back((*this)[i]);
return result;
}
using attachment::operator =;
};
indexed_attachment color{ *this, attachment::type::color };
attachment depth{ *this, attachment::type::depth };
attachment stencil{ *this, attachment::type::stencil };
attachment depth_stencil{ *this, attachment::type::depth_stencil };
enum class target
{
read_frame_buffer = GL_READ_FRAMEBUFFER,
draw_frame_buffer = GL_DRAW_FRAMEBUFFER
};
void create();
void bind() const;
void blit(const fbo& dst, areai src_area, areai dst_area, buffers buffers_ = buffers::color, filter filter_ = filter::nearest) const;
void bind_as(target target_) const;
void remove();
bool created() const;
bool check() const;
void recreate();
void draw_buffer(const attachment& buffer) const;
void draw_buffers(const std::initializer_list<attachment>& indexes) const;
void read_buffer(const attachment& buffer) const;
void draw_arrays(rsx::primitive_type mode, GLsizei count, GLint first = 0) const;
void draw_arrays(const buffer& buffer, rsx::primitive_type mode, GLsizei count, GLint first = 0) const;
void draw_arrays(const vao& buffer, rsx::primitive_type mode, GLsizei count, GLint first = 0) const;
void draw_elements(rsx::primitive_type mode, GLsizei count, indices_type type, const GLvoid *indices) const;
void draw_elements(const buffer& buffer, rsx::primitive_type mode, GLsizei count, indices_type type, const GLvoid *indices) const;
void draw_elements(rsx::primitive_type mode, GLsizei count, indices_type type, const buffer& indices, size_t indices_buffer_offset = 0) const;
void draw_elements(const buffer& buffer_, rsx::primitive_type mode, GLsizei count, indices_type type, const buffer& indices, size_t indices_buffer_offset = 0) const;
void draw_elements(rsx::primitive_type mode, GLsizei count, const GLubyte *indices) const;
void draw_elements(const buffer& buffer, rsx::primitive_type mode, GLsizei count, const GLubyte *indices) const;
void draw_elements(rsx::primitive_type mode, GLsizei count, const GLushort *indices) const;
void draw_elements(const buffer& buffer, rsx::primitive_type mode, GLsizei count, const GLushort *indices) const;
void draw_elements(rsx::primitive_type mode, GLsizei count, const GLuint *indices) const;
void draw_elements(const buffer& buffer, rsx::primitive_type mode, GLsizei count, const GLuint *indices) const;
void clear(buffers buffers_) const;
void clear(buffers buffers_, color4f color_value, double depth_value, u8 stencil_value) const;
void copy_from(const void* pixels, const sizei& size, gl::texture::format format_, gl::texture::type type_, class pixel_unpack_settings pixel_settings = pixel_unpack_settings()) const;
void copy_from(const buffer& buf, const sizei& size, gl::texture::format format_, gl::texture::type type_, class pixel_unpack_settings pixel_settings = pixel_unpack_settings()) const;
void copy_to(void* pixels, coordi coord, gl::texture::format format_, gl::texture::type type_, class pixel_pack_settings pixel_settings = pixel_pack_settings()) const;
void copy_to(const buffer& buf, coordi coord, gl::texture::format format_, gl::texture::type type_, class pixel_pack_settings pixel_settings = pixel_pack_settings()) const;
static fbo get_bound_draw_buffer();
static fbo get_bound_read_buffer();
static fbo get_bound_buffer();
GLuint id() const;
void set_id(GLuint id);
void set_extents(const size2i& extents);
size2i get_extents() const;
bool matches(const std::array<GLuint, 4>& color_targets, GLuint depth_stencil_target) const;
bool references_any(const std::vector<GLuint>& resources) const;
explicit operator bool() const
{
return created();
}
};
extern const fbo screen;
namespace glsl
{
class shader
{
public:
enum class type
{
fragment = GL_FRAGMENT_SHADER,
vertex = GL_VERTEX_SHADER,
compute = GL_COMPUTE_SHADER
};
private:
GLuint m_id = GL_NONE;
type shader_type = type::vertex;
public:
shader() = default;
shader(GLuint id)
{
set_id(id);
}
shader(type type_)
{
create(type_);
}
shader(type type_, const std::string& src)
{
create(type_);
source(src);
}
~shader()
{
if (created())
remove();
}
void recreate(type type_)
{
if (created())
remove();
create(type_);
}
void create(type type_)
{
m_id = glCreateShader(static_cast<GLenum>(type_));
shader_type = type_;
}
void source(const std::string& src) const
{
const char* str = src.c_str();
const GLint length = ::narrow<GLint>(src.length());
if (g_cfg.video.log_programs)
{
std::string base_name;
switch (shader_type)
{
case type::vertex:
base_name = "shaderlog/VertexProgram";
break;
case type::fragment:
base_name = "shaderlog/FragmentProgram";
break;
case type::compute:
base_name = "shaderlog/ComputeProgram";
break;
}
fs::file(fs::get_cache_dir() + base_name + std::to_string(m_id) + ".glsl", fs::rewrite).write(str);
}
glShaderSource(m_id, 1, &str, &length);
}
shader& compile()
{
glCompileShader(m_id);
GLint status = GL_FALSE;
glGetShaderiv(m_id, GL_COMPILE_STATUS, &status);
if (status == GL_FALSE)
{
GLint length = 0;
glGetShaderiv(m_id, GL_INFO_LOG_LENGTH, &length);
std::string error_msg;
if (length)
{
std::unique_ptr<GLchar[]> buf(new char[length + 1]);
glGetShaderInfoLog(m_id, length, nullptr, buf.get());
error_msg = buf.get();
}
rsx_log.fatal("Compilation failed: %s", error_msg);
}
return *this;
}
void remove()
{
glDeleteShader(m_id);
m_id = 0;
}
uint id() const
{
return m_id;
}
void set_id(uint id)
{
m_id = id;
}
bool created() const
{
return m_id != 0;
}
explicit operator bool() const
{
return created();
}
};
class program
{
GLuint m_id = 0;
fence m_fence;
public:
class uniform_t
{
program& m_program;
GLint m_location;
public:
uniform_t(program& program, GLint location)
: m_program(program)
, m_location(location)
{
}
GLint location() const
{
return m_location;
}
void operator = (int rhs) const { glProgramUniform1i(m_program.id(), location(), rhs); }
void operator = (unsigned rhs) const { glProgramUniform1ui(m_program.id(), location(), rhs); }
void operator = (float rhs) const { glProgramUniform1f(m_program.id(), location(), rhs); }
void operator = (const color1i& rhs) const { glProgramUniform1i(m_program.id(), location(), rhs.r); }
void operator = (const color1f& rhs) const { glProgramUniform1f(m_program.id(), location(), rhs.r); }
void operator = (const color2i& rhs) const { glProgramUniform2i(m_program.id(), location(), rhs.r, rhs.g); }
void operator = (const color2f& rhs) const { glProgramUniform2f(m_program.id(), location(), rhs.r, rhs.g); }
void operator = (const color3i& rhs) const { glProgramUniform3i(m_program.id(), location(), rhs.r, rhs.g, rhs.b); }
void operator = (const color3f& rhs) const { glProgramUniform3f(m_program.id(), location(), rhs.r, rhs.g, rhs.b); }
void operator = (const color4i& rhs) const { glProgramUniform4i(m_program.id(), location(), rhs.r, rhs.g, rhs.b, rhs.a); }
void operator = (const color4f& rhs) const { glProgramUniform4f(m_program.id(), location(), rhs.r, rhs.g, rhs.b, rhs.a); }
void operator = (const areaf& rhs) const { glProgramUniform4f(m_program.id(), location(), rhs.x1, rhs.y1, rhs.x2, rhs.y2); }
void operator = (const areai& rhs) const { glProgramUniform4i(m_program.id(), location(), rhs.x1, rhs.y1, rhs.x2, rhs.y2); }
};
class uniforms_t
{
program& m_program;
std::unordered_map<std::string, GLint> locations;
int active_texture = 0;
public:
uniforms_t(program* program) : m_program(*program)
{
}
void clear()
{
locations.clear();
active_texture = 0;
}
bool has_location(const std::string &name, int *location = nullptr)
{
auto found = locations.find(name);
if (found != locations.end())
{
if (location)
{
*location = found->second;
}
return (found->second >= 0);
}
auto result = glGetUniformLocation(m_program.id(), name.c_str());
locations[name] = result;
if (location)
{
*location = result;
}
return (result >= 0);
}
GLint location(const std::string &name)
{
auto found = locations.find(name);
if (found != locations.end())
{
if (found->second >= 0)
{
return found->second;
}
else
{
rsx_log.fatal("%s not found.", name);
return -1;
}
}
auto result = glGetUniformLocation(m_program.id(), name.c_str());
if (result < 0)
{
rsx_log.fatal("%s not found.", name);
return result;
}
locations[name] = result;
return result;
}
int texture(GLint location, int active_texture, const gl::texture_view& texture)
{
glActiveTexture(GL_TEXTURE0 + active_texture);
texture.bind();
(*this)[location] = active_texture;
return active_texture;
}
uniform_t operator[](GLint location)
{
return{ m_program, location };
}
uniform_t operator[](const std::string &name)
{
return{ m_program, location(name) };
}
void swap(uniforms_t& uniforms)
{
locations.swap(uniforms.locations);
std::swap(active_texture, uniforms.active_texture);
}
} uniforms{ this };
program& recreate()
{
if (created())
remove();
return create();
}
program& create()
{
m_id = glCreateProgram();
return *this;
}
void remove()
{
glDeleteProgram(m_id);
m_id = 0;
uniforms.clear();
}
static program get_current_program()
{
GLint id;
glGetIntegerv(GL_CURRENT_PROGRAM, &id);
return{ static_cast<GLuint>(id) };
}
void use()
{
glUseProgram(m_id);
}
void link()
{
glLinkProgram(m_id);
GLint status = GL_FALSE;
glGetProgramiv(m_id, GL_LINK_STATUS, &status);
if (status == GL_FALSE)
{
GLint length = 0;
glGetProgramiv(m_id, GL_INFO_LOG_LENGTH, &length);
std::string error_msg;
if (length)
{
std::unique_ptr<GLchar[]> buf(new char[length + 1]);
glGetProgramInfoLog(m_id, length, nullptr, buf.get());
error_msg = buf.get();
}
rsx_log.fatal("Linkage failed: %s", error_msg);
}
else
{
m_fence.create();
if (!is_primary_context_thread())
{
glFlush();
}
}
}
void validate()
{
glValidateProgram(m_id);
GLint status = GL_FALSE;
glGetProgramiv(m_id, GL_VALIDATE_STATUS, &status);
if (status == GL_FALSE)
{
GLint length = 0;
glGetProgramiv(m_id, GL_INFO_LOG_LENGTH, &length);
std::string error_msg;
if (length)
{
std::unique_ptr<GLchar[]> buf(new char[length + 1]);
glGetProgramInfoLog(m_id, length, nullptr, buf.get());
error_msg = buf.get();
}
rsx_log.error("Validation failed: %s", error_msg.c_str());
}
}
uint id() const
{
return m_id;
}
void set_id(uint id)
{
uniforms.clear();
m_id = id;
}
bool created() const
{
return m_id != 0;
}
void sync()
{
if (!m_fence.check_signaled())
{
m_fence.server_wait_sync();
}
}
explicit operator bool() const
{
return created();
}
program& attach(const shader& shader_)
{
glAttachShader(m_id, shader_.id());
return *this;
}
program& bind_attribute_location(const std::string& name, int index)
{
glBindAttribLocation(m_id, index, name.c_str());
return *this;
}
program& bind_fragment_data_location(const std::string& name, int color_number)
{
glBindFragDataLocation(m_id, color_number, name.c_str());
return *this;
}
int attribute_location(const std::string& name)
{
return glGetAttribLocation(m_id, name.c_str());
}
int uniform_location(const std::string& name)
{
return glGetUniformLocation(m_id, name.c_str());
}
program& operator += (const shader& rhs)
{
return attach(rhs);
}
program& operator += (std::initializer_list<shader> shaders)
{
for (auto &shader : shaders)
*this += shader;
return *this;
}
program() = default;
program(const program&) = delete;
program(program&& program_)
{
swap(program_);
}
program(GLuint id)
{
set_id(id);
}
~program()
{
if (created())
remove();
}
void swap(program& program_)
{
auto my_old_id = id();
set_id(program_.id());
program_.set_id(my_old_id);
uniforms.swap(program_.uniforms);
}
program& operator = (const program& rhs) = delete;
program& operator = (program&& rhs)
{
swap(rhs);
return *this;
}
};
class shader_view : public shader
{
public:
shader_view(GLuint id) : shader(id)
{
}
~shader_view()
{
set_id(0);
}
};
class program_view : public program
{
public:
program_view(GLuint id) : program(id)
{
}
~program_view()
{
set_id(0);
}
};
}
class blitter
{
struct save_binding_state
{
GLuint old_fbo;
save_binding_state()
{
glGetIntegerv(GL_FRAMEBUFFER_BINDING, reinterpret_cast<GLint*>(&old_fbo));
}
~save_binding_state()
{
glBindFramebuffer(GL_FRAMEBUFFER, old_fbo);
}
};
fbo blit_src;
fbo blit_dst;
public:
void init()
{
blit_src.create();
blit_dst.create();
}
void destroy()
{
blit_dst.remove();
blit_src.remove();
}
void scale_image(gl::command_context& cmd, const texture* src, texture* dst, areai src_rect, areai dst_rect, bool linear_interpolation,
const rsx::typeless_xfer& xfer_info);
void fast_clear_image(gl::command_context& cmd, const texture* dst, const color4f& color);
void fast_clear_image(gl::command_context& cmd, const texture* dst, float depth, u8 stencil);
};
}