rpcs3/Utilities/JIT.cpp

1091 lines
25 KiB
C++

#include "types.h"
#include "JIT.h"
#include "StrFmt.h"
#include "File.h"
#include "Log.h"
#include "mutex.h"
#include "sysinfo.h"
#include "VirtualMemory.h"
#include <immintrin.h>
#ifdef __linux__
#include <sys/mman.h>
#define CAN_OVERCOMMIT
#endif
static u8* get_jit_memory()
{
// Reserve 2G memory (magic static)
static void* const s_memory2 = []() -> void*
{
void* ptr = utils::memory_reserve(0x80000000);
#ifdef CAN_OVERCOMMIT
utils::memory_commit(ptr, 0x80000000);
utils::memory_protect(ptr, 0x40000000, utils::protection::wx);
#endif
return ptr;
}();
return static_cast<u8*>(s_memory2);
}
// Allocation counters (1G code, 1G data subranges)
static atomic_t<u64> s_code_pos{0}, s_data_pos{0};
// Snapshot of code generated before main()
static std::vector<u8> s_code_init, s_data_init;
template <atomic_t<u64>& Ctr, uint Off, utils::protection Prot>
static u8* add_jit_memory(std::size_t size, uint align)
{
// Select subrange
u8* pointer = get_jit_memory() + Off;
if (UNLIKELY(!size && !align))
{
// Return subrange info
return pointer;
}
u64 olda, newa;
// Simple allocation by incrementing pointer to the next free data
const u64 pos = Ctr.atomic_op([&](u64& ctr) -> u64
{
const u64 _pos = ::align(ctr & 0xffff'ffff, align);
const u64 _new = ::align(_pos + size, align);
if (UNLIKELY(_new > 0x40000000))
{
// Sorry, we failed, and further attempts should fail too.
ctr |= 0x40000000;
return -1;
}
// Last allocation is stored in highest bits
olda = ctr >> 32;
newa = olda;
// Check the necessity to commit more memory
if (UNLIKELY(_new > olda))
{
newa = ::align(_new, 0x100000);
}
ctr += _new - (ctr & 0xffff'ffff);
return _pos;
});
if (UNLIKELY(pos == -1))
{
LOG_WARNING(GENERAL, "JIT: Out of memory (size=0x%x, align=0x%x, off=0x%x)", size, align, Off);
return nullptr;
}
if (UNLIKELY(olda != newa))
{
#ifdef CAN_OVERCOMMIT
madvise(pointer + olda, newa - olda, MADV_WILLNEED);
#else
// Commit more memory
utils::memory_commit(pointer + olda, newa - olda, Prot);
#endif
// Acknowledge committed memory
Ctr.atomic_op([&](u64& ctr)
{
if ((ctr >> 32) < newa)
{
ctr += (newa - (ctr >> 32)) << 32;
}
});
}
return pointer + pos;
}
jit_runtime::jit_runtime()
: HostRuntime()
{
}
jit_runtime::~jit_runtime()
{
}
asmjit::Error jit_runtime::_add(void** dst, asmjit::CodeHolder* code) noexcept
{
std::size_t codeSize = code->getCodeSize();
if (UNLIKELY(!codeSize))
{
*dst = nullptr;
return asmjit::kErrorNoCodeGenerated;
}
void* p = jit_runtime::alloc(codeSize, 16);
if (UNLIKELY(!p))
{
*dst = nullptr;
return asmjit::kErrorNoVirtualMemory;
}
std::size_t relocSize = code->relocate(p);
if (UNLIKELY(!relocSize))
{
*dst = nullptr;
return asmjit::kErrorInvalidState;
}
flush(p, relocSize);
*dst = p;
return asmjit::kErrorOk;
}
asmjit::Error jit_runtime::_release(void* ptr) noexcept
{
return asmjit::kErrorOk;
}
u8* jit_runtime::alloc(std::size_t size, uint align, bool exec) noexcept
{
if (exec)
{
return add_jit_memory<s_code_pos, 0x0, utils::protection::wx>(size, align);
}
else
{
return add_jit_memory<s_data_pos, 0x40000000, utils::protection::rw>(size, align);
}
}
void jit_runtime::initialize()
{
if (!s_code_init.empty() || !s_data_init.empty())
{
return;
}
// Create code/data snapshot
s_code_init.resize(s_code_pos & 0xffff'ffff);
std::memcpy(s_code_init.data(), alloc(0, 0, true), s_code_init.size());
s_data_init.resize(s_data_pos & 0xffff'ffff);
std::memcpy(s_data_init.data(), alloc(0, 0, false), s_data_init.size());
}
void jit_runtime::finalize() noexcept
{
// Reset JIT memory
#ifdef CAN_OVERCOMMIT
utils::memory_reset(get_jit_memory(), 0x80000000);
utils::memory_protect(get_jit_memory(), 0x40000000, utils::protection::wx);
#else
utils::memory_decommit(get_jit_memory(), 0x80000000);
#endif
s_code_pos = 0;
s_data_pos = 0;
// Restore code/data snapshot
std::memcpy(alloc(s_code_init.size(), 1, true), s_code_init.data(), s_code_init.size());
std::memcpy(alloc(s_data_init.size(), 1, false), s_data_init.data(), s_data_init.size());
}
asmjit::JitRuntime& asmjit::get_global_runtime()
{
// Magic static
static asmjit::JitRuntime g_rt;
return g_rt;
}
void asmjit::build_transaction_enter(asmjit::X86Assembler& c, asmjit::Label fallback, const asmjit::X86Gp& ctr, uint less_than)
{
Label fall = c.newLabel();
Label begin = c.newLabel();
c.jmp(begin);
c.bind(fall);
if (less_than < 65)
{
c.add(ctr, 1);
c.test(x86::eax, _XABORT_RETRY);
c.jz(fallback);
}
else
{
// Don't repeat on explicit XABORT instruction (workaround)
c.test(x86::eax, _XABORT_EXPLICIT);
c.jnz(fallback);
// Count an attempt without RETRY flag as 65 normal attempts and continue
c.push(x86::rax);
c.not_(x86::eax);
c.and_(x86::eax, _XABORT_RETRY);
c.shl(x86::eax, 5);
c.add(x86::eax, 1); // eax = RETRY ? 1 : 65
c.add(ctr, x86::rax);
c.pop(x86::rax);
}
c.cmp(ctr, less_than);
c.jae(fallback);
c.align(kAlignCode, 16);
c.bind(begin);
c.xbegin(fall);
}
void asmjit::build_transaction_abort(asmjit::X86Assembler& c, unsigned char code)
{
c.db(0xc6);
c.db(0xf8);
c.db(code);
}
#ifdef LLVM_AVAILABLE
#include <unordered_map>
#include <map>
#include <unordered_set>
#include <set>
#include <array>
#include <deque>
#ifdef _MSC_VER
#pragma warning(push, 0)
#endif
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#ifdef _WIN32
#include <Windows.h>
#else
#include <sys/mman.h>
#endif
class LLVMSegmentAllocator
{
public:
// Size of virtual memory area reserved: default 512MB
static constexpr u32 DEFAULT_SEGMENT_SIZE = 0x20000000;
LLVMSegmentAllocator()
{
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
llvm::InitializeNativeTargetAsmParser();
LLVMLinkInMCJIT();
// Try to reserve as much virtual memory in the first 2 GB address space beforehand, if possible.
Segment found_segs[16];
u32 num_segs = 0;
#ifdef MAP_32BIT
u64 max_size = 0x80000000u;
while (num_segs < 16)
{
auto ptr = ::mmap(nullptr, max_size, PROT_NONE, MAP_ANON | MAP_PRIVATE | MAP_32BIT, -1, 0);
if (ptr != MAP_FAILED)
found_segs[num_segs++] = Segment(ptr, u32(max_size));
else if (max_size > 0x1000000)
max_size -= 0x1000000;
else
break;
}
#else
u64 start_addr = 0x10000000;
while (num_segs < 16)
{
u64 max_addr = 0;
u64 max_size = 0x1000000;
for (u64 addr = start_addr; addr <= (0x80000000u - max_size); addr += 0x1000000)
{
for (auto curr_size = max_size; (0x80000000u - curr_size) >= addr; curr_size += 0x1000000)
{
if (auto ptr = utils::memory_reserve(curr_size, (void*)addr))
{
if (max_addr == 0 || max_size < curr_size)
{
max_addr = addr;
max_size = curr_size;
}
utils::memory_release(ptr, curr_size);
}
else
break;
}
}
if (max_addr == 0)
break;
if (auto ptr = utils::memory_reserve(max_size, (void*)max_addr))
found_segs[num_segs++] = Segment(ptr, u32(max_size));
start_addr = max_addr + max_size;
}
#endif
if (num_segs)
{
if (num_segs > 1)
{
m_segs.resize(num_segs);
for (u32 i = 0; i < num_segs; i++)
m_segs[i] = found_segs[i];
}
else
m_curr = found_segs[0];
return;
}
if (auto ptr = utils::memory_reserve(DEFAULT_SEGMENT_SIZE))
{
m_curr.addr = (u8*)ptr;
m_curr.size = DEFAULT_SEGMENT_SIZE;
m_curr.used = 0;
}
}
void* allocate(u32 size)
{
if (m_curr.remaining() >= size)
return m_curr.advance(size);
if (reserve(size))
return m_curr.advance(size);
return nullptr;
}
bool reserve(u32 size)
{
if (size == 0)
return true;
store_curr();
u32 best_idx = UINT_MAX;
for (u32 i = 0, segs_size = (u32)m_segs.size(); i < segs_size; i++)
{
const auto seg_remaining = m_segs[i].remaining();
if (seg_remaining < size)
continue;
if (best_idx == UINT_MAX || m_segs[best_idx].remaining() > seg_remaining)
best_idx = i;
}
if (best_idx == UINT_MAX)
{
const auto size_to_reserve = (size > DEFAULT_SEGMENT_SIZE) ? ::align(size+4096, 4096) : DEFAULT_SEGMENT_SIZE;
if (auto ptr = utils::memory_reserve(size_to_reserve))
{
best_idx = (u32)m_segs.size();
m_segs.emplace_back(ptr, size_to_reserve);
}
else
return false;
}
const auto& best_seg = m_segs[best_idx];
if (best_seg.addr != m_curr.addr)
m_curr = best_seg;
return true;
}
std::pair<u64, u32> current_segment() const { return std::make_pair(u64(m_curr.addr), m_curr.size); }
std::pair<u64, u32> find_segment(u64 addr) const
{
for (const auto& seg: m_segs)
{
if (addr < (u64)seg.addr)
continue;
const auto end_addr = u64(seg.addr) + seg.size;
if (addr < end_addr)
return std::make_pair(u64(seg.addr), seg.size);
}
return std::make_pair(0, 0);
}
void reset()
{
if (!m_segs.size())
{
if (m_curr.addr != nullptr)
{
utils::memory_decommit(m_curr.addr, m_curr.size);
m_curr.used = 0;
}
return;
}
if (store_curr())
m_curr = Segment();
auto allocated_it = std::remove_if(m_segs.begin(), m_segs.end(), [](const Segment& seg) { return u64(seg.addr + seg.size) > 0x80000000u; });
if (allocated_it != m_segs.end())
{
for (auto it = allocated_it; it != m_segs.end(); ++it)
utils::memory_release(it->addr, it->size);
m_segs.erase(allocated_it, m_segs.end());
}
for (auto& seg : m_segs)
{
utils::memory_decommit(seg.addr, seg.size);
seg.used = 0;
}
}
private:
bool store_curr()
{
if (m_curr.addr != nullptr)
{
const auto wanted_addr = m_curr.addr;
auto existing_it = std::find_if(m_segs.begin(), m_segs.end(), [wanted_addr](const Segment& seg) { return seg.addr == wanted_addr; });
if (existing_it != m_segs.end())
existing_it->used = m_curr.used;
else
m_segs.push_back(m_curr);
return true;
}
return false;
}
struct Segment
{
Segment() {}
Segment(void* addr, u32 size) : addr((u8*)addr), size(size) {}
u8* addr = nullptr;
u32 size = 0;
u32 used = 0;
u32 remaining() const
{
if (size > used)
return size - used;
return 0;
}
void* advance(u32 offset)
{
const auto prev_used = used;
used += offset;
return &addr[prev_used];
}
};
Segment m_curr;
std::vector<Segment> m_segs;
};
// Memory manager mutex
static shared_mutex s_mutex;
// LLVM Memory allocator
static LLVMSegmentAllocator s_alloc;
#ifdef _WIN32
static std::deque<std::pair<u64, std::vector<RUNTIME_FUNCTION>>> s_unwater;
static std::vector<std::vector<RUNTIME_FUNCTION>> s_unwind; // .pdata
#else
static std::deque<std::pair<u8*, std::size_t>> s_unfire;
#endif
// Reset memory manager
extern void jit_finalize()
{
#ifdef _WIN32
for (auto&& unwind : s_unwind)
{
if (!RtlDeleteFunctionTable(unwind.data()))
{
LOG_FATAL(GENERAL, "RtlDeleteFunctionTable() failed! Error %u", GetLastError());
}
}
s_unwind.clear();
#else
for (auto&& t : s_unfire)
{
llvm::RTDyldMemoryManager::deregisterEHFramesInProcess(t.first, t.second);
}
s_unfire.clear();
#endif
s_alloc.reset();
}
// Helper class
struct MemoryManager : llvm::RTDyldMemoryManager
{
std::unordered_map<std::string, u64>& m_link;
std::array<u8, 16>* m_tramps{};
u8* m_code_addr{}; // TODO
MemoryManager(std::unordered_map<std::string, u64>& table)
: m_link(table)
{
}
[[noreturn]] static void null()
{
fmt::throw_exception("Null function" HERE);
}
llvm::JITSymbol findSymbol(const std::string& name) override
{
auto& addr = m_link[name];
// Find function address
if (!addr)
{
addr = RTDyldMemoryManager::getSymbolAddress(name);
if (addr)
{
LOG_WARNING(GENERAL, "LLVM: Symbol requested: %s -> 0x%016llx", name, addr);
}
else
{
LOG_ERROR(GENERAL, "LLVM: Linkage failed: %s", name);
addr = (u64)null;
}
}
// Verify address for small code model
const u64 code_start = u64(m_code_addr);
const s64 addr_diff = addr - code_start;
if (addr_diff < INT_MIN || addr_diff > INT_MAX)
{
// Lock memory manager
std::lock_guard lock(s_mutex);
// Allocate memory for trampolines
if (m_tramps)
{
const s64 tramps_diff = u64(m_tramps) - code_start;
if (tramps_diff < INT_MIN || tramps_diff > INT_MAX)
m_tramps = nullptr; //previously allocated trampoline section too far away now
}
if (!m_tramps)
{
m_tramps = reinterpret_cast<decltype(m_tramps)>(s_alloc.allocate(4096));
utils::memory_commit(m_tramps, 4096, utils::protection::wx);
}
// Create a trampoline
auto& data = *m_tramps++;
data[0x0] = 0xff; // JMP [rip+2]
data[0x1] = 0x25;
data[0x2] = 0x02;
data[0x3] = 0x00;
data[0x4] = 0x00;
data[0x5] = 0x00;
data[0x6] = 0x48; // MOV rax, imm64 (not executed)
data[0x7] = 0xb8;
std::memcpy(data.data() + 8, &addr, 8);
addr = (u64)&data;
// Reset pointer (memory page exhausted)
if (((u64)m_tramps % 4096) == 0)
{
m_tramps = nullptr;
}
}
return {addr, llvm::JITSymbolFlags::Exported};
}
bool needsToReserveAllocationSpace() override { return true; }
void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign, uintptr_t RODataSize, uint32_t RODataAlign, uintptr_t RWDataSize, uint32_t RWDataAlign) override
{
const u32 wanted_code_size = ::align(u32(CodeSize), std::min(4096u, CodeAlign));
const u32 wanted_rodata_size = ::align(u32(RODataSize), std::min(4096u, RODataAlign));
const u32 wanted_rwdata_size = ::align(u32(RWDataSize), std::min(4096u, RWDataAlign));
// Lock memory manager
std::lock_guard lock(s_mutex);
// Setup segment for current module if needed
s_alloc.reserve(wanted_code_size + wanted_rodata_size + wanted_rwdata_size);
}
u8* allocateCodeSection(std::uintptr_t size, uint align, uint sec_id, llvm::StringRef sec_name) override
{
void* ptr = nullptr;
const u32 wanted_size = ::align(u32(size), 4096);
{
// Lock memory manager
std::lock_guard lock(s_mutex);
// Simple allocation
ptr = s_alloc.allocate(wanted_size);
}
if (ptr == nullptr)
{
LOG_FATAL(GENERAL, "LLVM: Out of memory (size=0x%llx, aligned 0x%x)", size, align);
return nullptr;
}
utils::memory_commit(ptr, size, utils::protection::wx);
m_code_addr = (u8*)ptr;
LOG_NOTICE(GENERAL, "LLVM: Code section %u '%s' allocated -> %p (size=0x%llx, aligned 0x%x)", sec_id, sec_name.data(), ptr, size, align);
return (u8*)ptr;
}
u8* allocateDataSection(std::uintptr_t size, uint align, uint sec_id, llvm::StringRef sec_name, bool is_ro) override
{
void* ptr = nullptr;
const u32 wanted_size = ::align(u32(size), 4096);
{
// Lock memory manager
std::lock_guard lock(s_mutex);
// Simple allocation
ptr = s_alloc.allocate(wanted_size);
}
if (ptr == nullptr)
{
LOG_FATAL(GENERAL, "LLVM: Out of memory (size=0x%llx, aligned 0x%x)", size, align);
return nullptr;
}
if (!is_ro)
{
}
utils::memory_commit(ptr, size);
LOG_NOTICE(GENERAL, "LLVM: Data section %u '%s' allocated -> %p (size=0x%llx, aligned 0x%x, %s)", sec_id, sec_name.data(), ptr, size, align, is_ro ? "ro" : "rw");
return (u8*)ptr;
}
bool finalizeMemory(std::string* = nullptr) override
{
// Lock memory manager
std::lock_guard lock(s_mutex);
// TODO: make only read-only sections read-only
//#ifdef _WIN32
// DWORD op;
// VirtualProtect(s_memory, (u64)m_next - (u64)s_memory, PAGE_READONLY, &op);
// VirtualProtect(s_code_addr, s_code_size, PAGE_EXECUTE_READ, &op);
//#else
// ::mprotect(s_memory, (u64)m_next - (u64)s_memory, PROT_READ);
// ::mprotect(s_code_addr, s_code_size, PROT_READ | PROT_EXEC);
//#endif
return false;
}
void registerEHFrames(u8* addr, u64 load_addr, std::size_t size) override
{
#ifdef _WIN32
// Lock memory manager
std::lock_guard lock(s_mutex);
// Fix RUNTIME_FUNCTION records (.pdata section)
decltype(s_unwater)::value_type pdata_entry = std::move(s_unwater.front());
s_unwater.pop_front();
// Use given memory segment as a BASE, compute the difference
const u64 segment_start = pdata_entry.first;
const u64 unwind_diff = (u64)addr - segment_start;
auto& pdata = pdata_entry.second;
for (auto& rf : pdata)
{
rf.UnwindData += static_cast<DWORD>(unwind_diff);
}
// Register .xdata UNWIND_INFO structs
if (!RtlAddFunctionTable(pdata.data(), (DWORD)pdata.size(), segment_start))
{
LOG_ERROR(GENERAL, "RtlAddFunctionTable() failed! Error %u", GetLastError());
}
else
{
s_unwind.emplace_back(std::move(pdata));
}
#else
s_unfire.push_front(std::make_pair(addr, size));
#endif
return RTDyldMemoryManager::registerEHFramesInProcess(addr, size);
}
void deregisterEHFrames() override
{
}
};
// Simple memory manager
struct MemoryManager2 : llvm::RTDyldMemoryManager
{
MemoryManager2() = default;
~MemoryManager2() override
{
}
u8* allocateCodeSection(std::uintptr_t size, uint align, uint sec_id, llvm::StringRef sec_name) override
{
return jit_runtime::alloc(size, align, true);
}
u8* allocateDataSection(std::uintptr_t size, uint align, uint sec_id, llvm::StringRef sec_name, bool is_ro) override
{
return jit_runtime::alloc(size, align, false);
}
bool finalizeMemory(std::string* = nullptr) override
{
return false;
}
void registerEHFrames(u8* addr, u64 load_addr, std::size_t size) override
{
#ifndef _WIN32
RTDyldMemoryManager::registerEHFramesInProcess(addr, size);
s_unfire.push_front(std::make_pair(addr, size));
#endif
}
void deregisterEHFrames() override
{
}
};
// Simple memory manager. I promise there will be no MemoryManager4.
struct MemoryManager3 : llvm::RTDyldMemoryManager
{
std::vector<std::pair<u8*, std::size_t>> allocs;
MemoryManager3() = default;
~MemoryManager3() override
{
for (auto& a : allocs)
{
utils::memory_release(a.first, a.second);
}
}
u8* allocateCodeSection(std::uintptr_t size, uint align, uint sec_id, llvm::StringRef sec_name) override
{
u8* r = static_cast<u8*>(utils::memory_reserve(size));
utils::memory_commit(r, size, utils::protection::wx);
allocs.emplace_back(r, size);
return r;
}
u8* allocateDataSection(std::uintptr_t size, uint align, uint sec_id, llvm::StringRef sec_name, bool is_ro) override
{
u8* r = static_cast<u8*>(utils::memory_reserve(size));
utils::memory_commit(r, size);
allocs.emplace_back(r, size);
return r;
}
bool finalizeMemory(std::string* = nullptr) override
{
return false;
}
void registerEHFrames(u8* addr, u64 load_addr, std::size_t size) override
{
}
void deregisterEHFrames() override
{
}
};
// Helper class
struct EventListener : llvm::JITEventListener
{
MemoryManager& m_mem;
EventListener(MemoryManager& mem)
: m_mem(mem)
{
}
void notifyObjectLoaded(ObjectKey K, const llvm::object::ObjectFile& obj, const llvm::RuntimeDyld::LoadedObjectInfo& inf) override
{
#ifdef _WIN32
for (auto it = obj.section_begin(), end = obj.section_end(); it != end; ++it)
{
llvm::StringRef name;
name = it->getName().get();
if (name == ".pdata")
{
llvm::StringRef data;
data = it->getContents().get();
std::vector<RUNTIME_FUNCTION> rfs(data.size() / sizeof(RUNTIME_FUNCTION));
auto offsets = reinterpret_cast<DWORD*>(rfs.data());
// Initialize .pdata section using relocation info
for (auto ri = it->relocation_begin(), end = it->relocation_end(); ri != end; ++ri)
{
if (ri->getType() == 3 /*R_X86_64_GOT32*/)
{
const u64 value = *reinterpret_cast<const DWORD*>(data.data() + ri->getOffset());
offsets[ri->getOffset() / sizeof(DWORD)] = static_cast<DWORD>(value + ri->getSymbol()->getAddress().get());
}
}
// Lock memory manager
std::lock_guard lock(s_mutex);
// Use current memory segment as a BASE, compute the difference
const u64 segment_start = s_alloc.current_segment().first;
const u64 code_diff = u64(m_mem.m_code_addr) - segment_start;
// Fix RUNTIME_FUNCTION records (.pdata section)
for (auto& rf : rfs)
{
rf.BeginAddress += static_cast<DWORD>(code_diff);
rf.EndAddress += static_cast<DWORD>(code_diff);
}
s_unwater.emplace_back(segment_start, std::move(rfs));
}
}
#endif
}
};
// Helper class
class ObjectCache final : public llvm::ObjectCache
{
const std::string& m_path;
public:
ObjectCache(const std::string& path)
: m_path(path)
{
}
~ObjectCache() override = default;
void notifyObjectCompiled(const llvm::Module* module, llvm::MemoryBufferRef obj) override
{
std::string name = m_path;
name.append(module->getName());
fs::file(name, fs::rewrite).write(obj.getBufferStart(), obj.getBufferSize());
LOG_NOTICE(GENERAL, "LLVM: Created module: %s", module->getName().data());
}
static std::unique_ptr<llvm::MemoryBuffer> load(const std::string& path)
{
if (fs::file cached{path, fs::read})
{
auto buf = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(cached.size());
cached.read(buf->getBufferStart(), buf->getBufferSize());
return buf;
}
return nullptr;
}
std::unique_ptr<llvm::MemoryBuffer> getObject(const llvm::Module* module) override
{
std::string path = m_path;
path.append(module->getName());
if (auto buf = load(path))
{
LOG_NOTICE(GENERAL, "LLVM: Loaded module: %s", module->getName().data());
return buf;
}
return nullptr;
}
};
std::string jit_compiler::cpu(const std::string& _cpu)
{
std::string m_cpu = _cpu;
if (m_cpu.empty())
{
m_cpu = llvm::sys::getHostCPUName();
if (m_cpu == "sandybridge" ||
m_cpu == "ivybridge" ||
m_cpu == "haswell" ||
m_cpu == "broadwell" ||
m_cpu == "skylake" ||
m_cpu == "skylake-avx512" ||
m_cpu == "cascadelake" ||
m_cpu == "cannonlake" ||
m_cpu == "icelake" ||
m_cpu == "icelake-client" ||
m_cpu == "icelake-server")
{
// Downgrade if AVX is not supported by some chips
if (!utils::has_avx())
{
m_cpu = "nehalem";
}
}
if (m_cpu == "skylake-avx512" ||
m_cpu == "cascadelake" ||
m_cpu == "cannonlake" ||
m_cpu == "icelake" ||
m_cpu == "icelake-client" ||
m_cpu == "icelake-server")
{
// Downgrade if AVX-512 is disabled or not supported
if (!utils::has_512())
{
m_cpu = "skylake";
}
}
}
return m_cpu;
}
jit_compiler::jit_compiler(const std::unordered_map<std::string, u64>& _link, const std::string& _cpu, u32 flags)
: m_link(_link)
, m_cpu(cpu(_cpu))
{
std::string result;
auto null_mod = std::make_unique<llvm::Module> ("null_", m_context);
if (m_link.empty())
{
std::unique_ptr<llvm::RTDyldMemoryManager> mem;
if (flags & 0x1)
{
mem = std::make_unique<MemoryManager3>();
}
else
{
mem = std::make_unique<MemoryManager2>();
null_mod->setTargetTriple(llvm::Triple::normalize("x86_64-unknown-linux-gnu"));
}
// Auxiliary JIT (does not use custom memory manager, only writes the objects)
m_engine.reset(llvm::EngineBuilder(std::move(null_mod))
.setErrorStr(&result)
.setEngineKind(llvm::EngineKind::JIT)
.setMCJITMemoryManager(std::move(mem))
.setOptLevel(llvm::CodeGenOpt::Aggressive)
.setCodeModel(flags & 0x2 ? llvm::CodeModel::Large : llvm::CodeModel::Small)
.setMCPU(m_cpu)
.create());
}
else
{
// Primary JIT
auto mem = std::make_unique<MemoryManager>(m_link);
m_jit_el = std::make_unique<EventListener>(*mem);
m_engine.reset(llvm::EngineBuilder(std::move(null_mod))
.setErrorStr(&result)
.setEngineKind(llvm::EngineKind::JIT)
.setMCJITMemoryManager(std::move(mem))
.setOptLevel(llvm::CodeGenOpt::Aggressive)
.setCodeModel(flags & 0x2 ? llvm::CodeModel::Large : llvm::CodeModel::Small)
.setMCPU(m_cpu)
.create());
if (m_engine)
{
m_engine->RegisterJITEventListener(m_jit_el.get());
}
}
if (!m_engine)
{
fmt::throw_exception("LLVM: Failed to create ExecutionEngine: %s", result);
}
}
jit_compiler::~jit_compiler()
{
}
void jit_compiler::add(std::unique_ptr<llvm::Module> module, const std::string& path)
{
ObjectCache cache{path};
m_engine->setObjectCache(&cache);
const auto ptr = module.get();
m_engine->addModule(std::move(module));
m_engine->generateCodeForModule(ptr);
m_engine->setObjectCache(nullptr);
for (auto& func : ptr->functions())
{
// Delete IR to lower memory consumption
func.deleteBody();
}
}
void jit_compiler::add(std::unique_ptr<llvm::Module> module)
{
const auto ptr = module.get();
m_engine->addModule(std::move(module));
m_engine->generateCodeForModule(ptr);
for (auto& func : ptr->functions())
{
// Delete IR to lower memory consumption
func.deleteBody();
}
}
void jit_compiler::add(const std::string& path)
{
auto cache = ObjectCache::load(path);
if (auto object_file = llvm::object::ObjectFile::createObjectFile(*cache))
{
m_engine->addObjectFile( std::move(*object_file) );
}
else
{
LOG_ERROR(GENERAL, "ObjectCache: Adding failed: %s", path);
}
}
void jit_compiler::fin()
{
m_engine->finalizeObject();
}
u64 jit_compiler::get(const std::string& name)
{
return m_engine->getGlobalValueAddress(name);
}
#endif