rpcs3/Utilities/CPUStats.h
Megamouse 663b2c9c5e overlays: Fix frametime graph spikes
The frametime_timer was restarted at the end of the update method, instead of immediately after reading its value.
This means that the frametime was lower than expected when an expensive task was executed in-between.
2021-02-23 13:27:54 +03:00

244 lines
5.3 KiB
C++

#pragma once
#include "util/types.hpp"
#ifdef _WIN32
#include "windows.h"
#include "tlhelp32.h"
#else
#include "stdlib.h"
#include "sys/times.h"
#include "sys/types.h"
#include "unistd.h"
#endif
#ifdef __APPLE__
# include <mach/mach_init.h>
# include <mach/task.h>
# include <mach/vm_map.h>
#endif
#ifdef __linux__
# include <dirent.h>
#endif
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
# include <sys/sysctl.h>
# if defined(__DragonFly__) || defined(__FreeBSD__)
# include <sys/user.h>
# endif
# if defined(__NetBSD__)
# undef KERN_PROC
# define KERN_PROC KERN_PROC2
# define kinfo_proc kinfo_proc2
# endif
# if defined(__DragonFly__)
# define KP_NLWP(kp) (kp.kp_nthreads)
# elif defined(__FreeBSD__)
# define KP_NLWP(kp) (kp.ki_numthreads)
# elif defined(__NetBSD__)
# define KP_NLWP(kp) (kp.p_nlwps)
# endif
#endif
class CPUStats
{
#ifdef _WIN32
HANDLE m_self;
using time_type = ULARGE_INTEGER;
#else
using time_type = clock_t;
#endif
private:
s32 m_num_processors;
time_type m_last_cpu, m_sys_cpu, m_usr_cpu;
public:
CPUStats()
{
#ifdef _WIN32
SYSTEM_INFO sysInfo;
FILETIME ftime, fsys, fuser;
GetSystemInfo(&sysInfo);
m_num_processors = sysInfo.dwNumberOfProcessors;
GetSystemTimeAsFileTime(&ftime);
memcpy(&m_last_cpu, &ftime, sizeof(FILETIME));
m_self = GetCurrentProcess();
GetProcessTimes(m_self, &ftime, &ftime, &fsys, &fuser);
memcpy(&m_sys_cpu, &fsys, sizeof(FILETIME));
memcpy(&m_usr_cpu, &fuser, sizeof(FILETIME));
#else
struct tms timeSample;
m_last_cpu = times(&timeSample);
m_sys_cpu = timeSample.tms_stime;
m_usr_cpu = timeSample.tms_utime;
m_num_processors = sysconf(_SC_NPROCESSORS_ONLN);
#endif
}
double get_usage()
{
#ifdef _WIN32
FILETIME ftime, fsys, fusr;
ULARGE_INTEGER now, sys, usr;
GetSystemTimeAsFileTime(&ftime);
memcpy(&now, &ftime, sizeof(FILETIME));
GetProcessTimes(m_self, &ftime, &ftime, &fsys, &fusr);
memcpy(&sys, &fsys, sizeof(FILETIME));
memcpy(&usr, &fusr, sizeof(FILETIME));
double percent = double(sys.QuadPart - m_sys_cpu.QuadPart) + (usr.QuadPart - m_usr_cpu.QuadPart);
percent /= (now.QuadPart - m_last_cpu.QuadPart);
percent /= m_num_processors;
m_last_cpu = now;
m_usr_cpu = usr;
m_sys_cpu = sys;
return std::clamp(percent * 100, 0.0, 100.0);
#else
struct tms timeSample;
clock_t now;
double percent;
now = times(&timeSample);
if (now <= m_last_cpu || timeSample.tms_stime < m_sys_cpu || timeSample.tms_utime < m_usr_cpu)
{
// Overflow detection. Just skip this value.
percent = -1.0;
}
else
{
percent = (timeSample.tms_stime - m_sys_cpu) + (timeSample.tms_utime - m_usr_cpu);
percent /= (now - m_last_cpu);
percent /= m_num_processors;
percent *= 100;
}
m_last_cpu = now;
m_sys_cpu = timeSample.tms_stime;
m_usr_cpu = timeSample.tms_utime;
return percent;
#endif
}
static u32 get_thread_count()
{
#ifdef _WIN32
// first determine the id of the current process
DWORD const id = GetCurrentProcessId();
// then get a process list snapshot.
HANDLE const snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
// initialize the process entry structure.
PROCESSENTRY32 entry = {0};
entry.dwSize = sizeof(entry);
// get the first process info.
BOOL ret = true;
ret = Process32First(snapshot, &entry);
while (ret && entry.th32ProcessID != id)
{
ret = Process32Next(snapshot, &entry);
}
CloseHandle(snapshot);
return ret ? entry.cntThreads : 0;
#elif defined(__APPLE__)
const task_t task = mach_task_self();
mach_msg_type_number_t thread_count;
thread_act_array_t thread_list;
if (task_threads(task, &thread_list, &thread_count) != KERN_SUCCESS)
{
return 0;
}
vm_deallocate(task, reinterpret_cast<vm_address_t>(thread_list),
sizeof(thread_t) * thread_count);
return static_cast<u32>(thread_count);
#elif defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__)
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
#if defined(__NetBSD__)
sizeof(struct kinfo_proc),
1,
#endif
};
u_int miblen = std::size(mib);
struct kinfo_proc info;
usz size = sizeof(info);
if (sysctl(mib, miblen, &info, &size, NULL, 0))
{
return 0;
}
return KP_NLWP(info);
#elif defined(__OpenBSD__)
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
getpid(),
sizeof(struct kinfo_proc),
0,
};
u_int miblen = std::size(mib);
// get number of structs
usz size;
if (sysctl(mib, miblen, NULL, &size, NULL, 0))
{
return 0;
}
mib[5] = size / mib[4];
// populate array of structs
struct kinfo_proc info[mib[5]];
if (sysctl(mib, miblen, &info, &size, NULL, 0))
{
return 0;
}
// exclude empty members
u32 thread_count{0};
for (int i = 0; i < size / mib[4]; i++)
{
if (info[i].p_tid != -1)
++thread_count;
}
return thread_count;
#elif defined(__linux__)
u32 thread_count{0};
DIR* proc_dir = opendir("/proc/self/task");
if (proc_dir)
{
// proc available, iterate through tasks and count them
struct dirent* entry;
while ((entry = readdir(proc_dir)) != NULL)
{
if (entry->d_name[0] == '.')
continue;
++thread_count;
}
closedir(proc_dir);
}
return thread_count;
#else
// unimplemented
return 0;
#endif
}
};