#include "stdafx.h" #include "Log.h" #include "Emu/System.h" #include "Emu/CPU/CPUThread.h" #include "Emu/SysCalls/SysCalls.h" #include "Thread.h" #ifdef _WIN32 #include #else #include #include #endif void SetCurrentThreadDebugName(const char* threadName) { #if defined(_MSC_VER) // this is VS-specific way to set thread names for the debugger #pragma pack(push,8) struct THREADNAME_INFO { DWORD dwType; LPCSTR szName; DWORD dwThreadID; DWORD dwFlags; } info; #pragma pack(pop) info.dwType = 0x1000; info.szName = threadName; info.dwThreadID = -1; info.dwFlags = 0; __try { RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info); } __except (EXCEPTION_EXECUTE_HANDLER) { } #endif } enum x64_reg_t : u32 { X64R_EAX, X64R_ECX, X64R_EDX, X64R_EBX, X64R_ESP, X64R_EBP, X64R_ESI, X64R_EDI, X64R_R8D, X64R_R9D, X64R_R10D, X64R_R11D, X64R_R12D, X64R_R13D, X64R_R14D, X64R_R15D, X64R32 = X64R_EAX, X64_IMM32, }; enum x64_op_t : u32 { X64OP_LOAD, // obtain and put the value into x64 register (from Memory.ReadMMIO32, for example) X64OP_STORE, // take the value from x64 register or an immediate and use it (pass in Memory.WriteMMIO32, for example) // example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register) // example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers) }; void decode_x64_reg_op(const u8* code, x64_op_t& decoded_op, x64_reg_t& decoded_reg, size_t& decoded_size) { // simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way decoded_size = 0; u8 rex = 0; u8 reg = 0; // set to 8 by REX prefix u8 pg2 = 0; // check prefixes: for (;; code++, decoded_size++) { switch (const u8 prefix = *code) { case 0xf0: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (LOCK prefix) found", code - decoded_size, prefix); // group 1 case 0xf2: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REPNE/REPNZ prefix) found", code - decoded_size, prefix); // group 1 case 0xf3: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REP/REPE/REPZ prefix) found", code - decoded_size, prefix); // group 1 case 0x2e: // group 2 case 0x36: case 0x3e: case 0x26: case 0x64: case 0x65: { if (!pg2) { pg2 = prefix; // probably, segment register continue; } else { throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (group 2 prefix) found after 0x%.2X", code - decoded_size, prefix, pg2); } } case 0x66: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (operand-size override prefix) found", code - decoded_size, prefix); // group 3 case 0x67: throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (address-size override prefix) found", code - decoded_size, prefix); // group 4 default: { if ((prefix & 0xf0) == 0x40) // check REX prefix { if (rex) { throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REX prefix) found after 0x%.2X", code - decoded_size, prefix, rex); } if (prefix & 0x80) // check REX.W bit { throw fmt::Format("decode_x64_reg_op(%.16llXh): 0x%.2X (REX.W bit) found", code - decoded_size, prefix); } if (prefix & 0x04) // check REX.R bit { reg = 8; } rex = prefix; continue; } } } break; } auto get_modRM_r32 = [](const u8* code, const u8 reg_base) -> x64_reg_t { return (x64_reg_t)((((*code & 0x38) >> 3) | reg_base) + X64R32); }; auto get_modRM_size = [](const u8* code) -> size_t { switch (*code >> 6) // check Mod { case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8) case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32) default: return 1; } }; decoded_size++; switch (const u8 op1 = *code++) { case 0x89: // MOV r/m32, r32 { decoded_op = X64OP_STORE; decoded_reg = get_modRM_r32(code, reg); decoded_size += get_modRM_size(code); return; } case 0x8b: // MOV r32, r/m32 { decoded_op = X64OP_LOAD; decoded_reg = get_modRM_r32(code, reg); decoded_size += get_modRM_size(code); return; } case 0xc7: { if (get_modRM_r32(code, 0) == X64R_EAX) // MOV r/m32, imm32 (not tested) { decoded_op = X64OP_STORE; decoded_reg = X64_IMM32; decoded_size = get_modRM_size(code) + 4; return; } } default: { throw fmt::Format("decode_x64_reg_op(%.16llXh): unsupported opcode found (0x%.2X, 0x%.2X, 0x%.2X)", code - decoded_size, op1, code[0], code[1]); } } } #ifdef _WIN32 void _se_translator(unsigned int u, EXCEPTION_POINTERS* pExp) { const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)Memory.GetBaseAddr(); const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0; if (u == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull) { const u32 addr = (u32)addr64; if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) // RawSPU MMIO registers { // one x64 instruction is manually decoded and interpreted x64_op_t op; x64_reg_t reg; size_t size; decode_x64_reg_op((const u8*)pExp->ContextRecord->Rip, op, reg, size); // get x64 reg value (for store operations) u64 reg_value; if (reg - X64R32 < 16) { // load the value from x64 register reg_value = (u32)(&pExp->ContextRecord->Rax)[reg - X64R32]; } else if (reg == X64_IMM32) { // load the immediate value (assuming it's at the end of the instruction) reg_value = *(u32*)(pExp->ContextRecord->Rip + size - 4); } else { assert(!"Invalid x64_reg_t value"); } bool save_reg = false; switch (op) { case X64OP_LOAD: { assert(!is_writing); reg_value = re32(Memory.ReadMMIO32(addr)); save_reg = true; break; } case X64OP_STORE: { assert(is_writing); Memory.WriteMMIO32(addr, re32((u32)reg_value)); break; } default: assert(!"Invalid x64_op_t value"); } // save x64 reg value (for load operations) if (save_reg) { if (reg - X64R32 < 16) { // store the value into x64 register (&pExp->ContextRecord->Rax)[reg - X64R32] = (u32)reg_value; } else { assert(!"Invalid x64_reg_t value (saving)"); } } // skip decoded instruction pExp->ContextRecord->Rip += size; // restore context (further code shouldn't be reached) RtlRestoreContext(pExp->ContextRecord, nullptr); // it's dangerous because destructors won't be executed } // TODO: allow recovering from a page fault as a feature of PS3 virtual memory throw fmt::Format("Access violation %s location 0x%x", is_writing ? "writing" : "reading", addr); } // else some fatal error (should crash) } #else typedef decltype(REG_RIP) reg_table_t; static const reg_table_t reg_table[16] = { REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15 }; void signal_handler(int sig, siginfo_t* info, void* uct) { ucontext_t* const ctx = (ucontext_t*)uct; const u64 addr64 = (u64)info->si_addr - (u64)Memory.GetBaseAddr(); //const bool is_writing = false; // TODO: get it correctly if (addr64 < 0x100000000ull) { const u32 addr = (u32)addr64; if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) // RawSPU MMIO registers { // one x64 instruction is manually decoded and interpreted x64_op_t op; x64_reg_t reg; size_t size; decode_x64_reg_op((const u8*)ctx->uc_mcontext.gregs[REG_RIP], op, reg, size); // get x64 reg value (for store operations) u64 reg_value; if (reg - X64R32 < 16) { // load the value from x64 register reg_value = (u32)ctx->uc_mcontext.gregs[reg_table[reg - X64R32]]; } else if (reg == X64_IMM32) { // load the immediate value (assuming it's at the end of the instruction) reg_value = *(u32*)(ctx->uc_mcontext.gregs[REG_RIP] + size - 4); } else { assert(!"Invalid x64_reg_t value"); } bool save_reg = false; switch (op) { case X64OP_LOAD: { //assert(!is_writing); reg_value = re32(Memory.ReadMMIO32(addr)); save_reg = true; break; } case X64OP_STORE: { //assert(is_writing); Memory.WriteMMIO32(addr, re32((u32)reg_value)); break; } default: assert(!"Invalid x64_op_t value"); } // save x64 reg value (for load operations) if (save_reg) { if (reg - X64R32 < 16) { // store the value into x64 register ctx->uc_mcontext.gregs[reg_table[reg - X64R32]] = (u32)reg_value; } else { assert(!"Invalid x64_reg_t value (saving)"); } } // skip decoded instruction ctx->uc_mcontext.gregs[REG_RIP] += size; return; // now execution should proceed //setcontext(ctx); } // TODO: allow recovering from a page fault as a feature of PS3 virtual memory throw fmt::Format("Access violation %s location 0x%x", /*is_writing ? "writing" : "reading"*/ "at", addr); } // else some fatal error exit(EXIT_FAILURE); } const int sigaction_result = []() -> int { struct sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = signal_handler; return sigaction(SIGSEGV, &sa, NULL); }(); #endif thread_local NamedThreadBase* g_tls_this_thread = nullptr; std::atomic g_thread_count(0); NamedThreadBase* GetCurrentNamedThread() { return g_tls_this_thread; } void SetCurrentNamedThread(NamedThreadBase* value) { auto old_value = g_tls_this_thread; if (old_value == value) { return; } if (value && value->m_tls_assigned.exchange(true)) { LOG_ERROR(GENERAL, "Thread '%s' was already assigned to g_tls_this_thread of another thread", value->GetThreadName().c_str()); g_tls_this_thread = nullptr; } else { g_tls_this_thread = value; } if (old_value) { old_value->m_tls_assigned = false; } } std::string NamedThreadBase::GetThreadName() const { return m_name; } void NamedThreadBase::SetThreadName(const std::string& name) { m_name = name; } void NamedThreadBase::WaitForAnySignal(u64 time) // wait for Notify() signal or sleep { std::unique_lock lock(m_signal_mtx); m_signal_cv.wait_for(lock, std::chrono::milliseconds(time)); } void NamedThreadBase::Notify() // wake up waiting thread or nothing { m_signal_cv.notify_one(); } ThreadBase::ThreadBase(const std::string& name) : NamedThreadBase(name) , m_executor(nullptr) , m_destroy(false) , m_alive(false) { } ThreadBase::~ThreadBase() { if(IsAlive()) Stop(false); delete m_executor; m_executor = nullptr; } void ThreadBase::Start() { if(m_executor) Stop(); std::lock_guard lock(m_main_mutex); m_destroy = false; m_alive = true; m_executor = new std::thread([this]() { SetCurrentThreadDebugName(GetThreadName().c_str()); #ifdef _WIN32 auto old_se_translator = _set_se_translator(_se_translator); #else if (sigaction_result == -1) assert(!"sigaction() failed"); #endif SetCurrentNamedThread(this); g_thread_count++; try { Task(); } catch (const char* e) { LOG_ERROR(GENERAL, "%s: %s", GetThreadName().c_str(), e); } catch (const std::string& e) { LOG_ERROR(GENERAL, "%s: %s", GetThreadName().c_str(), e.c_str()); } m_alive = false; SetCurrentNamedThread(nullptr); g_thread_count--; #ifdef _WIN32 _set_se_translator(old_se_translator); #endif }); } void ThreadBase::Stop(bool wait, bool send_destroy) { std::lock_guard lock(m_main_mutex); if (send_destroy) m_destroy = true; if(!m_executor) return; if(wait && m_executor->joinable() && m_alive) { m_executor->join(); } else { m_executor->detach(); } delete m_executor; m_executor = nullptr; } bool ThreadBase::Join() const { std::lock_guard lock(m_main_mutex); if(m_executor->joinable() && m_alive && m_executor != nullptr) { m_executor->join(); return true; } return false; } bool ThreadBase::IsAlive() const { std::lock_guard lock(m_main_mutex); return m_alive; } bool ThreadBase::TestDestroy() const { return m_destroy; } thread::thread(const std::string& name, std::function func) : m_name(name) { start(func); } thread::thread(const std::string& name) : m_name(name) { } thread::thread() { } void thread::start(std::function func) { std::string name = m_name; m_thr = std::thread([func, name]() { SetCurrentThreadDebugName(name.c_str()); #ifdef _WIN32 auto old_se_translator = _set_se_translator(_se_translator); #else if (sigaction_result == -1) assert(!"sigaction() failed"); #endif NamedThreadBase info(name); SetCurrentNamedThread(&info); g_thread_count++; try { func(); } catch (const char* e) { LOG_ERROR(GENERAL, "%s: %s", name.c_str(), e); } catch (const std::string& e) { LOG_ERROR(GENERAL, "%s: %s", name.c_str(), e.c_str()); } SetCurrentNamedThread(nullptr); g_thread_count--; #ifdef _WIN32 _set_se_translator(old_se_translator); #endif }); } void thread::detach() { m_thr.detach(); } void thread::join() { m_thr.join(); } bool thread::joinable() const { return m_thr.joinable(); } bool waiter_map_t::is_stopped(u64 signal_id) { if (Emu.IsStopped()) { LOG_WARNING(Log::HLE, "%s: waiter_op() aborted (signal_id=0x%llx)", m_name.c_str(), signal_id); return true; } return false; } void waiter_map_t::waiter_reg_t::init() { if (!thread) { thread = GetCurrentNamedThread(); std::lock_guard lock(map.m_mutex); // add waiter map.m_waiters.push_back({ signal_id, thread }); } } waiter_map_t::waiter_reg_t::~waiter_reg_t() { if (thread) { std::lock_guard lock(map.m_mutex); // remove waiter for (s64 i = map.m_waiters.size() - 1; i >= 0; i--) { if (map.m_waiters[i].signal_id == signal_id && map.m_waiters[i].thread == thread) { map.m_waiters.erase(map.m_waiters.begin() + i); return; } } LOG_ERROR(HLE, "%s(): waiter not found (signal_id=0x%llx, map='%s')", __FUNCTION__, signal_id, map.m_name.c_str()); Emu.Pause(); } } void waiter_map_t::notify(u64 signal_id) { if (m_waiters.size()) { std::lock_guard lock(m_mutex); // find waiter and signal for (auto& v : m_waiters) { if (v.signal_id == signal_id) { v.thread->Notify(); } } } } bool squeue_test_exit(const volatile bool* do_exit) { return Emu.IsStopped() || (do_exit && *do_exit); }