rpcs3/rpcs3/Emu/RSX/Common/texture_cache.h
kd-11 0ef5743261 rsx: Fix sampler descriptor updates for framebuffer resources
- Each desc manages its own lifetime now instead of relying on global timestamp check
- Fixes situation where same object remains active without update for long
2020-12-16 10:10:06 +03:00

3033 lines
100 KiB
C++

#pragma once
#include "texture_cache_utils.h"
#include "texture_cache_predictor.h"
#include "texture_cache_helpers.h"
extern u64 get_system_time();
#define RSX_GCM_FORMAT_IGNORED 0
namespace rsx
{
namespace helpers = rsx::texture_cache_helpers;
template <typename derived_type, typename _traits>
class texture_cache
{
public:
using traits = _traits;
using commandbuffer_type = typename traits::commandbuffer_type;
using section_storage_type = typename traits::section_storage_type;
using image_resource_type = typename traits::image_resource_type;
using image_view_type = typename traits::image_view_type;
using image_storage_type = typename traits::image_storage_type;
using texture_format = typename traits::texture_format;
using predictor_type = texture_cache_predictor<traits>;
using ranged_storage = rsx::ranged_storage<traits>;
using ranged_storage_block = typename ranged_storage::block_type;
using copy_region_descriptor = copy_region_descriptor_base<typename traits::image_resource_type>;
private:
static_assert(std::is_base_of<rsx::cached_texture_section<section_storage_type, traits>, section_storage_type>::value, "section_storage_type must derive from rsx::cached_texture_section");
/**
* Helper structs/enums
*/
// Keep track of cache misses to pre-emptively flush some addresses
struct framebuffer_memory_characteristics
{
u32 misses;
texture_format format;
};
public:
//Struct to hold data on sections to be paged back onto cpu memory
struct thrashed_set
{
bool violation_handled = false;
bool flushed = false;
invalidation_cause cause;
std::vector<section_storage_type*> sections_to_flush; // Sections to be flushed
std::vector<section_storage_type*> sections_to_unprotect; // These sections are to be unpotected and discarded by caller
std::vector<section_storage_type*> sections_to_exclude; // These sections are do be excluded from protection manipulation (subtracted from other sections)
u32 num_flushable = 0;
u64 cache_tag = 0;
address_range fault_range;
address_range invalidate_range;
void clear_sections()
{
sections_to_flush = {};
sections_to_unprotect = {};
sections_to_exclude = {};
num_flushable = 0;
}
bool empty() const
{
return sections_to_flush.empty() && sections_to_unprotect.empty() && sections_to_exclude.empty();
}
bool is_flushed() const
{
return flushed || sections_to_flush.empty();
}
#ifdef TEXTURE_CACHE_DEBUG
void check_pre_sanity() const
{
size_t flush_and_unprotect_count = sections_to_flush.size() + sections_to_unprotect.size();
size_t exclude_count = sections_to_exclude.size();
//-------------------------
// It is illegal to have only exclusions except when reading from a range with only RO sections
ensure(flush_and_unprotect_count > 0 || exclude_count == 0 || cause.is_read());
if (flush_and_unprotect_count == 0 && exclude_count > 0)
{
// double-check that only RO sections exists
for (auto *tex : sections_to_exclude)
ensure(tex->get_protection() == utils::protection::ro);
}
//-------------------------
// Check that the number of sections we "found" matches the sections known to be in the fault range
const auto min_overlap_fault_no_ro = tex_cache_checker.get_minimum_number_of_sections(fault_range);
const auto min_overlap_invalidate_no_ro = tex_cache_checker.get_minimum_number_of_sections(invalidate_range);
const u16 min_overlap_fault = min_overlap_fault_no_ro.first + (cause.is_read() ? 0 : min_overlap_fault_no_ro.second);
const u16 min_overlap_invalidate = min_overlap_invalidate_no_ro.first + (cause.is_read() ? 0 : min_overlap_invalidate_no_ro.second);
AUDIT(min_overlap_fault <= min_overlap_invalidate);
const u16 min_flush_or_unprotect = min_overlap_fault;
// we must flush or unprotect *all* sections that partially overlap the fault range
ensure(flush_and_unprotect_count >= min_flush_or_unprotect);
// result must contain *all* sections that overlap (completely or partially) the invalidation range
ensure(flush_and_unprotect_count + exclude_count >= min_overlap_invalidate);
}
void check_post_sanity() const
{
AUDIT(is_flushed());
// Check that the number of sections we "found" matches the sections known to be in the fault range
tex_cache_checker.check_unprotected(fault_range, cause.is_read() && invalidation_keep_ro_during_read, true);
// Check that the cache has the correct protections
tex_cache_checker.verify();
}
#endif // TEXTURE_CACHE_DEBUG
};
struct intersecting_set
{
std::vector<section_storage_type*> sections = {};
address_range invalidate_range = {};
bool has_flushables = false;
};
struct deferred_subresource : image_section_attributes_t
{
image_resource_type external_handle = 0;
std::vector<copy_region_descriptor> sections_to_copy;
texture_channel_remap_t remap;
deferred_request_command op = deferred_request_command::nop;
u16 x = 0;
u16 y = 0;
utils::address_range cache_range;
bool do_not_cache = false;
deferred_subresource() = default;
deferred_subresource(image_resource_type _res, deferred_request_command _op,
const image_section_attributes_t& attr, position2u offset,
texture_channel_remap_t _remap)
: external_handle(_res)
, remap(std::move(_remap))
, op(_op)
, x(offset.x)
, y(offset.y)
{
static_cast<image_section_attributes_t&>(*this) = attr;
}
};
struct sampled_image_descriptor : public sampled_image_descriptor_base
{
image_view_type image_handle = 0;
deferred_subresource external_subresource_desc = {};
bool flag = false;
sampled_image_descriptor() = default;
sampled_image_descriptor(image_view_type handle, texture_upload_context ctx, rsx::format_class ftype,
size2f scale, rsx::texture_dimension_extended type, bool cyclic_reference = false)
{
image_handle = handle;
upload_context = ctx;
format_class = ftype;
is_cyclic_reference = cyclic_reference;
scale_x = scale.width;
scale_y = scale.height;
image_type = type;
}
sampled_image_descriptor(image_resource_type external_handle, deferred_request_command reason,
const image_section_attributes_t& attr, position2u src_offset,
texture_upload_context ctx, rsx::format_class ftype, size2f scale,
rsx::texture_dimension_extended type, const texture_channel_remap_t& remap)
{
external_subresource_desc = { external_handle, reason, attr, src_offset, remap };
image_handle = 0;
upload_context = ctx;
format_class = ftype;
scale_x = scale.width;
scale_y = scale.height;
image_type = type;
}
void simplify()
{
// Optimizations in the straightforward methods copy_image_static and copy_image_dynamic make them preferred over the atlas method
if (external_subresource_desc.op == deferred_request_command::atlas_gather &&
external_subresource_desc.sections_to_copy.size() == 1)
{
// Check if the subresource fills the target, if so, change the command to copy_image_static
const auto &cpy = external_subresource_desc.sections_to_copy.front();
if (cpy.dst_x == 0 && cpy.dst_y == 0 &&
cpy.dst_w == external_subresource_desc.width && cpy.dst_h == external_subresource_desc.height &&
cpy.src_w == cpy.dst_w && cpy.src_h == cpy.dst_h)
{
external_subresource_desc.external_handle = cpy.src;
external_subresource_desc.x = cpy.src_x;
external_subresource_desc.y = cpy.src_y;
external_subresource_desc.op = deferred_request_command::copy_image_static;
}
}
}
// Returns true if at least threshold% is covered in pixels
bool atlas_covers_target_area(int threshold) const
{
if (external_subresource_desc.op != deferred_request_command::atlas_gather)
return true;
const int target_area = (external_subresource_desc.width * external_subresource_desc.height * threshold) / 100;
int covered_area = 0;
areai bbox{ INT_MAX, INT_MAX, 0, 0 };
for (const auto& section : external_subresource_desc.sections_to_copy)
{
covered_area += section.dst_w * section.dst_h;
bbox.x1 = std::min<int>(section.dst_x, bbox.x1);
bbox.x2 = std::max<int>(section.dst_x + section.dst_w, bbox.x2);
bbox.y1 = std::min<int>(section.dst_y, bbox.y1);
bbox.y2 = std::max<int>(section.dst_y + section.dst_h, bbox.y2);
}
if (covered_area < target_area)
{
return false;
}
if (const auto bounds_area = bbox.width() * bbox.height();
bounds_area < target_area)
{
return false;
}
return true;
}
u32 encoded_component_map() const override
{
if (image_handle)
{
return image_handle->encoded_component_map();
}
return 0;
}
bool validate() const
{
return (image_handle || external_subresource_desc.op != deferred_request_command::nop);
}
/**
* Returns a boolean true/false if the descriptor is expired
* Optionally returns a second variable that contains the surface reference.
* The surface reference can be used to insert a texture barrier or inject a deferred resource
*/
template <typename surface_store_type>
std::pair<bool, typename surface_store_type::surface_type> is_expired(surface_store_type& surface_cache)
{
if (upload_context != rsx::texture_upload_context::framebuffer_storage ||
surface_cache_tag == surface_cache.cache_tag)
{
return { false, nullptr };
}
// Expired, but may still be valid. Check if the texture is still accessible
auto ref_image = image_handle ? image_handle->image() : external_subresource_desc.external_handle;
if (ref_image)
{
if (auto as_rtt = dynamic_cast<surface_store_type::surface_type>(ref_image);
as_rtt && as_rtt == surface_cache.get_surface_at(ref_address))
{
// Fast sync
surface_cache_tag = surface_cache.cache_tag;
is_cyclic_reference = surface_cache.address_is_bound(ref_address);
return { false, as_rtt };
}
}
return { true, nullptr };
}
};
protected:
/**
* Variable declarations
*/
shared_mutex m_cache_mutex;
ranged_storage m_storage;
std::unordered_multimap<u32, std::pair<deferred_subresource, image_view_type>> m_temporary_subresource_cache;
std::vector<image_view_type> m_uncached_subresources;
predictor_type m_predictor;
atomic_t<u64> m_cache_update_tag = {0};
address_range read_only_range;
address_range no_access_range;
//Map of messages to only emit once
std::unordered_set<std::string> m_once_only_messages_set;
//Set when a shader read-only texture data suddenly becomes contested, usually by fbo memory
bool read_only_tex_invalidate = false;
//Store of all objects in a flush_always state. A lazy readback is attempted every draw call
std::unordered_map<address_range, section_storage_type*> m_flush_always_cache;
u64 m_flush_always_update_timestamp = 0;
//Memory usage
const u32 m_max_zombie_objects = 64; //Limit on how many texture objects to keep around for reuse after they are invalidated
//Other statistics
atomic_t<u32> m_flushes_this_frame = { 0 };
atomic_t<u32> m_misses_this_frame = { 0 };
atomic_t<u32> m_speculations_this_frame = { 0 };
atomic_t<u32> m_unavoidable_hard_faults_this_frame = { 0 };
static const u32 m_predict_max_flushes_per_frame = 50; // Above this number the predictions are disabled
// Invalidation
static const bool invalidation_ignore_unsynchronized = true; // If true, unsynchronized sections don't get forcefully flushed unless they overlap the fault range
static const bool invalidation_keep_ro_during_read = true; // If true, RO sections are not invalidated during read faults
/**
* Virtual Methods
*/
virtual image_view_type create_temporary_subresource_view(commandbuffer_type&, image_resource_type* src, u32 gcm_format, u16 x, u16 y, u16 w, u16 h, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type create_temporary_subresource_view(commandbuffer_type&, image_storage_type* src, u32 gcm_format, u16 x, u16 y, u16 w, u16 h, const texture_channel_remap_t& remap_vector) = 0;
virtual void release_temporary_subresource(image_view_type rsc) = 0;
virtual section_storage_type* create_new_texture(commandbuffer_type&, const address_range &rsx_range, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch, u32 gcm_format,
rsx::texture_upload_context context, rsx::texture_dimension_extended type, bool swizzled, texture_create_flags flags) = 0;
virtual section_storage_type* upload_image_from_cpu(commandbuffer_type&, const address_range &rsx_range, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch, u32 gcm_format, texture_upload_context context,
const std::vector<rsx::subresource_layout>& subresource_layout, rsx::texture_dimension_extended type, bool swizzled) = 0;
virtual section_storage_type* create_nul_section(commandbuffer_type&, const address_range &rsx_range, bool memory_load) = 0;
virtual void enforce_surface_creation_type(section_storage_type& section, u32 gcm_format, texture_create_flags expected) = 0;
virtual void insert_texture_barrier(commandbuffer_type&, image_storage_type* tex, bool strong_ordering = true) = 0;
virtual image_view_type generate_cubemap_from_images(commandbuffer_type&, u32 gcm_format, u16 size, const std::vector<copy_region_descriptor>& sources, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type generate_3d_from_2d_images(commandbuffer_type&, u32 gcm_format, u16 width, u16 height, u16 depth, const std::vector<copy_region_descriptor>& sources, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type generate_atlas_from_images(commandbuffer_type&, u32 gcm_format, u16 width, u16 height, const std::vector<copy_region_descriptor>& sections_to_copy, const texture_channel_remap_t& remap_vector) = 0;
virtual image_view_type generate_2d_mipmaps_from_images(commandbuffer_type&, u32 gcm_format, u16 width, u16 height, const std::vector<copy_region_descriptor>& sections_to_copy, const texture_channel_remap_t& remap_vector) = 0;
virtual void update_image_contents(commandbuffer_type&, image_view_type dst, image_resource_type src, u16 width, u16 height) = 0;
virtual bool render_target_format_is_compatible(image_storage_type* tex, u32 gcm_format) = 0;
virtual void prepare_for_dma_transfers(commandbuffer_type&) = 0;
virtual void cleanup_after_dma_transfers(commandbuffer_type&) = 0;
public:
virtual void destroy() = 0;
virtual bool is_depth_texture(u32, u32) = 0;
virtual void on_section_destroyed(section_storage_type& /*section*/)
{}
protected:
/**
* Helpers
*/
inline void update_cache_tag()
{
m_cache_update_tag = rsx::get_shared_tag();
}
template <typename CharT, std::size_t N, typename... Args>
void emit_once(bool error, const CharT(&fmt)[N], const Args&... params)
{
const auto result = m_once_only_messages_set.emplace(fmt::format(fmt, params...));
if (!result.second)
return;
if (error)
rsx_log.error("%s", *result.first);
else
rsx_log.warning("%s", *result.first);
}
template <typename CharT, std::size_t N, typename... Args>
void err_once(const CharT(&fmt)[N], const Args&... params)
{
emit_once(true, fmt, params...);
}
template <typename CharT, std::size_t N, typename... Args>
void warn_once(const CharT(&fmt)[N], const Args&... params)
{
emit_once(false, fmt, params...);
}
/**
* Internal implementation methods and helpers
*/
inline bool region_intersects_cache(const address_range &test_range, bool is_writing)
{
AUDIT(test_range.valid());
// Quick range overlaps with cache tests
if (!is_writing)
{
if (!no_access_range.valid() || !test_range.overlaps(no_access_range))
return false;
}
else
{
if (!read_only_range.valid() || !test_range.overlaps(read_only_range))
{
//Doesnt fall in the read_only textures range; check render targets
if (!no_access_range.valid() || !test_range.overlaps(no_access_range))
return false;
}
}
// Check that there is at least one valid (locked) section in the test_range
reader_lock lock(m_cache_mutex);
if (m_storage.range_begin(test_range, locked_range, true) == m_storage.range_end())
return false;
// We do intersect the cache
return true;
}
/**
* Section invalidation
*/
private:
template <typename ...Args>
void flush_set(commandbuffer_type& cmd, thrashed_set& data, Args&&... extras)
{
AUDIT(!data.flushed);
if (data.sections_to_flush.size() > 1)
{
// Sort with oldest data first
// Ensures that new data tramples older data
std::sort(data.sections_to_flush.begin(), data.sections_to_flush.end(), [](const auto& a, const auto& b)
{
return (a->last_write_tag < b->last_write_tag);
});
}
rsx::simple_array<section_storage_type*> sections_to_transfer;
for (auto &surface : data.sections_to_flush)
{
if (!surface->is_synchronized())
{
sections_to_transfer.push_back(surface);
}
else if (surface->get_memory_read_flags() == rsx::memory_read_flags::flush_always)
{
// This region is set to always read from itself (unavoidable hard sync)
const auto ROP_timestamp = rsx::get_current_renderer()->ROP_sync_timestamp;
if (ROP_timestamp > surface->get_sync_timestamp())
{
sections_to_transfer.push_back(surface);
}
}
}
if (!sections_to_transfer.empty())
{
// Batch all hard faults together
prepare_for_dma_transfers(cmd);
for (auto &surface : sections_to_transfer)
{
surface->copy_texture(cmd, true, std::forward<Args>(extras)...);
}
cleanup_after_dma_transfers(cmd);
}
for (auto &surface : data.sections_to_flush)
{
surface->flush();
// Exclude this region when flushing other sections that should not trample it
// If we overlap an excluded RO, set it as dirty
for (auto &other : data.sections_to_exclude)
{
AUDIT(other != surface);
if (!other->is_flushable())
{
if (other->overlaps(*surface, section_bounds::full_range))
{
other->set_dirty(true);
}
}
else if(surface->last_write_tag > other->last_write_tag)
{
other->add_flush_exclusion(surface->get_confirmed_range());
}
}
}
data.flushed = true;
}
// Merges the protected ranges of the sections in "sections" into "result"
void merge_protected_ranges(address_range_vector &result, const std::vector<section_storage_type*> &sections)
{
result.reserve(result.size() + sections.size());
// Copy ranges to result, merging them if possible
for (const auto &section : sections)
{
const auto &new_range = section->get_locked_range();
AUDIT(new_range.is_page_range());
result.merge(new_range);
}
}
// NOTE: It is *very* important that data contains exclusions for *all* sections that overlap sections_to_unprotect/flush
// Otherwise the page protections will end up incorrect and things will break!
void unprotect_set(thrashed_set& data)
{
auto protect_ranges = [this](address_range_vector& _set, utils::protection _prot)
{
u32 count = 0;
for (auto &range : _set)
{
if (range.valid())
{
rsx::memory_protect(range, _prot);
count++;
}
}
//rsx_log.error("Set protection of %d blocks to 0x%x", count, static_cast<u32>(prot));
};
auto discard_set = [this](std::vector<section_storage_type*>& _set)
{
for (auto* section : _set)
{
ensure(section->is_flushed() || section->is_dirty());
section->discard(/*set_dirty*/ false);
}
};
// Sanity checks
AUDIT(data.fault_range.is_page_range());
AUDIT(data.invalidate_range.is_page_range());
AUDIT(data.is_flushed());
// Merge ranges to unprotect
address_range_vector ranges_to_unprotect;
address_range_vector ranges_to_protect_ro;
ranges_to_unprotect.reserve(data.sections_to_unprotect.size() + data.sections_to_flush.size() + data.sections_to_exclude.size());
merge_protected_ranges(ranges_to_unprotect, data.sections_to_unprotect);
merge_protected_ranges(ranges_to_unprotect, data.sections_to_flush);
AUDIT(!ranges_to_unprotect.empty());
// Apply exclusions and collect ranges of excluded pages that need to be reprotected RO (i.e. only overlap RO regions)
if (!data.sections_to_exclude.empty())
{
ranges_to_protect_ro.reserve(data.sections_to_exclude.size());
u32 no_access_count = 0;
for (const auto &excluded : data.sections_to_exclude)
{
address_range exclusion_range = excluded->get_locked_range();
// We need to make sure that the exclusion range is *inside* invalidate range
exclusion_range.intersect(data.invalidate_range);
// Sanity checks
AUDIT(exclusion_range.is_page_range());
AUDIT(data.cause.is_read() && !excluded->is_flushable() || data.cause.skip_fbos() || !exclusion_range.overlaps(data.fault_range));
// Apply exclusion
ranges_to_unprotect.exclude(exclusion_range);
// Keep track of RO exclusions
// TODO ruipin: Bug here, we cannot add the whole exclusion range to ranges_to_reprotect, only the part inside invalidate_range
utils::protection prot = excluded->get_protection();
if (prot == utils::protection::ro)
{
ranges_to_protect_ro.merge(exclusion_range);
}
else if (prot == utils::protection::no)
{
no_access_count++;
}
else
{
fmt::throw_exception("Unreachable");
}
}
// Exclude NA ranges from ranges_to_reprotect_ro
if (no_access_count > 0 && !ranges_to_protect_ro.empty())
{
for (auto &exclusion : data.sections_to_exclude)
{
if (exclusion->get_protection() != utils::protection::ro)
{
ranges_to_protect_ro.exclude(exclusion->get_locked_range());
}
}
}
}
AUDIT(!ranges_to_unprotect.empty());
// Exclude the fault range if told to do so (this means the fault_range got unmapped or is otherwise invalid)
if (data.cause.keep_fault_range_protection())
{
ranges_to_unprotect.exclude(data.fault_range);
ranges_to_protect_ro.exclude(data.fault_range);
AUDIT(!ranges_to_unprotect.overlaps(data.fault_range));
AUDIT(!ranges_to_protect_ro.overlaps(data.fault_range));
}
else
{
AUDIT(ranges_to_unprotect.inside(data.invalidate_range));
AUDIT(ranges_to_protect_ro.inside(data.invalidate_range));
}
AUDIT(!ranges_to_protect_ro.overlaps(ranges_to_unprotect));
// Unprotect and discard
protect_ranges(ranges_to_unprotect, utils::protection::rw);
protect_ranges(ranges_to_protect_ro, utils::protection::ro);
discard_set(data.sections_to_unprotect);
discard_set(data.sections_to_flush);
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache looks sane
data.check_post_sanity();
#endif // TEXTURE_CACHE_DEBUG
}
// Return a set containing all sections that should be flushed/unprotected/reprotected
atomic_t<u64> m_last_section_cache_tag = 0;
intersecting_set get_intersecting_set(const address_range &fault_range)
{
AUDIT(fault_range.is_page_range());
const u64 cache_tag = ++m_last_section_cache_tag;
intersecting_set result = {};
address_range &invalidate_range = result.invalidate_range;
invalidate_range = fault_range; // Sections fully inside this range will be invalidated, others will be deemed false positives
// Loop through cache and find pages that overlap the invalidate_range
u32 last_dirty_block = UINT32_MAX;
bool repeat_loop = false;
// Not having full-range protections means some textures will check the confirmed range and not the locked range
const bool not_full_range_protected = (buffered_section::guard_policy != protection_policy::protect_policy_full_range);
section_bounds range_it_bounds = not_full_range_protected ? confirmed_range : locked_range;
auto It = m_storage.range_begin(invalidate_range, range_it_bounds, true); // will iterate through locked sections only
while (It != m_storage.range_end())
{
const u32 base = It.get_block().get_start();
// On the last loop, we stop once we're done with the last dirty block
if (!repeat_loop && base > last_dirty_block) // note: blocks are iterated in order from lowest to highest base address
break;
auto &tex = *It;
AUDIT(tex.is_locked()); // we should be iterating locked sections only, but just to make sure...
AUDIT(tex.cache_tag != cache_tag || last_dirty_block != UINT32_MAX); // cache tag should not match during the first loop
if (tex.cache_tag != cache_tag) //flushable sections can be 'clean' but unlocked. TODO: Handle this better
{
const rsx::section_bounds bounds = tex.get_overlap_test_bounds();
if (range_it_bounds == bounds || tex.overlaps(invalidate_range, bounds))
{
const auto new_range = tex.get_min_max(invalidate_range, bounds).to_page_range();
AUDIT(new_range.is_page_range() && invalidate_range.inside(new_range));
// The various chaining policies behave differently
bool extend_invalidate_range = tex.overlaps(fault_range, bounds);
// Extend the various ranges
if (extend_invalidate_range && new_range != invalidate_range)
{
if (new_range.end > invalidate_range.end)
It.set_end(new_range.end);
invalidate_range = new_range;
repeat_loop = true; // we will need to repeat the loop again
last_dirty_block = base; // stop the repeat loop once we finish this block
}
// Add texture to result, and update its cache tag
tex.cache_tag = cache_tag;
result.sections.push_back(&tex);
if (tex.is_flushable())
{
result.has_flushables = true;
}
}
}
// Iterate
It++;
// repeat_loop==true means some blocks are still dirty and we need to repeat the loop again
if (repeat_loop && It == m_storage.range_end())
{
It = m_storage.range_begin(invalidate_range, range_it_bounds, true);
repeat_loop = false;
}
}
AUDIT(result.invalidate_range.is_page_range());
#ifdef TEXTURE_CACHE_DEBUG
// naive check that sections are not duplicated in the results
for (auto &section1 : result.sections)
{
size_t count = 0;
for (auto &section2 : result.sections)
{
if (section1 == section2) count++;
}
ensure(count == 1);
}
#endif //TEXTURE_CACHE_DEBUG
return result;
}
//Invalidate range base implementation
template <typename ...Args>
thrashed_set invalidate_range_impl_base(commandbuffer_type& cmd, const address_range &fault_range_in, invalidation_cause cause, Args&&... extras)
{
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache has the correct protections
tex_cache_checker.verify();
#endif // TEXTURE_CACHE_DEBUG
AUDIT(cause.valid());
AUDIT(fault_range_in.valid());
address_range fault_range = fault_range_in.to_page_range();
intersecting_set trampled_set = std::move(get_intersecting_set(fault_range));
thrashed_set result = {};
result.cause = cause;
result.fault_range = fault_range;
result.invalidate_range = trampled_set.invalidate_range;
// Fast code-path for keeping the fault range protection when not flushing anything
if (cause.keep_fault_range_protection() && cause.skip_flush() && !trampled_set.sections.empty())
{
ensure(cause != invalidation_cause::committed_as_fbo);
// We discard all sections fully inside fault_range
for (auto &obj : trampled_set.sections)
{
auto &tex = *obj;
if (tex.overlaps(fault_range, section_bounds::locked_range))
{
if (cause == invalidation_cause::superseded_by_fbo &&
tex.is_flushable() &&
tex.get_section_base() != fault_range_in.start)
{
// HACK: When being superseded by an fbo, we preserve overlapped flushables unless the start addresses match
continue;
}
else if (tex.inside(fault_range, section_bounds::locked_range))
{
// Discard - this section won't be needed any more
tex.discard(/* set_dirty */ true);
}
else if (g_cfg.video.strict_texture_flushing && tex.is_flushable())
{
tex.add_flush_exclusion(fault_range);
}
else
{
tex.set_dirty(true);
}
}
}
#ifdef TEXTURE_CACHE_DEBUG
// Notify the checker that fault_range got discarded
tex_cache_checker.discard(fault_range);
#endif
// If invalidate_range is fault_range, we can stop now
const address_range invalidate_range = trampled_set.invalidate_range;
if (invalidate_range == fault_range)
{
result.violation_handled = true;
#ifdef TEXTURE_CACHE_DEBUG
// Post-check the result
result.check_post_sanity();
#endif
return result;
}
AUDIT(fault_range.inside(invalidate_range));
}
// Decide which sections to flush, unprotect, and exclude
if (!trampled_set.sections.empty())
{
update_cache_tag();
for (auto &obj : trampled_set.sections)
{
auto &tex = *obj;
if (!tex.is_locked())
continue;
const rsx::section_bounds bounds = tex.get_overlap_test_bounds();
const bool overlaps_fault_range = tex.overlaps(fault_range, bounds);
if (
// RO sections during a read invalidation can be ignored (unless there are flushables in trampled_set, since those could overwrite RO data)
(invalidation_keep_ro_during_read && !trampled_set.has_flushables && cause.is_read() && !tex.is_flushable()) ||
// Sections that are not fully contained in invalidate_range can be ignored
!tex.inside(trampled_set.invalidate_range, bounds) ||
// Unsynchronized sections (or any flushable when skipping flushes) that do not overlap the fault range directly can also be ignored
(invalidation_ignore_unsynchronized && tex.is_flushable() && (cause.skip_flush() || !tex.is_synchronized()) && !overlaps_fault_range) ||
// HACK: When being superseded by an fbo, we preserve other overlapped flushables unless the start addresses match
// If region is committed as fbo, all non-flushable data is removed but all flushables in the region must be preserved if possible
(overlaps_fault_range && tex.is_flushable() && cause.skip_fbos() && tex.get_section_base() != fault_range_in.start)
)
{
// False positive
result.sections_to_exclude.push_back(&tex);
continue;
}
if (tex.is_flushable())
{
// Write if and only if no one else has trashed section memory already
// TODO: Proper section management should prevent this from happening
// TODO: Blit engine section merge support and/or partial texture memory buffering
if (tex.is_dirty() || !tex.test_memory_head() || !tex.test_memory_tail())
{
// Contents clobbered, destroy this
if (!tex.is_dirty())
{
tex.set_dirty(true);
}
result.sections_to_unprotect.push_back(&tex);
}
else
{
result.sections_to_flush.push_back(&tex);
}
continue;
}
else
{
// deferred_flush = true and not synchronized
if (!tex.is_dirty())
{
AUDIT(tex.get_memory_read_flags() != memory_read_flags::flush_always);
tex.set_dirty(true);
}
result.sections_to_unprotect.push_back(&tex);
continue;
}
fmt::throw_exception("Unreachable");
}
result.violation_handled = true;
#ifdef TEXTURE_CACHE_DEBUG
// Check that result makes sense
result.check_pre_sanity();
#endif // TEXTURE_CACHE_DEBUG
const bool has_flushables = !result.sections_to_flush.empty();
const bool has_unprotectables = !result.sections_to_unprotect.empty();
if (cause.deferred_flush() && has_flushables)
{
// There is something to flush, but we've been asked to defer it
result.num_flushable = static_cast<int>(result.sections_to_flush.size());
result.cache_tag = m_cache_update_tag.load();
return result;
}
else if (has_flushables || has_unprotectables)
{
AUDIT(!has_flushables || !cause.deferred_flush());
// We have something to flush and are allowed to flush now
// or there is nothing to flush but we have something to unprotect
if (has_flushables && !cause.skip_flush())
{
flush_set(cmd, result, std::forward<Args>(extras)...);
}
unprotect_set(result);
// Everything has been handled
result.clear_sections();
}
else
{
// This is a read and all overlapping sections were RO and were excluded (except for cause == superseded_by_fbo)
AUDIT(cause.skip_fbos() || cause.is_read() && !result.sections_to_exclude.empty());
// We did not handle this violation
result.clear_sections();
result.violation_handled = false;
}
#ifdef TEXTURE_CACHE_DEBUG
// Post-check the result
result.check_post_sanity();
#endif // TEXTURE_CACHE_DEBUG
return result;
}
return {};
}
public:
texture_cache() : m_storage(this), m_predictor(this) {}
~texture_cache() = default;
void clear()
{
m_storage.clear();
m_predictor.clear();
}
virtual void on_frame_end()
{
m_temporary_subresource_cache.clear();
m_predictor.on_frame_end();
reset_frame_statistics();
}
template <bool check_unlocked = false>
std::vector<section_storage_type*> find_texture_from_range(const address_range &test_range, u16 required_pitch = 0, u32 context_mask = 0xFF)
{
std::vector<section_storage_type*> results;
for (auto It = m_storage.range_begin(test_range, full_range); It != m_storage.range_end(); It++)
{
auto &tex = *It;
if (!tex.is_dirty() && (context_mask & static_cast<u32>(tex.get_context())))
{
if constexpr (check_unlocked)
{
if (!tex.is_locked())
continue;
}
if (required_pitch && !rsx::pitch_compatible<false>(&tex, required_pitch, UINT16_MAX))
{
continue;
}
results.push_back(&tex);
}
}
return results;
}
template <bool check_unlocked = false>
section_storage_type *find_texture_from_dimensions(u32 rsx_address, u32 format, u16 width = 0, u16 height = 0, u16 depth = 0, u16 mipmaps = 0)
{
auto &block = m_storage.block_for(rsx_address);
for (auto &tex : block)
{
if constexpr (check_unlocked)
{
if (!tex.is_locked())
continue;
}
if (!tex.is_dirty() && tex.matches(rsx_address, format, width, height, depth, mipmaps))
{
return &tex;
}
}
return nullptr;
}
section_storage_type* find_cached_texture(const address_range &range, u32 gcm_format, bool create_if_not_found, bool confirm_dimensions, u16 width = 0, u16 height = 0, u16 depth = 0, u16 mipmaps = 0)
{
auto &block = m_storage.block_for(range);
section_storage_type *dimensions_mismatch = nullptr;
section_storage_type *best_fit = nullptr;
section_storage_type *reuse = nullptr;
#ifdef TEXTURE_CACHE_DEBUG
section_storage_type *res = nullptr;
#endif
// Try to find match in block
for (auto &tex : block)
{
if (tex.matches(range))
{
if (!tex.is_dirty())
{
if (!confirm_dimensions || tex.matches(gcm_format, width, height, depth, mipmaps))
{
#ifndef TEXTURE_CACHE_DEBUG
return &tex;
#else
ensure(res == nullptr);
res = &tex;
#endif
}
else if (dimensions_mismatch == nullptr)
{
dimensions_mismatch = &tex;
}
}
else if (best_fit == nullptr && tex.can_be_reused())
{
//By grabbing a ref to a matching entry, duplicates are avoided
best_fit = &tex;
}
}
else if (reuse == nullptr && tex.can_be_reused())
{
reuse = &tex;
}
}
#ifdef TEXTURE_CACHE_DEBUG
if (res != nullptr)
return res;
#endif
if (dimensions_mismatch != nullptr)
{
auto &tex = *dimensions_mismatch;
rsx_log.warning("Cached object for address 0x%X was found, but it does not match stored parameters (width=%d vs %d; height=%d vs %d; depth=%d vs %d; mipmaps=%d vs %d)",
range.start, width, tex.get_width(), height, tex.get_height(), depth, tex.get_depth(), mipmaps, tex.get_mipmaps());
}
if (!create_if_not_found)
return nullptr;
// If found, use the best fitting section
if (best_fit != nullptr)
{
if (best_fit->exists())
{
best_fit->destroy();
}
return best_fit;
}
// Return the first dirty section found, if any
if (reuse != nullptr)
{
if (reuse->exists())
{
reuse->destroy();
}
return reuse;
}
// Create and return a new section
update_cache_tag();
auto tex = &block.create_section();
return tex;
}
section_storage_type* find_flushable_section(const address_range &memory_range)
{
auto &block = m_storage.block_for(memory_range);
for (auto &tex : block)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable() && !tex.is_flushed()) continue;
if (tex.matches(memory_range))
return &tex;
}
return nullptr;
}
template <typename ...FlushArgs, typename ...Args>
void lock_memory_region(commandbuffer_type& cmd, image_storage_type* image, const address_range &rsx_range, bool is_active_surface, u32 width, u32 height, u32 pitch, Args&&... extras)
{
AUDIT(g_cfg.video.write_color_buffers || g_cfg.video.write_depth_buffer); // this method is only called when either WCB or WDB are enabled
std::lock_guard lock(m_cache_mutex);
// Find a cached section to use
section_storage_type& region = *find_cached_texture(rsx_range, RSX_GCM_FORMAT_IGNORED, true, true, width, height);
// Prepare and initialize fbo region
if (region.exists() && region.get_context() != texture_upload_context::framebuffer_storage)
{
//This space was being used for other purposes other than framebuffer storage
//Delete used resources before attaching it to framebuffer memory
read_only_tex_invalidate = true;
}
if (!region.is_locked() || region.get_context() != texture_upload_context::framebuffer_storage)
{
// Invalidate sections from surface cache occupying same address range
invalidate_range_impl_base(cmd, rsx_range, invalidation_cause::superseded_by_fbo);
}
if (!region.is_locked() || region.can_be_reused())
{
// New region, we must prepare it
region.reset(rsx_range);
no_access_range = region.get_min_max(no_access_range, rsx::section_bounds::locked_range);
region.set_context(texture_upload_context::framebuffer_storage);
region.set_image_type(rsx::texture_dimension_extended::texture_dimension_2d);
}
else
{
// Re-using clean fbo region
ensure(region.matches(rsx_range));
ensure(region.get_context() == texture_upload_context::framebuffer_storage);
ensure(region.get_image_type() == rsx::texture_dimension_extended::texture_dimension_2d);
}
region.create(width, height, 1, 1, image, pitch, false, std::forward<Args>(extras)...);
region.reprotect(utils::protection::no, { 0, rsx_range.length() });
region.set_dirty(false);
region.touch(m_cache_update_tag);
if (is_active_surface)
{
// Add to flush always cache
if (region.get_memory_read_flags() != memory_read_flags::flush_always)
{
region.set_memory_read_flags(memory_read_flags::flush_always, false);
update_flush_always_cache(region, true);
}
else
{
AUDIT(m_flush_always_cache.find(region.get_section_range()) != m_flush_always_cache.end());
}
}
update_cache_tag();
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache makes sense
tex_cache_checker.verify();
#endif // TEXTURE_CACHE_DEBUG
}
template <typename ...Args>
void commit_framebuffer_memory_region(commandbuffer_type& cmd, const address_range &rsx_range, Args&&... extras)
{
AUDIT(!g_cfg.video.write_color_buffers || !g_cfg.video.write_depth_buffer);
if (!region_intersects_cache(rsx_range, true))
return;
std::lock_guard lock(m_cache_mutex);
invalidate_range_impl_base(cmd, rsx_range, invalidation_cause::committed_as_fbo, std::forward<Args>(extras)...);
}
template <typename ...Args>
void discard_framebuffer_memory_region(commandbuffer_type& cmd, const address_range& rsx_range, Args&&... extras)
{
if (g_cfg.video.write_color_buffers || g_cfg.video.write_depth_buffer)
{
auto* region_ptr = find_cached_texture(rsx_range, RSX_GCM_FORMAT_IGNORED, false, false);
if (region_ptr && region_ptr->is_locked() && region_ptr->get_context() == texture_upload_context::framebuffer_storage)
{
ensure(region_ptr->get_protection() == utils::protection::no);
region_ptr->discard(false);
}
}
}
void set_memory_read_flags(const address_range &memory_range, memory_read_flags flags)
{
std::lock_guard lock(m_cache_mutex);
auto* region_ptr = find_cached_texture(memory_range, RSX_GCM_FORMAT_IGNORED, false, false);
if (region_ptr == nullptr)
{
AUDIT(m_flush_always_cache.find(memory_range) == m_flush_always_cache.end());
rsx_log.error("set_memory_flags(0x%x, 0x%x, %d): region_ptr == nullptr", memory_range.start, memory_range.end, static_cast<u32>(flags));
return;
}
auto& region = *region_ptr;
if (!region.exists() || region.is_dirty() || region.get_context() != texture_upload_context::framebuffer_storage)
{
#ifdef TEXTURE_CACHE_DEBUG
if (!region.is_dirty())
{
if (flags == memory_read_flags::flush_once)
ensure(m_flush_always_cache.find(memory_range) == m_flush_always_cache.end());
else
ensure(m_flush_always_cache[memory_range] == &region);
}
#endif // TEXTURE_CACHE_DEBUG
return;
}
update_flush_always_cache(region, flags == memory_read_flags::flush_always);
region.set_memory_read_flags(flags, false);
}
virtual void on_memory_read_flags_changed(section_storage_type &section, rsx::memory_read_flags flags)
{
#ifdef TEXTURE_CACHE_DEBUG
const auto &memory_range = section.get_section_range();
if (flags == memory_read_flags::flush_once)
ensure(m_flush_always_cache[memory_range] == &section);
else
ensure(m_flush_always_cache.find(memory_range) == m_flush_always_cache.end());
#endif
update_flush_always_cache(section, flags == memory_read_flags::flush_always);
}
private:
inline void update_flush_always_cache(section_storage_type &section, bool add)
{
const address_range& range = section.get_section_range();
if (add)
{
// Add to m_flush_always_cache
AUDIT(m_flush_always_cache.find(range) == m_flush_always_cache.end());
m_flush_always_cache[range] = &section;
}
else
{
// Remove from m_flush_always_cache
AUDIT(m_flush_always_cache[range] == &section);
m_flush_always_cache.erase(range);
}
}
public:
template <typename ...Args>
thrashed_set invalidate_address(commandbuffer_type& cmd, u32 address, invalidation_cause cause, Args&&... extras)
{
//Test before trying to acquire the lock
const auto range = page_for(address);
if (!region_intersects_cache(range, !cause.is_read()))
return{};
std::lock_guard lock(m_cache_mutex);
return invalidate_range_impl_base(cmd, range, cause, std::forward<Args>(extras)...);
}
template <typename ...Args>
thrashed_set invalidate_range(commandbuffer_type& cmd, const address_range &range, invalidation_cause cause, Args&&... extras)
{
//Test before trying to acquire the lock
if (!region_intersects_cache(range, !cause.is_read()))
return {};
std::lock_guard lock(m_cache_mutex);
return invalidate_range_impl_base(cmd, range, cause, std::forward<Args>(extras)...);
}
template <typename ...Args>
bool flush_all(commandbuffer_type& cmd, thrashed_set& data, Args&&... extras)
{
std::lock_guard lock(m_cache_mutex);
AUDIT(data.cause.deferred_flush());
AUDIT(!data.flushed);
if (m_cache_update_tag.load() == data.cache_tag)
{
//1. Write memory to cpu side
flush_set(cmd, data, std::forward<Args>(extras)...);
//2. Release all obsolete sections
unprotect_set(data);
}
else
{
// The cache contents have changed between the two readings. This means the data held is useless
invalidate_range_impl_base(cmd, data.fault_range, data.cause.undefer(), std::forward<Args>(extras)...);
}
return true;
}
template <typename ...Args>
bool flush_if_cache_miss_likely(commandbuffer_type& cmd, const address_range &range, Args&&... extras)
{
u32 cur_flushes_this_frame = (m_flushes_this_frame + m_speculations_this_frame);
if (cur_flushes_this_frame > m_predict_max_flushes_per_frame)
return false;
auto& block = m_storage.block_for(range);
if (block.empty())
return false;
reader_lock lock(m_cache_mutex);
// Try to find matching regions
bool result = false;
for (auto &region : block)
{
if (region.is_dirty() || region.is_synchronized() || !region.is_flushable())
continue;
if (!region.matches(range))
continue;
if (!region.tracked_by_predictor())
continue;
if (!m_predictor.predict(region))
continue;
lock.upgrade();
region.copy_texture(cmd, false, std::forward<Args>(extras)...);
result = true;
cur_flushes_this_frame++;
if (cur_flushes_this_frame > m_predict_max_flushes_per_frame)
return result;
}
return result;
}
void purge_unreleased_sections()
{
std::lock_guard lock(m_cache_mutex);
m_storage.purge_unreleased_sections();
}
bool handle_memory_pressure(problem_severity severity)
{
if (m_storage.m_unreleased_texture_objects)
{
m_storage.purge_unreleased_sections();
return true;
}
if (severity >= problem_severity::severe)
{
// Things are bad, previous check should have released 'unreleased' pool
return m_storage.purge_unlocked_sections();
}
return false;
}
image_view_type create_temporary_subresource(commandbuffer_type &cmd, deferred_subresource& desc)
{
if (!desc.do_not_cache) [[likely]]
{
const auto found = m_temporary_subresource_cache.equal_range(desc.address);
for (auto It = found.first; It != found.second; ++It)
{
const auto& found_desc = It->second.first;
if (found_desc.external_handle != desc.external_handle ||
found_desc.op != desc.op ||
found_desc.x != desc.x || found_desc.y != desc.y ||
found_desc.width != desc.width || found_desc.height != desc.height)
continue;
if (desc.op == deferred_request_command::copy_image_dynamic)
update_image_contents(cmd, It->second.second, desc.external_handle, desc.width, desc.height);
return It->second.second;
}
}
image_view_type result = 0;
switch (desc.op)
{
case deferred_request_command::cubemap_gather:
{
result = generate_cubemap_from_images(cmd, desc.gcm_format, desc.width, desc.sections_to_copy, desc.remap);
break;
}
case deferred_request_command::cubemap_unwrap:
{
std::vector<copy_region_descriptor> sections(6);
for (u16 n = 0; n < 6; ++n)
{
sections[n] =
{
desc.external_handle,
surface_transform::coordinate_transform,
0,
0, static_cast<u16>(desc.slice_h * n),
0, 0, n,
desc.width, desc.height,
desc.width, desc.height
};
}
result = generate_cubemap_from_images(cmd, desc.gcm_format, desc.width, sections, desc.remap);
break;
}
case deferred_request_command::_3d_gather:
{
result = generate_3d_from_2d_images(cmd, desc.gcm_format, desc.width, desc.height, desc.depth, desc.sections_to_copy, desc.remap);
break;
}
case deferred_request_command::_3d_unwrap:
{
std::vector<copy_region_descriptor> sections;
sections.resize(desc.depth);
for (u16 n = 0; n < desc.depth; ++n)
{
sections[n] =
{
desc.external_handle,
surface_transform::coordinate_transform,
0,
0, static_cast<u16>(desc.slice_h * n),
0, 0, n,
desc.width, desc.height,
desc.width, desc.height
};
}
result = generate_3d_from_2d_images(cmd, desc.gcm_format, desc.width, desc.height, desc.depth, sections, desc.remap);
break;
}
case deferred_request_command::atlas_gather:
{
result = generate_atlas_from_images(cmd, desc.gcm_format, desc.width, desc.height, desc.sections_to_copy, desc.remap);
break;
}
case deferred_request_command::copy_image_static:
case deferred_request_command::copy_image_dynamic:
{
result = create_temporary_subresource_view(cmd, &desc.external_handle, desc.gcm_format, desc.x, desc.y, desc.width, desc.height, desc.remap);
break;
}
case deferred_request_command::mipmap_gather:
{
result = generate_2d_mipmaps_from_images(cmd, desc.gcm_format, desc.width, desc.height, desc.sections_to_copy, desc.remap);
break;
}
default:
{
//Throw
fmt::throw_exception("Invalid deferred command op 0x%X", static_cast<u32>(desc.op));
}
}
if (result) [[likely]]
{
if (!desc.do_not_cache) [[likely]]
{
m_temporary_subresource_cache.insert({ desc.address,{ desc, result } });
}
else
{
m_uncached_subresources.push_back(result);
}
}
return result;
}
void release_uncached_temporary_subresources()
{
for (auto& view : m_uncached_subresources)
{
release_temporary_subresource(view);
}
m_uncached_subresources.clear();
}
void notify_surface_changed(const utils::address_range& range)
{
for (auto It = m_temporary_subresource_cache.begin(); It != m_temporary_subresource_cache.end();)
{
const auto& desc = It->second.first;
if (range.overlaps(desc.cache_range))
{
release_temporary_subresource(It->second.second);
It = m_temporary_subresource_cache.erase(It);
}
else
{
++It;
}
}
}
template <typename surface_store_type, typename ...Args>
sampled_image_descriptor fast_texture_search(
commandbuffer_type& cmd,
const image_section_attributes_t& attr,
const size2f& scale,
u32 encoded_remap,
const texture_channel_remap_t& remap,
const texture_cache_search_options& options,
const utils::address_range& memory_range,
rsx::texture_dimension_extended extended_dimension,
surface_store_type& m_rtts, Args&& ... extras)
{
if (options.is_compressed_format) [[likely]]
{
// Most mesh textures are stored as compressed to make the most of the limited memory
if (auto cached_texture = find_texture_from_dimensions(attr.address, attr.gcm_format, attr.width, attr.height, attr.depth))
{
return{ cached_texture->get_view(encoded_remap, remap), cached_texture->get_context(), cached_texture->get_format_class(), scale, cached_texture->get_image_type() };
}
}
else
{
// Fast lookup for cyclic reference
if (m_rtts.address_is_bound(attr.address)) [[unlikely]]
{
if (auto texptr = m_rtts.get_surface_at(attr.address);
helpers::check_framebuffer_resource(texptr, attr, extended_dimension))
{
const bool force_convert = !render_target_format_is_compatible(texptr, attr.gcm_format);
auto result = helpers::process_framebuffer_resource_fast<sampled_image_descriptor>(
cmd, texptr, attr, scale, extended_dimension, encoded_remap, remap, true, force_convert);
if (!options.skip_texture_barriers && result.is_cyclic_reference)
{
// A texture barrier is only necessary when the rendertarget is going to be bound as a shader input.
// If a temporary copy is to be made, this should not be invoked
insert_texture_barrier(cmd, texptr);
}
return result;
}
}
std::vector<typename surface_store_type::surface_overlap_info> overlapping_fbos;
std::vector<section_storage_type*> overlapping_locals;
auto fast_fbo_check = [&]() -> sampled_image_descriptor
{
const auto& last = overlapping_fbos.back();
if (last.src_area.x == 0 && last.src_area.y == 0 && !last.is_clipped)
{
const bool force_convert = !render_target_format_is_compatible(last.surface, attr.gcm_format);
return helpers::process_framebuffer_resource_fast<sampled_image_descriptor>(
cmd, last.surface, attr, scale, extended_dimension, encoded_remap, remap, false, force_convert);
}
return {};
};
// Check surface cache early if the option is enabled
if (options.prefer_surface_cache)
{
const u16 block_h = (attr.depth * attr.slice_h);
overlapping_fbos = m_rtts.get_merged_texture_memory_region(cmd, attr.address, attr.width, block_h, attr.pitch, attr.bpp, rsx::surface_access::read);
if (!overlapping_fbos.empty())
{
if (auto result = fast_fbo_check(); result.validate())
{
return result;
}
if (options.skip_texture_merge)
{
overlapping_fbos.clear();
}
}
}
// Check shader_read storage. In a given scene, reads from local memory far outnumber reads from the surface cache
const u32 lookup_mask = rsx::texture_upload_context::shader_read | rsx::texture_upload_context::blit_engine_dst | rsx::texture_upload_context::blit_engine_src;
overlapping_locals = find_texture_from_range<true>(memory_range, attr.height > 1 ? attr.pitch : 0, lookup_mask & options.lookup_mask);
// Search for exact match if possible
for (auto& cached_texture : overlapping_locals)
{
if (cached_texture->matches(attr.address, attr.gcm_format, attr.width, attr.height, attr.depth, 0))
{
#ifdef TEXTURE_CACHE_DEBUG
if (!memory_range.inside(cached_texture->get_confirmed_range()))
{
// TODO. This is easily possible for blit_dst textures if the blit is incomplete in Y
// The possibility that a texture will be split into parts on the CPU like this is very rare
continue;
}
#endif
if (attr.swizzled != cached_texture->is_swizzled())
{
// We can have the correct data in cached_texture but it needs decoding before it can be sampled.
// Usually a sign of a game bug where the developer forgot to mark the texture correctly the first time we see it.
// TODO: This section should execute under an exclusive lock, but we're not actually modifying any object references, only flags
rsx_log.warning("A texture was found in cache for address 0x%x, but swizzle flag does not match", attr.address);
cached_texture->unprotect();
cached_texture->set_dirty(true);
return {};
}
return{ cached_texture->get_view(encoded_remap, remap), cached_texture->get_context(), cached_texture->get_format_class(), scale, cached_texture->get_image_type() };
}
}
if (!overlapping_locals.empty())
{
// Remove everything that is not a transfer target
overlapping_locals.erase
(
std::remove_if(overlapping_locals.begin(), overlapping_locals.end(), [](const auto& e)
{
return (e->get_context() != rsx::texture_upload_context::blit_engine_dst);
}),
overlapping_locals.end()
);
}
if (!options.prefer_surface_cache)
{
// Now check for surface cache hits
const u16 block_h = (attr.depth * attr.slice_h);
overlapping_fbos = m_rtts.get_merged_texture_memory_region(cmd, attr.address, attr.width, block_h, attr.pitch, attr.bpp, rsx::surface_access::read);
}
if (!overlapping_fbos.empty() || !overlapping_locals.empty())
{
int _pool = -1;
if (overlapping_locals.empty()) [[likely]]
{
_pool = 0;
}
else if (overlapping_fbos.empty())
{
_pool = 1;
}
else
{
_pool = (overlapping_locals.back()->last_write_tag < overlapping_fbos.back().surface->last_use_tag) ? 0 : 1;
}
if (_pool == 0)
{
// Surface cache data is newer, check if this thing fits our search parameters
if (!options.prefer_surface_cache)
{
if (auto result = fast_fbo_check(); result.validate())
{
return result;
}
}
}
else if (extended_dimension <= rsx::texture_dimension_extended::texture_dimension_2d)
{
const auto last = overlapping_locals.back();
const auto normalized_width = u16(last->get_width() * get_format_block_size_in_bytes(last->get_gcm_format())) / attr.bpp;
if (last->get_section_base() == attr.address &&
normalized_width >= attr.width && last->get_height() >= attr.height)
{
u32 gcm_format = attr.gcm_format;
const bool gcm_format_is_depth = helpers::is_gcm_depth_format(attr.gcm_format);
if (!gcm_format_is_depth && last->is_depth_texture())
{
// While the copy routines can perform a typeless cast, prefer to not cross the aspect barrier if possible
gcm_format = helpers::get_compatible_depth_format(attr.gcm_format);
}
auto new_attr = attr;
new_attr.gcm_format = gcm_format;
return { last->get_raw_texture(), deferred_request_command::copy_image_static, new_attr, {},
last->get_context(), classify_format(gcm_format), scale, extended_dimension, remap };
}
}
auto result = helpers::merge_cache_resources<sampled_image_descriptor>(
overlapping_fbos, overlapping_locals, attr, scale, extended_dimension, encoded_remap, remap, _pool);
if (options.skip_texture_merge)
{
switch (result.external_subresource_desc.op)
{
case deferred_request_command::copy_image_static:
case deferred_request_command::copy_image_dynamic:
return result;
default:
break;
}
return {};
}
if (const auto section_count = result.external_subresource_desc.sections_to_copy.size();
section_count > 0)
{
bool result_is_valid = result.atlas_covers_target_area(section_count == 1 ? 99 : 90);
if (!result_is_valid && _pool == 0 && !g_cfg.video.write_color_buffers && !g_cfg.video.write_depth_buffer)
{
// HACK: Avoid WCB requirement for some games with wrongly declared sampler dimensions.
// TODO: Some games may render a small region (e.g 1024x256x2) and sample a huge texture (e.g 1024x1024).
// Seen in APF2k8 - this causes missing bits to be reuploaded from CPU which can cause WCB requirement.
// Properly fix this by introducing partial data upload into the surface cache in such cases and making RCB/RDB
// enabled by default. Blit engine already handles this correctly.
result_is_valid = true;
}
if (result_is_valid)
{
// Optionally disallow caching if resource is being written to as it is being read from
for (const auto& section : overlapping_fbos)
{
if (m_rtts.address_is_bound(section.base_address))
{
if (result.external_subresource_desc.op == deferred_request_command::copy_image_static)
{
result.external_subresource_desc.op = deferred_request_command::copy_image_dynamic;
}
else
{
result.external_subresource_desc.do_not_cache = true;
}
break;
}
}
return result;
}
}
}
}
return {};
}
template <typename surface_store_type>
bool test_if_descriptor_expired(commandbuffer_type& cmd, surface_store_type& surface_cache, sampled_image_descriptor* descriptor)
{
auto result = descriptor->is_expired(surface_cache);
if (result.second && descriptor->is_cyclic_reference)
{
/* NOTE: All cyclic descriptors updated via fast update must have a barrier check
* It is possible for the following sequence of events to break common-sense tests
* 1. Cyclic ref occurs normally in upload_texture
* 2. Surface is swappd out, but texture is not updated
* 3. Surface is swapped back in. Surface cache resets layout to optimal rasterization layout
* 4. During bind, the surface is converted to shader layout because it is not in GENERAL layout
*/
if (!g_cfg.video.strict_rendering_mode)
{
insert_texture_barrier(cmd, result.second, false);
}
else if (descriptor->image_handle)
{
descriptor->external_subresource_desc.external_handle = descriptor->image_handle->image();
descriptor->external_subresource_desc.op = deferred_request_command::copy_image_dynamic;
descriptor->external_subresource_desc.do_not_cache = true;
}
else
{
// Force reupload
return true;
}
}
return result.first;
}
template <typename RsxTextureType, typename surface_store_type, typename ...Args>
sampled_image_descriptor upload_texture(commandbuffer_type& cmd, RsxTextureType& tex, surface_store_type& m_rtts, Args&&... extras)
{
image_section_attributes_t attributes{};
texture_cache_search_options options{};
attributes.address = rsx::get_address(tex.offset(), tex.location());
attributes.gcm_format = tex.format() & ~(CELL_GCM_TEXTURE_LN | CELL_GCM_TEXTURE_UN);
attributes.bpp = get_format_block_size_in_bytes(attributes.gcm_format);
attributes.width = tex.width();
attributes.height = tex.height();
attributes.swizzled = !(tex.format() & CELL_GCM_TEXTURE_LN);
const bool is_unnormalized = !!(tex.format() & CELL_GCM_TEXTURE_UN);
auto extended_dimension = tex.get_extended_texture_dimension();
options.is_compressed_format = helpers::is_compressed_gcm_format(attributes.gcm_format);
u32 tex_size = 0, required_surface_height;
u8 subsurface_count;
size2f scale{ 1.f, 1.f };
if (is_unnormalized)
{
if (extended_dimension <= rsx::texture_dimension_extended::texture_dimension_2d)
{
scale.width /= attributes.width;
scale.height /= attributes.height;
}
else
{
rsx_log.error("Unimplemented unnormalized sampling for texture type %d", static_cast<u32>(extended_dimension));
}
}
const auto packed_pitch = get_format_packed_pitch(attributes.gcm_format, attributes.width, !tex.border_type(), attributes.swizzled);
if (!attributes.swizzled) [[likely]]
{
if (attributes.pitch = tex.pitch(); !attributes.pitch)
{
attributes.pitch = packed_pitch;
scale = { 0.f, 0.f };
}
else if (packed_pitch > attributes.pitch && !options.is_compressed_format)
{
scale.width *= f32(packed_pitch) / attributes.pitch;
attributes.width = attributes.pitch / attributes.bpp;
}
}
else
{
attributes.pitch = packed_pitch;
}
switch (extended_dimension)
{
case rsx::texture_dimension_extended::texture_dimension_1d:
attributes.depth = 1;
attributes.slice_h = 1;
scale.height = 0.f;
subsurface_count = 1;
required_surface_height = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_2d:
attributes.depth = 1;
subsurface_count = options.is_compressed_format? 1 : tex.get_exact_mipmap_count();
attributes.slice_h = required_surface_height = attributes.height;
break;
case rsx::texture_dimension_extended::texture_dimension_cubemap:
attributes.depth = 6;
subsurface_count = 1;
tex_size = static_cast<u32>(get_texture_size(tex));
required_surface_height = tex_size / attributes.pitch;
attributes.slice_h = required_surface_height / attributes.depth;
break;
case rsx::texture_dimension_extended::texture_dimension_3d:
attributes.depth = tex.depth();
subsurface_count = 1;
tex_size = static_cast<u32>(get_texture_size(tex));
required_surface_height = tex_size / attributes.pitch;
attributes.slice_h = required_surface_height / attributes.depth;
break;
}
if (options.is_compressed_format)
{
// Compressed textures cannot be 1D in some APIs
extended_dimension = std::max(extended_dimension, rsx::texture_dimension_extended::texture_dimension_2d);
}
const auto lookup_range = utils::address_range::start_length(attributes.address, attributes.pitch * required_surface_height);
reader_lock lock(m_cache_mutex);
auto result = fast_texture_search(cmd, attributes, scale, tex.remap(), tex.decoded_remap(),
options, lookup_range, extended_dimension, m_rtts,
std::forward<Args>(extras)...);
if (result.validate())
{
if (!result.image_handle) [[unlikely]]
{
// Deferred reconstruct
result.external_subresource_desc.cache_range = lookup_range;
}
result.ref_address = attributes.address;
result.surface_cache_tag = m_rtts.cache_tag;
if (subsurface_count == 1)
{
return result;
}
switch (result.upload_context)
{
case rsx::texture_upload_context::blit_engine_dst:
case rsx::texture_upload_context::framebuffer_storage:
break;
case rsx::texture_upload_context::shader_read:
if (!result.image_handle)
break;
[[fallthrough]];
default:
return result;
}
// Traverse the mipmap tree
// Some guarantees here include:
// 1. Only 2D images will invoke this routine
// 2. The image has to have been generated on the GPU (fbo or blit target only)
std::vector<copy_region_descriptor> sections;
const bool use_upscaling = (result.upload_context == rsx::texture_upload_context::framebuffer_storage && g_cfg.video.resolution_scale_percent != 100);
if (!helpers::append_mipmap_level(sections, result, attributes, 0, use_upscaling, attributes)) [[unlikely]]
{
// Abort if mip0 is not compatible
return result;
}
auto attr2 = attributes;
sections.reserve(subsurface_count);
options.skip_texture_merge = true;
options.skip_texture_barriers = true;
options.prefer_surface_cache = (result.upload_context == rsx::texture_upload_context::framebuffer_storage);
for (u8 subsurface = 1; subsurface < subsurface_count; ++subsurface)
{
attr2.address += (attr2.pitch * attr2.height);
attr2.width = std::max(attr2.width / 2, 1);
attr2.height = std::max(attr2.height / 2, 1);
attr2.slice_h = attr2.height;
if (attributes.swizzled)
{
attr2.pitch = attr2.width * attr2.bpp;
}
const auto range = utils::address_range::start_length(attr2.address, attr2.pitch * attr2.height);
auto ret = fast_texture_search(cmd, attr2, scale, tex.remap(), tex.decoded_remap(),
options, range, extended_dimension, m_rtts, std::forward<Args>(extras)...);
if (!ret.validate() ||
!helpers::append_mipmap_level(sections, ret, attr2, subsurface, use_upscaling, attributes))
{
// Abort
break;
}
}
if (sections.size() == 1) [[unlikely]]
{
return result;
}
else
{
// NOTE: Do not disable 'cyclic ref' since the texture_barrier may have already been issued!
result.image_handle = 0;
result.external_subresource_desc = { 0, deferred_request_command::mipmap_gather, attributes, {}, tex.decoded_remap() };
if (use_upscaling)
{
// Grab the correct image dimensions from the base mipmap level
const auto& mip0 = sections.front();
result.external_subresource_desc.width = mip0.dst_w;
result.external_subresource_desc.height = mip0.dst_h;
}
const u32 cache_end = attr2.address + (attr2.pitch * attr2.height);
result.external_subresource_desc.cache_range = utils::address_range::start_end(attributes.address, cache_end);
result.external_subresource_desc.sections_to_copy = std::move(sections);
return result;
}
}
// Do direct upload from CPU as the last resort
const auto subresources_layout = get_subresources_layout(tex);
const auto format_class = classify_format(attributes.gcm_format);
if (!tex_size)
{
tex_size = static_cast<u32>(get_texture_size(tex));
}
lock.upgrade();
// Invalidate
const address_range tex_range = address_range::start_length(attributes.address, tex_size);
invalidate_range_impl_base(cmd, tex_range, invalidation_cause::read, std::forward<Args>(extras)...);
// Upload from CPU. Note that sRGB conversion is handled in the FS
auto uploaded = upload_image_from_cpu(cmd, tex_range, attributes.width, attributes.height, attributes.depth, tex.get_exact_mipmap_count(), attributes.pitch, attributes.gcm_format,
texture_upload_context::shader_read, subresources_layout, extended_dimension, attributes.swizzled);
return{ uploaded->get_view(tex.remap(), tex.decoded_remap()),
texture_upload_context::shader_read, format_class, scale, extended_dimension };
}
template <typename surface_store_type, typename blitter_type, typename ...Args>
blit_op_result upload_scaled_image(rsx::blit_src_info& src, rsx::blit_dst_info& dst, bool interpolate, commandbuffer_type& cmd, surface_store_type& m_rtts, blitter_type& blitter, Args&&... extras)
{
// Since we will have dst in vram, we can 'safely' ignore the swizzle flag
// TODO: Verify correct behavior
bool src_is_render_target = false;
bool dst_is_render_target = false;
const bool dst_is_argb8 = (dst.format == rsx::blit_engine::transfer_destination_format::a8r8g8b8);
const bool src_is_argb8 = (src.format == rsx::blit_engine::transfer_source_format::a8r8g8b8);
const u8 src_bpp = src_is_argb8 ? 4 : 2;
const u8 dst_bpp = dst_is_argb8 ? 4 : 2;
typeless_xfer typeless_info = {};
image_resource_type vram_texture = 0;
image_resource_type dest_texture = 0;
const u32 dst_address = vm::get_addr(dst.pixels);
u32 src_address = vm::get_addr(src.pixels);
const f32 scale_x = fabsf(dst.scale_x);
const f32 scale_y = fabsf(dst.scale_y);
const bool is_copy_op = (fcmp(scale_x, 1.f) && fcmp(scale_y, 1.f));
const bool is_format_convert = (dst_is_argb8 != src_is_argb8);
bool skip_if_collision_exists = false;
// Offset in x and y for src is 0 (it is already accounted for when getting pixels_src)
// Reproject final clip onto source...
u16 src_w = static_cast<u16>(dst.clip_width / scale_x);
u16 src_h = static_cast<u16>(dst.clip_height / scale_y);
u16 dst_w = dst.clip_width;
u16 dst_h = dst.clip_height;
if (true) // This block is a debug/sanity check and should be optionally disabled with a config option
{
// Do subpixel correction in the special case of reverse scanning
// When reverse scanning, pixel0 is at offset = (dimension - 1)
if (dst.scale_y < 0.f && src.offset_y)
{
if (src.offset_y = (src.height - src.offset_y);
src.offset_y == 1)
{
src.offset_y = 0;
}
}
if (dst.scale_x < 0.f && src.offset_x)
{
if (src.offset_x = (src.width - src.offset_x);
src.offset_x == 1)
{
src.offset_x = 0;
}
}
if ((src_h + src.offset_y) > src.height) [[unlikely]]
{
// TODO: Special case that needs wrapping around (custom blit)
rsx_log.error("Transfer cropped in Y, src_h=%d, offset_y=%d, block_h=%d", src_h, src.offset_y, src.height);
src_h = src.height - src.offset_y;
}
if ((src_w + src.offset_x) > src.width) [[unlikely]]
{
// TODO: Special case that needs wrapping around (custom blit)
rsx_log.error("Transfer cropped in X, src_w=%d, offset_x=%d, block_w=%d", src_w, src.offset_x, src.width);
src_w = src.width - src.offset_x;
}
}
if (dst.scale_y < 0.f)
{
typeless_info.flip_vertical = true;
src_address -= (src.pitch * (src_h - 1));
}
if (dst.scale_x < 0.f)
{
typeless_info.flip_horizontal = true;
src_address += (src.width - src_w) * src_bpp;
}
auto rtt_lookup = [&m_rtts, &cmd, &scale_x, &scale_y, this](u32 address, u32 width, u32 height, u32 pitch, u8 bpp, bool allow_clipped) -> typename surface_store_type::surface_overlap_info
{
const auto list = m_rtts.get_merged_texture_memory_region(cmd, address, width, height, pitch, bpp, rsx::surface_access::transfer);
if (list.empty())
{
return {};
}
for (auto It = list.rbegin(); It != list.rend(); ++It)
{
if (!(It->surface->memory_usage_flags & rsx::surface_usage_flags::attachment))
{
// HACK
// TODO: Properly analyse the input here to determine if it can properly fit what we need
// This is a problem due to chunked transfer
// First 2 512x720 blocks go into a cpu-side buffer but suddenly when its time to render the final 256x720
// it falls onto some storage buffer in surface cache that has bad dimensions
// Proper solution is to always merge when a cpu resource is created (it should absorb the render targets in range)
// We then should not have any 'dst-is-rendertarget' surfaces in use
// Option 2: Make surfaces here part of surface cache and do not pad them for optimization
// Surface cache is good at merging for resolve operations. This keeps integrity even when drawing to the rendertgargets
// This option needs a lot more work
continue;
}
if (!It->is_clipped || allow_clipped)
{
return *It;
}
const auto _w = It->dst_area.width;
const auto _h = It->dst_area.height;
if (_w < width)
{
if ((_w * scale_x) <= 1.f)
continue;
}
if (_h < height)
{
if ((_h * scale_y) <= 1.f)
continue;
}
// Some surface exists, but its size is questionable
// Opt to re-upload (needs WCB/WDB to work properly)
break;
}
return {};
};
auto validate_memory_range = [](u32 base_address, u32 write_end, u32 heuristic_end)
{
if (heuristic_end <= write_end)
{
return true;
}
// Confirm if the pages actually exist in vm
if (get_location(base_address) == CELL_GCM_LOCATION_LOCAL)
{
const auto vram_end = rsx::get_current_renderer()->local_mem_size + rsx::constants::local_mem_base;
if (heuristic_end > vram_end)
{
// Outside available VRAM area
return false;
}
}
else
{
if (!vm::check_addr(write_end, vm::page_readable, (heuristic_end - write_end)))
{
// Enforce strict allocation size!
return false;
}
}
return true;
};
// Check if src/dst are parts of render targets
typename surface_store_type::surface_overlap_info dst_subres;
bool use_null_region = false;
if (get_location(dst_address) == CELL_GCM_LOCATION_LOCAL)
{
// TODO: HACK
// After writing, it is required to lock the memory range from access!
dst_subres = rtt_lookup(dst_address, dst_w, dst_h, dst.pitch, dst_bpp, false);
dst_is_render_target = dst_subres.surface != nullptr;
}
else
{
// Surface exists in local memory.
use_null_region = (is_copy_op && !is_format_convert);
// Invalidate surfaces in range. Sample tests should catch overlaps in theory.
m_rtts.invalidate_range(utils::address_range::start_length(dst_address, dst.pitch* dst_h));
}
// TODO: Handle cases where src or dst can be a depth texture while the other is a color texture - requires a render pass to emulate
auto src_subres = rtt_lookup(src_address, src_w, src_h, src.pitch, src_bpp, false);
src_is_render_target = src_subres.surface != nullptr;
if (src_is_render_target)
{
const auto surf = src_subres.surface;
const auto bpp = surf->get_bpp();
const bool typeless = (bpp != src_bpp || is_format_convert);
if (!typeless) [[likely]]
{
// Use format as-is
typeless_info.src_gcm_format = helpers::get_sized_blit_format(src_is_argb8, src_subres.is_depth, false);
}
else
{
// Enable type scaling in src
typeless_info.src_is_typeless = true;
typeless_info.src_scaling_hint = static_cast<f32>(bpp) / src_bpp;
typeless_info.src_gcm_format = helpers::get_sized_blit_format(src_is_argb8, false, is_format_convert);
}
if (surf->get_surface_width(rsx::surface_metrics::pixels) != surf->width() ||
surf->get_surface_height(rsx::surface_metrics::pixels) != surf->height())
{
// Must go through a scaling operation due to resolution scaling being present
ensure(g_cfg.video.resolution_scale_percent != 100);
use_null_region = false;
}
}
else
{
// Determine whether to perform this transfer on CPU or GPU (src data may not be graphical)
const bool is_trivial_copy = is_copy_op && !is_format_convert && !dst.swizzled;
const bool is_block_transfer = (dst_w == src_w && dst_h == src_h && (src.pitch == dst.pitch || src_h == 1));
const bool is_mirror_op = (dst.scale_x < 0.f || dst.scale_y < 0.f);
if (dst_is_render_target)
{
if (is_trivial_copy && src_h == 1)
{
dst_is_render_target = false;
dst_subres = {};
}
}
// Always use GPU blit if src or dst is in the surface store
if (!dst_is_render_target)
{
if (is_trivial_copy)
{
// Check if trivial memcpy can perform the same task
// Used to copy programs and arbitrary data to the GPU in some cases
// NOTE: This case overrides the GPU texture scaling option
if (is_block_transfer && !is_mirror_op)
{
return false;
}
// If a matching section exists with a different use-case, fall back to CPU memcpy
skip_if_collision_exists = true;
}
if (!g_cfg.video.use_gpu_texture_scaling)
{
if (dst.swizzled)
{
// Swizzle operation requested. Use fallback
return false;
}
if (is_trivial_copy && get_location(dst_address) != CELL_GCM_LOCATION_LOCAL)
{
// Trivial copy and the destination is in XDR memory
return false;
}
}
}
}
if (dst_is_render_target)
{
const auto bpp = dst_subres.surface->get_bpp();
const bool typeless = (bpp != dst_bpp || is_format_convert);
if (!typeless) [[likely]]
{
typeless_info.dst_gcm_format = helpers::get_sized_blit_format(dst_is_argb8, dst_subres.is_depth, false);
}
else
{
// Enable type scaling in dst
typeless_info.dst_is_typeless = true;
typeless_info.dst_scaling_hint = static_cast<f32>(bpp) / dst_bpp;
typeless_info.dst_gcm_format = helpers::get_sized_blit_format(dst_is_argb8, false, is_format_convert);
}
}
section_storage_type* cached_dest = nullptr;
bool dst_is_depth_surface = false;
u16 max_dst_width = dst.width;
u16 max_dst_height = dst.height;
areai src_area = { 0, 0, src_w, src_h };
areai dst_area = { 0, 0, dst_w, dst_h };
size2i dst_dimensions = { dst.pitch / dst_bpp, dst.height };
position2i dst_offset = { dst.offset_x, dst.offset_y };
u32 dst_base_address = dst.rsx_address;
const auto src_payload_length = (src.pitch * (src_h - 1) + (src_w * src_bpp));
const auto dst_payload_length = (dst.pitch * (dst_h - 1) + (dst_w * dst_bpp));
const auto dst_range = address_range::start_length(dst_address, dst_payload_length);
if (!use_null_region && !dst_is_render_target)
{
size2u src_dimensions = { 0, 0 };
if (src_is_render_target)
{
src_dimensions.width = src_subres.surface->get_surface_width(rsx::surface_metrics::samples);
src_dimensions.height = src_subres.surface->get_surface_height(rsx::surface_metrics::samples);
}
const auto props = texture_cache_helpers::get_optimal_blit_target_properties(
src_is_render_target,
dst_range,
dst.pitch,
src_dimensions,
static_cast<size2u>(dst_dimensions)
);
if (props.use_dma_region)
{
// Try to use a dma flush
use_null_region = (is_copy_op && !is_format_convert);
}
else
{
if (props.offset)
{
// Calculate new offsets
dst_base_address = props.offset;
const auto new_offset = (dst_address - dst_base_address);
// Generate new offsets
dst_offset.y = new_offset / dst.pitch;
dst_offset.x = (new_offset % dst.pitch) / dst_bpp;
}
dst_dimensions.width = static_cast<s32>(props.width);
dst_dimensions.height = static_cast<s32>(props.height);
}
}
reader_lock lock(m_cache_mutex);
const auto old_dst_area = dst_area;
if (!dst_is_render_target)
{
// Check for any available region that will fit this one
u32 required_type_mask;
if (use_null_region)
{
required_type_mask = texture_upload_context::dma;
}
else
{
required_type_mask = texture_upload_context::blit_engine_dst;
if (skip_if_collision_exists) required_type_mask |= texture_upload_context::shader_read;
}
auto overlapping_surfaces = find_texture_from_range(dst_range, dst.pitch, required_type_mask);
for (const auto &surface : overlapping_surfaces)
{
if (!surface->is_locked())
{
// Discard
surface->set_dirty(true);
continue;
}
if (cached_dest)
{
// Nothing to do
continue;
}
if (!dst_range.inside(surface->get_section_range()))
{
// Hit test failed
continue;
}
if (use_null_region)
{
// Attach to existing region
cached_dest = surface;
// Technically it is totally possible to just extend a pre-existing section
// Will leave this as a TODO
continue;
}
if (skip_if_collision_exists) [[unlikely]]
{
if (surface->get_context() != texture_upload_context::blit_engine_dst)
{
// This section is likely to be 'flushed' to CPU for reupload soon anyway
return false;
}
}
// Prefer formats which will not trigger a typeless conversion later
// Only color formats are supported as destination as most access from blit engine will be color
switch (surface->get_gcm_format())
{
case CELL_GCM_TEXTURE_A8R8G8B8:
if (!dst_is_argb8) continue;
break;
case CELL_GCM_TEXTURE_X16:
case CELL_GCM_TEXTURE_R5G6B5:
if (dst_is_argb8) continue;
break;
default:
continue;
}
if (const auto this_address = surface->get_section_base();
const u32 address_offset = dst_address - this_address)
{
const u16 offset_y = address_offset / dst.pitch;
const u16 offset_x = address_offset % dst.pitch;
const u16 offset_x_in_block = offset_x / dst_bpp;
dst_area.x1 += offset_x_in_block;
dst_area.x2 += offset_x_in_block;
dst_area.y1 += offset_y;
dst_area.y2 += offset_y;
}
// Validate clipping region
if (static_cast<uint>(dst_area.x2) <= surface->get_width() &&
static_cast<uint>(dst_area.y2) <= surface->get_height())
{
cached_dest = surface;
dest_texture = cached_dest->get_raw_texture();
typeless_info.dst_context = cached_dest->get_context();
max_dst_width = cached_dest->get_width();
max_dst_height = cached_dest->get_height();
continue;
}
dst_area = old_dst_area;
}
if (cached_dest && cached_dest->get_context() != texture_upload_context::dma)
{
// NOTE: DMA sections are plain memory blocks with no format!
if (src_is_render_target || is_format_convert)
{
bool src_is_depth;
if (is_format_convert)
{
src_is_depth = false;
}
else
{
ensure(src_is_render_target);
src_is_depth = (typeless_info.src_is_typeless) ? false : src_subres.is_depth;
}
}
if (cached_dest) [[likely]]
{
typeless_info.dst_gcm_format = cached_dest->get_gcm_format();
dst_is_depth_surface = cached_dest->is_depth_texture();
}
}
}
else
{
// Destination dimensions are relaxed (true)
dst_area = dst_subres.src_area;
dest_texture = dst_subres.surface->get_surface(rsx::surface_access::transfer);
typeless_info.dst_context = texture_upload_context::framebuffer_storage;
dst_is_depth_surface = typeless_info.dst_is_typeless ? false : dst_subres.is_depth;
max_dst_width = static_cast<u16>(dst_subres.surface->get_surface_width(rsx::surface_metrics::samples) * typeless_info.dst_scaling_hint);
max_dst_height = dst_subres.surface->get_surface_height(rsx::surface_metrics::samples);
}
// Create source texture if does not exist
// TODO: This can be greatly improved with DMA optimizations. Most transfer operations here are actually non-graphical (no transforms applied)
if (!src_is_render_target)
{
// NOTE: Src address already takes into account the flipped nature of the overlap!
const u32 lookup_mask = rsx::texture_upload_context::blit_engine_src | rsx::texture_upload_context::blit_engine_dst | rsx::texture_upload_context::shader_read;
auto overlapping_surfaces = find_texture_from_range<false>(address_range::start_length(src_address, src_payload_length), src.pitch, lookup_mask);
auto old_src_area = src_area;
section_storage_type *cached_src = nullptr;
for (const auto &surface : overlapping_surfaces)
{
if (!surface->is_locked())
{
// TODO: Rejecting unlocked blit_engine dst causes stutter in SCV
// Surfaces marked as dirty have already been removed, leaving only flushed blit_dst data
continue;
}
// Force format matching; only accept 16-bit data for 16-bit transfers, 32-bit for 32-bit transfers
switch (surface->get_gcm_format())
{
case CELL_GCM_TEXTURE_A8R8G8B8:
case CELL_GCM_TEXTURE_D8R8G8B8:
case CELL_GCM_TEXTURE_DEPTH24_D8:
case CELL_GCM_TEXTURE_DEPTH24_D8_FLOAT:
case CELL_GCM_TEXTURE_X32_FLOAT:
case CELL_GCM_TEXTURE_Y16_X16:
case CELL_GCM_TEXTURE_Y16_X16_FLOAT:
{
if (!src_is_argb8) continue;
break;
}
case CELL_GCM_TEXTURE_R5G6B5:
case CELL_GCM_TEXTURE_DEPTH16:
case CELL_GCM_TEXTURE_DEPTH16_FLOAT:
case CELL_GCM_TEXTURE_X16:
case CELL_GCM_TEXTURE_G8B8:
case CELL_GCM_TEXTURE_A1R5G5B5:
case CELL_GCM_TEXTURE_A4R4G4B4:
case CELL_GCM_TEXTURE_D1R5G5B5:
case CELL_GCM_TEXTURE_R5G5B5A1:
{
if (src_is_argb8) continue;
break;
}
default:
{
continue;
}
}
const auto this_address = surface->get_section_base();
if (this_address > src_address)
{
continue;
}
if (const u32 address_offset = src_address - this_address)
{
const u16 offset_y = address_offset / src.pitch;
const u16 offset_x = address_offset % src.pitch;
const u16 offset_x_in_block = offset_x / src_bpp;
src_area.x1 += offset_x_in_block;
src_area.x2 += offset_x_in_block;
src_area.y1 += offset_y;
src_area.y2 += offset_y;
}
if (src_area.x2 <= surface->get_width() &&
src_area.y2 <= surface->get_height())
{
cached_src = surface;
break;
}
src_area = old_src_area;
}
if (!cached_src)
{
const u16 full_width = src.pitch / src_bpp;
u32 image_base = src.rsx_address;
u16 image_width = full_width;
u16 image_height = src.height;
// Check if memory is valid
const bool use_full_range = validate_memory_range(
image_base,
(src_address + src_payload_length),
image_base + (image_height * src.pitch));
if (use_full_range && dst.scale_x > 0.f && dst.scale_y > 0.f) [[likely]]
{
// Loading full image from the corner address
// Translate src_area into the declared block
src_area.x1 += src.offset_x;
src_area.x2 += src.offset_x;
src_area.y1 += src.offset_y;
src_area.y2 += src.offset_y;
}
else
{
image_base = src_address;
image_height = src_h;
}
std::vector<rsx::subresource_layout> subresource_layout;
rsx::subresource_layout subres = {};
subres.width_in_block = subres.width_in_texel = image_width;
subres.height_in_block = subres.height_in_texel = image_height;
subres.pitch_in_block = full_width;
subres.depth = 1;
subres.data = { vm::_ptr<const std::byte>(image_base), static_cast<gsl::span<const std::byte>::index_type>(src.pitch * image_height) };
subresource_layout.push_back(subres);
const u32 gcm_format = helpers::get_sized_blit_format(src_is_argb8, dst_is_depth_surface, is_format_convert);
const auto rsx_range = address_range::start_length(image_base, src.pitch * image_height);
lock.upgrade();
invalidate_range_impl_base(cmd, rsx_range, invalidation_cause::read, std::forward<Args>(extras)...);
cached_src = upload_image_from_cpu(cmd, rsx_range, image_width, image_height, 1, 1, src.pitch, gcm_format, texture_upload_context::blit_engine_src,
subresource_layout, rsx::texture_dimension_extended::texture_dimension_2d, dst.swizzled);
typeless_info.src_gcm_format = gcm_format;
}
else if (cached_src->is_depth_texture() != dst_is_depth_surface)
{
typeless_info.src_gcm_format = cached_src->get_gcm_format();
}
vram_texture = cached_src->get_raw_texture();
typeless_info.src_context = cached_src->get_context();
}
else
{
src_area = src_subres.src_area;
vram_texture = src_subres.surface->get_surface(rsx::surface_access::read);
typeless_info.src_context = texture_upload_context::framebuffer_storage;
}
const auto src_is_depth_format = helpers::is_gcm_depth_format(typeless_info.src_gcm_format);
const auto preferred_dst_format = helpers::get_sized_blit_format(dst_is_argb8, false, is_format_convert);
if (cached_dest && !use_null_region)
{
// Prep surface
auto channel_order = src_is_render_target ? rsx::texture_create_flags::native_component_order :
dst_is_argb8 ? rsx::texture_create_flags::default_component_order :
rsx::texture_create_flags::swapped_native_component_order;
enforce_surface_creation_type(*cached_dest, preferred_dst_format, channel_order);
}
// Validate clipping region
if ((dst.offset_x + dst.clip_x + dst.clip_width) > max_dst_width) dst.clip_x = 0;
if ((dst.offset_y + dst.clip_y + dst.clip_height) > max_dst_height) dst.clip_y = 0;
// Reproject clip offsets onto source to simplify blit
if (dst.clip_x || dst.clip_y)
{
const u16 scaled_clip_offset_x = static_cast<u16>(dst.clip_x / (scale_x * typeless_info.src_scaling_hint));
const u16 scaled_clip_offset_y = static_cast<u16>(dst.clip_y / scale_y);
src_area.x1 += scaled_clip_offset_x;
src_area.x2 += scaled_clip_offset_x;
src_area.y1 += scaled_clip_offset_y;
src_area.y2 += scaled_clip_offset_y;
}
if (!cached_dest && !dst_is_render_target)
{
ensure(!dest_texture);
// Need to calculate the minimum required size that will fit the data, anchored on the rsx_address
// If the application starts off with an 'inseted' section, the guessed dimensions may not fit!
const u32 write_end = dst_address + dst_payload_length;
u32 block_end = dst_base_address + (dst.pitch * dst_dimensions.height);
// Confirm if the pages actually exist in vm
if (!validate_memory_range(dst_base_address, write_end, block_end))
{
block_end = write_end;
}
const u32 usable_section_length = std::max(write_end, block_end) - dst_base_address;
dst_dimensions.height = align2(usable_section_length, dst.pitch) / dst.pitch;
const u32 full_section_length = ((dst_dimensions.height - 1) * dst.pitch) + (dst_dimensions.width * dst_bpp);
const auto rsx_range = address_range::start_length(dst_base_address, full_section_length);
lock.upgrade();
// NOTE: Write flag set to remove all other overlapping regions (e.g shader_read or blit_src)
invalidate_range_impl_base(cmd, rsx_range, invalidation_cause::write, std::forward<Args>(extras)...);
if (use_null_region) [[likely]]
{
bool force_dma_load = false;
if ((dst_w * dst_bpp) != dst.pitch)
{
// Keep Cell from touching the range we need
const auto prot_range = dst_range.to_page_range();
utils::memory_protect(vm::base(prot_range.start), prot_range.length(), utils::protection::no);
force_dma_load = true;
}
cached_dest = create_nul_section(cmd, rsx_range, force_dma_load);
}
else
{
// render target data is already in correct swizzle layout
auto channel_order = src_is_render_target ? rsx::texture_create_flags::native_component_order :
dst_is_argb8 ? rsx::texture_create_flags::default_component_order :
rsx::texture_create_flags::swapped_native_component_order;
// Translate dst_area into the 'full' dst block based on dst.rsx_address as (0, 0)
dst_area.x1 += dst_offset.x;
dst_area.x2 += dst_offset.x;
dst_area.y1 += dst_offset.y;
dst_area.y2 += dst_offset.y;
if (!dst_area.x1 && !dst_area.y1 && dst_area.x2 == dst_dimensions.width && dst_area.y2 == dst_dimensions.height)
{
cached_dest = create_new_texture(cmd, rsx_range, dst_dimensions.width, dst_dimensions.height, 1, 1, dst.pitch,
preferred_dst_format, rsx::texture_upload_context::blit_engine_dst, rsx::texture_dimension_extended::texture_dimension_2d,
false, channel_order);
}
else
{
// HACK: workaround for data race with Cell
// Pre-lock the memory range we'll be touching, then load with super_ptr
const auto prot_range = dst_range.to_page_range();
utils::memory_protect(vm::base(prot_range.start), prot_range.length(), utils::protection::no);
const u16 pitch_in_block = dst.pitch / dst_bpp;
std::vector<rsx::subresource_layout> subresource_layout;
rsx::subresource_layout subres = {};
subres.width_in_block = subres.width_in_texel = dst_dimensions.width;
subres.height_in_block = subres.height_in_texel = dst_dimensions.height;
subres.pitch_in_block = pitch_in_block;
subres.depth = 1;
subres.data = { vm::get_super_ptr<const std::byte>(dst_base_address), static_cast<gsl::span<const std::byte>::index_type>(dst.pitch * dst_dimensions.height) };
subresource_layout.push_back(subres);
cached_dest = upload_image_from_cpu(cmd, rsx_range, dst_dimensions.width, dst_dimensions.height, 1, 1, dst.pitch,
preferred_dst_format, rsx::texture_upload_context::blit_engine_dst, subresource_layout,
rsx::texture_dimension_extended::texture_dimension_2d, false);
enforce_surface_creation_type(*cached_dest, preferred_dst_format, channel_order);
}
dest_texture = cached_dest->get_raw_texture();
typeless_info.dst_context = texture_upload_context::blit_engine_dst;
typeless_info.dst_gcm_format = preferred_dst_format;
}
}
ensure(cached_dest || dst_is_render_target);
// Invalidate any cached subresources in modified range
notify_surface_changed(dst_range);
// What type of data is being moved?
const auto raster_type = src_is_render_target ? src_subres.surface->raster_type : rsx::surface_raster_type::undefined;
if (cached_dest)
{
// Validate modified range
u32 mem_offset = dst_address - cached_dest->get_section_base();
ensure((mem_offset + dst_payload_length) <= cached_dest->get_section_size());
lock.upgrade();
cached_dest->reprotect(utils::protection::no, { mem_offset, dst_payload_length });
cached_dest->touch(m_cache_update_tag);
update_cache_tag();
// Set swizzle flag
cached_dest->set_swizzled(raster_type == rsx::surface_raster_type::swizzle);
}
else
{
// NOTE: This doesn't work very well in case of Cell access
// Need to lock the affected memory range and actually attach this subres to a locked_region
dst_subres.surface->on_write_copy(rsx::get_shared_tag(), false, raster_type);
// Reset this object's synchronization status if it is locked
lock.upgrade();
if (const auto found = find_cached_texture(dst_subres.surface->get_memory_range(), RSX_GCM_FORMAT_IGNORED, false, false))
{
if (found->is_locked())
{
if (found->get_rsx_pitch() == dst.pitch)
{
// It is possible for other resource types to overlap this fbo if it only covers a small section of its max width.
// Blit engine read and write resources do not allow clipping and would have been recreated at the same address.
// TODO: In cases of clipped data, generate the blit resources in the surface cache instead.
if (found->get_context() == rsx::texture_upload_context::framebuffer_storage)
{
found->touch(m_cache_update_tag);
update_cache_tag();
}
}
else
{
// Unlikely situation, but the only one which would allow re-upload from CPU to overlap this section.
ensure(!found->is_flushable());
found->discard(true);
}
}
}
}
if (src_is_render_target)
{
const auto surface_width = src_subres.surface->get_surface_width(rsx::surface_metrics::pixels);
const auto surface_height = src_subres.surface->get_surface_height(rsx::surface_metrics::pixels);
std::tie(src_area.x1, src_area.y1) = rsx::apply_resolution_scale<false>(src_area.x1, src_area.y1, surface_width, surface_height);
std::tie(src_area.x2, src_area.y2) = rsx::apply_resolution_scale<true>(src_area.x2, src_area.y2, surface_width, surface_height);
// The resource is of surface type; possibly disabled AA emulation
src_subres.surface->transform_blit_coordinates(rsx::surface_access::transfer, src_area);
}
if (dst_is_render_target)
{
const auto surface_width = dst_subres.surface->get_surface_width(rsx::surface_metrics::pixels);
const auto surface_height = dst_subres.surface->get_surface_height(rsx::surface_metrics::pixels);
std::tie(dst_area.x1, dst_area.y1) = rsx::apply_resolution_scale<false>(dst_area.x1, dst_area.y1, surface_width, surface_height);
std::tie(dst_area.x2, dst_area.y2) = rsx::apply_resolution_scale<true>(dst_area.x2, dst_area.y2, surface_width, surface_height);
// The resource is of surface type; possibly disabled AA emulation
dst_subres.surface->transform_blit_coordinates(rsx::surface_access::transfer, dst_area);
}
if (helpers::is_gcm_depth_format(typeless_info.src_gcm_format) !=
helpers::is_gcm_depth_format(typeless_info.dst_gcm_format))
{
// Make the depth side typeless because the other side is guaranteed to be color
if (helpers::is_gcm_depth_format(typeless_info.src_gcm_format))
{
// SRC is depth, transfer must be done typelessly
if (!typeless_info.src_is_typeless)
{
typeless_info.src_is_typeless = true;
typeless_info.src_gcm_format = helpers::get_sized_blit_format(src_is_argb8, false, false);
}
}
else
{
// DST is depth, transfer must be done typelessly
if (!typeless_info.dst_is_typeless)
{
typeless_info.dst_is_typeless = true;
typeless_info.dst_gcm_format = helpers::get_sized_blit_format(dst_is_argb8, false, false);
}
}
}
if (!use_null_region) [[likely]]
{
// Do preliminary analysis
typeless_info.analyse();
blitter.scale_image(cmd, vram_texture, dest_texture, src_area, dst_area, interpolate, typeless_info);
}
else
{
cached_dest->dma_transfer(cmd, vram_texture, src_area, dst_range, dst.pitch);
}
blit_op_result result = true;
if (cached_dest)
{
result.real_dst_address = cached_dest->get_section_base();
result.real_dst_size = cached_dest->get_section_size();
}
else
{
result.real_dst_address = dst_base_address;
result.real_dst_size = dst.pitch * dst_dimensions.height;
}
return result;
}
void do_update()
{
if (!m_flush_always_cache.empty())
{
if (m_cache_update_tag.load() != m_flush_always_update_timestamp)
{
std::lock_guard lock(m_cache_mutex);
bool update_tag = false;
for (const auto &It : m_flush_always_cache)
{
auto& section = *(It.second);
if (section.get_protection() != utils::protection::no)
{
ensure(section.exists());
AUDIT(section.get_context() == texture_upload_context::framebuffer_storage);
AUDIT(section.get_memory_read_flags() == memory_read_flags::flush_always);
section.reprotect(utils::protection::no);
update_tag = true;
}
}
if (update_tag) update_cache_tag();
m_flush_always_update_timestamp = m_cache_update_tag.load();
#ifdef TEXTURE_CACHE_DEBUG
// Check that the cache has the correct protections
m_storage.verify_protection();
#endif // TEXTURE_CACHE_DEBUG
}
}
}
predictor_type& get_predictor()
{
return m_predictor;
}
/**
* The read only texture invalidate flag is set if a read only texture is trampled by framebuffer memory
* If set, all cached read only textures are considered invalid and should be re-fetched from the texture cache
*/
void clear_ro_tex_invalidate_intr()
{
read_only_tex_invalidate = false;
}
bool get_ro_tex_invalidate_intr() const
{
return read_only_tex_invalidate;
}
/**
* Per-frame statistics
*/
void reset_frame_statistics()
{
m_flushes_this_frame.store(0u);
m_misses_this_frame.store(0u);
m_speculations_this_frame.store(0u);
m_unavoidable_hard_faults_this_frame.store(0u);
}
void on_flush()
{
m_flushes_this_frame++;
}
void on_speculative_flush()
{
m_speculations_this_frame++;
}
void on_misprediction()
{
m_predictor.on_misprediction();
}
void on_miss(const section_storage_type& section)
{
m_misses_this_frame++;
if (section.get_memory_read_flags() == memory_read_flags::flush_always)
{
m_unavoidable_hard_faults_this_frame++;
}
}
virtual const u32 get_unreleased_textures_count() const
{
return m_storage.m_unreleased_texture_objects;
}
const u64 get_texture_memory_in_use() const
{
return m_storage.m_texture_memory_in_use;
}
u32 get_num_flush_requests() const
{
return m_flushes_this_frame;
}
u32 get_num_cache_mispredictions() const
{
return m_predictor.m_mispredictions_this_frame;
}
u32 get_num_cache_speculative_writes() const
{
return m_speculations_this_frame;
}
u32 get_num_cache_misses() const
{
return m_misses_this_frame;
}
u32 get_num_unavoidable_hard_faults() const
{
return m_unavoidable_hard_faults_this_frame;
}
f32 get_cache_miss_ratio() const
{
const auto num_flushes = m_flushes_this_frame.load();
return (num_flushes == 0u) ? 0.f : static_cast<f32>(m_misses_this_frame.load()) / num_flushes;
}
};
}